Home | History | Annotate | Line # | Download | only in kern
sys_pipe.c revision 1.79
      1 /*	$NetBSD: sys_pipe.c,v 1.79 2007/03/04 06:03:09 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2003 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Paul Kranenburg.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Copyright (c) 1996 John S. Dyson
     41  * All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice immediately at the beginning of the file, without modification,
     48  *    this list of conditions, and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. Absolutely no warranty of function or purpose is made by the author
     53  *    John S. Dyson.
     54  * 4. Modifications may be freely made to this file if the above conditions
     55  *    are met.
     56  *
     57  * $FreeBSD: src/sys/kern/sys_pipe.c,v 1.95 2002/03/09 22:06:31 alfred Exp $
     58  */
     59 
     60 /*
     61  * This file contains a high-performance replacement for the socket-based
     62  * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
     63  * all features of sockets, but does do everything that pipes normally
     64  * do.
     65  *
     66  * Adaption for NetBSD UVM, including uvm_loan() based direct write, was
     67  * written by Jaromir Dolecek.
     68  */
     69 
     70 /*
     71  * This code has two modes of operation, a small write mode and a large
     72  * write mode.  The small write mode acts like conventional pipes with
     73  * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
     74  * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
     75  * and PIPE_SIZE in size it is mapped read-only into the kernel address space
     76  * using the UVM page loan facility from where the receiving process can copy
     77  * the data directly from the pages in the sending process.
     78  *
     79  * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
     80  * happen for small transfers so that the system will not spend all of
     81  * its time context switching.  PIPE_SIZE is constrained by the
     82  * amount of kernel virtual memory.
     83  */
     84 
     85 #include <sys/cdefs.h>
     86 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.79 2007/03/04 06:03:09 christos Exp $");
     87 
     88 #include <sys/param.h>
     89 #include <sys/systm.h>
     90 #include <sys/proc.h>
     91 #include <sys/fcntl.h>
     92 #include <sys/file.h>
     93 #include <sys/filedesc.h>
     94 #include <sys/filio.h>
     95 #include <sys/kernel.h>
     96 #include <sys/ttycom.h>
     97 #include <sys/stat.h>
     98 #include <sys/malloc.h>
     99 #include <sys/poll.h>
    100 #include <sys/signalvar.h>
    101 #include <sys/vnode.h>
    102 #include <sys/uio.h>
    103 #include <sys/lock.h>
    104 #include <sys/select.h>
    105 #include <sys/mount.h>
    106 #include <sys/syscallargs.h>
    107 #include <uvm/uvm.h>
    108 #include <sys/sysctl.h>
    109 #include <sys/kernel.h>
    110 #include <sys/kauth.h>
    111 
    112 #include <sys/pipe.h>
    113 
    114 /*
    115  * Use this define if you want to disable *fancy* VM things.  Expect an
    116  * approx 30% decrease in transfer rate.
    117  */
    118 /* #define PIPE_NODIRECT */
    119 
    120 /*
    121  * interfaces to the outside world
    122  */
    123 static int pipe_read(struct file *fp, off_t *offset, struct uio *uio,
    124 		kauth_cred_t cred, int flags);
    125 static int pipe_write(struct file *fp, off_t *offset, struct uio *uio,
    126 		kauth_cred_t cred, int flags);
    127 static int pipe_close(struct file *fp, struct lwp *l);
    128 static int pipe_poll(struct file *fp, int events, struct lwp *l);
    129 static int pipe_kqfilter(struct file *fp, struct knote *kn);
    130 static int pipe_stat(struct file *fp, struct stat *sb, struct lwp *l);
    131 static int pipe_ioctl(struct file *fp, u_long cmd, void *data,
    132 		struct lwp *l);
    133 
    134 static const struct fileops pipeops = {
    135 	pipe_read, pipe_write, pipe_ioctl, fnullop_fcntl, pipe_poll,
    136 	pipe_stat, pipe_close, pipe_kqfilter
    137 };
    138 
    139 /*
    140  * Default pipe buffer size(s), this can be kind-of large now because pipe
    141  * space is pageable.  The pipe code will try to maintain locality of
    142  * reference for performance reasons, so small amounts of outstanding I/O
    143  * will not wipe the cache.
    144  */
    145 #define MINPIPESIZE (PIPE_SIZE/3)
    146 #define MAXPIPESIZE (2*PIPE_SIZE/3)
    147 
    148 /*
    149  * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
    150  * is there so that on large systems, we don't exhaust it.
    151  */
    152 #define MAXPIPEKVA (8*1024*1024)
    153 static int maxpipekva = MAXPIPEKVA;
    154 
    155 /*
    156  * Limit for direct transfers, we cannot, of course limit
    157  * the amount of kva for pipes in general though.
    158  */
    159 #define LIMITPIPEKVA (16*1024*1024)
    160 static int limitpipekva = LIMITPIPEKVA;
    161 
    162 /*
    163  * Limit the number of "big" pipes
    164  */
    165 #define LIMITBIGPIPES  32
    166 static int maxbigpipes = LIMITBIGPIPES;
    167 static int nbigpipe = 0;
    168 
    169 /*
    170  * Amount of KVA consumed by pipe buffers.
    171  */
    172 static int amountpipekva = 0;
    173 
    174 MALLOC_DEFINE(M_PIPE, "pipe", "Pipe structures");
    175 
    176 static void pipeclose(struct file *fp, struct pipe *pipe);
    177 static void pipe_free_kmem(struct pipe *pipe);
    178 static int pipe_create(struct pipe **pipep, int allockva);
    179 static int pipelock(struct pipe *pipe, int catch);
    180 static inline void pipeunlock(struct pipe *pipe);
    181 static void pipeselwakeup(struct pipe *pipe, struct pipe *sigp, int code);
    182 #ifndef PIPE_NODIRECT
    183 static int pipe_direct_write(struct file *fp, struct pipe *wpipe,
    184     struct uio *uio);
    185 #endif
    186 static int pipespace(struct pipe *pipe, int size);
    187 
    188 #ifndef PIPE_NODIRECT
    189 static int pipe_loan_alloc(struct pipe *, int);
    190 static void pipe_loan_free(struct pipe *);
    191 #endif /* PIPE_NODIRECT */
    192 
    193 static POOL_INIT(pipe_pool, sizeof(struct pipe), 0, 0, 0, "pipepl",
    194     &pool_allocator_nointr);
    195 
    196 /*
    197  * The pipe system call for the DTYPE_PIPE type of pipes
    198  */
    199 
    200 /* ARGSUSED */
    201 int
    202 sys_pipe(struct lwp *l, void *v, register_t *retval)
    203 {
    204 	struct file *rf, *wf;
    205 	struct pipe *rpipe, *wpipe;
    206 	int fd, error;
    207 
    208 	rpipe = wpipe = NULL;
    209 	if (pipe_create(&rpipe, 1) || pipe_create(&wpipe, 0)) {
    210 		pipeclose(NULL, rpipe);
    211 		pipeclose(NULL, wpipe);
    212 		return (ENFILE);
    213 	}
    214 
    215 	/*
    216 	 * Note: the file structure returned from falloc() is marked
    217 	 * as 'larval' initially. Unless we mark it as 'mature' by
    218 	 * FILE_SET_MATURE(), any attempt to do anything with it would
    219 	 * return EBADF, including e.g. dup(2) or close(2). This avoids
    220 	 * file descriptor races if we block in the second falloc().
    221 	 */
    222 
    223 	error = falloc(l, &rf, &fd);
    224 	if (error)
    225 		goto free2;
    226 	retval[0] = fd;
    227 	rf->f_flag = FREAD;
    228 	rf->f_type = DTYPE_PIPE;
    229 	rf->f_data = (void *)rpipe;
    230 	rf->f_ops = &pipeops;
    231 
    232 	error = falloc(l, &wf, &fd);
    233 	if (error)
    234 		goto free3;
    235 	retval[1] = fd;
    236 	wf->f_flag = FWRITE;
    237 	wf->f_type = DTYPE_PIPE;
    238 	wf->f_data = (void *)wpipe;
    239 	wf->f_ops = &pipeops;
    240 
    241 	rpipe->pipe_peer = wpipe;
    242 	wpipe->pipe_peer = rpipe;
    243 
    244 	FILE_SET_MATURE(rf);
    245 	FILE_SET_MATURE(wf);
    246 	FILE_UNUSE(rf, l);
    247 	FILE_UNUSE(wf, l);
    248 	return (0);
    249 free3:
    250 	FILE_UNUSE(rf, l);
    251 	ffree(rf);
    252 	fdremove(l->l_proc->p_fd, retval[0]);
    253 free2:
    254 	pipeclose(NULL, wpipe);
    255 	pipeclose(NULL, rpipe);
    256 
    257 	return (error);
    258 }
    259 
    260 /*
    261  * Allocate kva for pipe circular buffer, the space is pageable
    262  * This routine will 'realloc' the size of a pipe safely, if it fails
    263  * it will retain the old buffer.
    264  * If it fails it will return ENOMEM.
    265  */
    266 static int
    267 pipespace(struct pipe *pipe, int size)
    268 {
    269 	void *buffer;
    270 	/*
    271 	 * Allocate pageable virtual address space. Physical memory is
    272 	 * allocated on demand.
    273 	 */
    274 	buffer = (void *) uvm_km_alloc(kernel_map, round_page(size), 0,
    275 	    UVM_KMF_PAGEABLE);
    276 	if (buffer == NULL)
    277 		return (ENOMEM);
    278 
    279 	/* free old resources if we're resizing */
    280 	pipe_free_kmem(pipe);
    281 	pipe->pipe_buffer.buffer = buffer;
    282 	pipe->pipe_buffer.size = size;
    283 	pipe->pipe_buffer.in = 0;
    284 	pipe->pipe_buffer.out = 0;
    285 	pipe->pipe_buffer.cnt = 0;
    286 	amountpipekva += pipe->pipe_buffer.size;
    287 	return (0);
    288 }
    289 
    290 /*
    291  * Initialize and allocate VM and memory for pipe.
    292  */
    293 static int
    294 pipe_create(struct pipe **pipep, int allockva)
    295 {
    296 	struct pipe *pipe;
    297 	int error;
    298 
    299 	pipe = *pipep = pool_get(&pipe_pool, PR_WAITOK);
    300 
    301 	/* Initialize */
    302 	memset(pipe, 0, sizeof(struct pipe));
    303 	pipe->pipe_state = PIPE_SIGNALR;
    304 
    305 	getmicrotime(&pipe->pipe_ctime);
    306 	pipe->pipe_atime = pipe->pipe_ctime;
    307 	pipe->pipe_mtime = pipe->pipe_ctime;
    308 	simple_lock_init(&pipe->pipe_slock);
    309 
    310 	if (allockva && (error = pipespace(pipe, PIPE_SIZE)))
    311 		return (error);
    312 
    313 	return (0);
    314 }
    315 
    316 
    317 /*
    318  * Lock a pipe for I/O, blocking other access
    319  * Called with pipe spin lock held.
    320  * Return with pipe spin lock released on success.
    321  */
    322 static int
    323 pipelock(struct pipe *pipe, int catch)
    324 {
    325 
    326 	LOCK_ASSERT(simple_lock_held(&pipe->pipe_slock));
    327 
    328 	while (pipe->pipe_state & PIPE_LOCKFL) {
    329 		int error;
    330 		const int pcatch = catch ? PCATCH : 0;
    331 
    332 		pipe->pipe_state |= PIPE_LWANT;
    333 		error = ltsleep(pipe, PSOCK | pcatch, "pipelk", 0,
    334 		    &pipe->pipe_slock);
    335 		if (error != 0)
    336 			return error;
    337 	}
    338 
    339 	pipe->pipe_state |= PIPE_LOCKFL;
    340 	simple_unlock(&pipe->pipe_slock);
    341 
    342 	return 0;
    343 }
    344 
    345 /*
    346  * unlock a pipe I/O lock
    347  */
    348 static inline void
    349 pipeunlock(struct pipe *pipe)
    350 {
    351 
    352 	KASSERT(pipe->pipe_state & PIPE_LOCKFL);
    353 
    354 	pipe->pipe_state &= ~PIPE_LOCKFL;
    355 	if (pipe->pipe_state & PIPE_LWANT) {
    356 		pipe->pipe_state &= ~PIPE_LWANT;
    357 		wakeup(pipe);
    358 	}
    359 }
    360 
    361 /*
    362  * Select/poll wakup. This also sends SIGIO to peer connected to
    363  * 'sigpipe' side of pipe.
    364  */
    365 static void
    366 pipeselwakeup(struct pipe *selp, struct pipe *sigp, int code)
    367 {
    368 	int band;
    369 
    370 	selnotify(&selp->pipe_sel, NOTE_SUBMIT);
    371 
    372 	if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0)
    373 		return;
    374 
    375 	switch (code) {
    376 	case POLL_IN:
    377 		band = POLLIN|POLLRDNORM;
    378 		break;
    379 	case POLL_OUT:
    380 		band = POLLOUT|POLLWRNORM;
    381 		break;
    382 	case POLL_HUP:
    383 		band = POLLHUP;
    384 		break;
    385 #if POLL_HUP != POLL_ERR
    386 	case POLL_ERR:
    387 		band = POLLERR;
    388 		break;
    389 #endif
    390 	default:
    391 		band = 0;
    392 #ifdef DIAGNOSTIC
    393 		printf("bad siginfo code %d in pipe notification.\n", code);
    394 #endif
    395 		break;
    396 	}
    397 
    398 	fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp);
    399 }
    400 
    401 /* ARGSUSED */
    402 static int
    403 pipe_read(struct file *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
    404     int flags)
    405 {
    406 	struct pipe *rpipe = (struct pipe *) fp->f_data;
    407 	struct pipebuf *bp = &rpipe->pipe_buffer;
    408 	int error;
    409 	size_t nread = 0;
    410 	size_t size;
    411 	size_t ocnt;
    412 
    413 	PIPE_LOCK(rpipe);
    414 	++rpipe->pipe_busy;
    415 	ocnt = bp->cnt;
    416 
    417 again:
    418 	error = pipelock(rpipe, 1);
    419 	if (error)
    420 		goto unlocked_error;
    421 
    422 	while (uio->uio_resid) {
    423 		/*
    424 		 * normal pipe buffer receive
    425 		 */
    426 		if (bp->cnt > 0) {
    427 			size = bp->size - bp->out;
    428 			if (size > bp->cnt)
    429 				size = bp->cnt;
    430 			if (size > uio->uio_resid)
    431 				size = uio->uio_resid;
    432 
    433 			error = uiomove((char *)bp->buffer + bp->out, size, uio);
    434 			if (error)
    435 				break;
    436 
    437 			bp->out += size;
    438 			if (bp->out >= bp->size)
    439 				bp->out = 0;
    440 
    441 			bp->cnt -= size;
    442 
    443 			/*
    444 			 * If there is no more to read in the pipe, reset
    445 			 * its pointers to the beginning.  This improves
    446 			 * cache hit stats.
    447 			 */
    448 			if (bp->cnt == 0) {
    449 				bp->in = 0;
    450 				bp->out = 0;
    451 			}
    452 			nread += size;
    453 #ifndef PIPE_NODIRECT
    454 		} else if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) {
    455 			/*
    456 			 * Direct copy, bypassing a kernel buffer.
    457 			 */
    458 			void *	va;
    459 
    460 			KASSERT(rpipe->pipe_state & PIPE_DIRECTW);
    461 
    462 			size = rpipe->pipe_map.cnt;
    463 			if (size > uio->uio_resid)
    464 				size = uio->uio_resid;
    465 
    466 			va = (char *)rpipe->pipe_map.kva + rpipe->pipe_map.pos;
    467 			error = uiomove(va, size, uio);
    468 			if (error)
    469 				break;
    470 			nread += size;
    471 			rpipe->pipe_map.pos += size;
    472 			rpipe->pipe_map.cnt -= size;
    473 			if (rpipe->pipe_map.cnt == 0) {
    474 				PIPE_LOCK(rpipe);
    475 				rpipe->pipe_state &= ~PIPE_DIRECTR;
    476 				wakeup(rpipe);
    477 				PIPE_UNLOCK(rpipe);
    478 			}
    479 #endif
    480 		} else {
    481 			/*
    482 			 * Break if some data was read.
    483 			 */
    484 			if (nread > 0)
    485 				break;
    486 
    487 			PIPE_LOCK(rpipe);
    488 
    489 			/*
    490 			 * detect EOF condition
    491 			 * read returns 0 on EOF, no need to set error
    492 			 */
    493 			if (rpipe->pipe_state & PIPE_EOF) {
    494 				PIPE_UNLOCK(rpipe);
    495 				break;
    496 			}
    497 
    498 			/*
    499 			 * don't block on non-blocking I/O
    500 			 */
    501 			if (fp->f_flag & FNONBLOCK) {
    502 				PIPE_UNLOCK(rpipe);
    503 				error = EAGAIN;
    504 				break;
    505 			}
    506 
    507 			/*
    508 			 * Unlock the pipe buffer for our remaining processing.
    509 			 * We will either break out with an error or we will
    510 			 * sleep and relock to loop.
    511 			 */
    512 			pipeunlock(rpipe);
    513 
    514 			/*
    515 			 * The PIPE_DIRECTR flag is not under the control
    516 			 * of the long-term lock (see pipe_direct_write()),
    517 			 * so re-check now while holding the spin lock.
    518 			 */
    519 			if ((rpipe->pipe_state & PIPE_DIRECTR) != 0)
    520 				goto again;
    521 
    522 			/*
    523 			 * We want to read more, wake up select/poll.
    524 			 */
    525 			pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_IN);
    526 
    527 			/*
    528 			 * If the "write-side" is blocked, wake it up now.
    529 			 */
    530 			if (rpipe->pipe_state & PIPE_WANTW) {
    531 				rpipe->pipe_state &= ~PIPE_WANTW;
    532 				wakeup(rpipe);
    533 			}
    534 
    535 			/* Now wait until the pipe is filled */
    536 			rpipe->pipe_state |= PIPE_WANTR;
    537 			error = ltsleep(rpipe, PSOCK | PCATCH,
    538 					"piperd", 0, &rpipe->pipe_slock);
    539 			if (error != 0)
    540 				goto unlocked_error;
    541 			goto again;
    542 		}
    543 	}
    544 
    545 	if (error == 0)
    546 		getmicrotime(&rpipe->pipe_atime);
    547 
    548 	PIPE_LOCK(rpipe);
    549 	pipeunlock(rpipe);
    550 
    551 unlocked_error:
    552 	--rpipe->pipe_busy;
    553 
    554 	/*
    555 	 * PIPE_WANTCLOSE processing only makes sense if pipe_busy is 0.
    556 	 */
    557 	if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANTCLOSE)) {
    558 		rpipe->pipe_state &= ~(PIPE_WANTCLOSE|PIPE_WANTW);
    559 		wakeup(rpipe);
    560 	} else if (bp->cnt < MINPIPESIZE) {
    561 		/*
    562 		 * Handle write blocking hysteresis.
    563 		 */
    564 		if (rpipe->pipe_state & PIPE_WANTW) {
    565 			rpipe->pipe_state &= ~PIPE_WANTW;
    566 			wakeup(rpipe);
    567 		}
    568 	}
    569 
    570 	/*
    571 	 * If anything was read off the buffer, signal to the writer it's
    572 	 * possible to write more data. Also send signal if we are here for the
    573 	 * first time after last write.
    574 	 */
    575 	if ((bp->size - bp->cnt) >= PIPE_BUF
    576 	    && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
    577 		pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
    578 		rpipe->pipe_state &= ~PIPE_SIGNALR;
    579 	}
    580 
    581 	PIPE_UNLOCK(rpipe);
    582 	return (error);
    583 }
    584 
    585 #ifndef PIPE_NODIRECT
    586 /*
    587  * Allocate structure for loan transfer.
    588  */
    589 static int
    590 pipe_loan_alloc(struct pipe *wpipe, int npages)
    591 {
    592 	vsize_t len;
    593 
    594 	len = (vsize_t)npages << PAGE_SHIFT;
    595 	wpipe->pipe_map.kva = uvm_km_alloc(kernel_map, len, 0,
    596 	    UVM_KMF_VAONLY | UVM_KMF_WAITVA);
    597 	if (wpipe->pipe_map.kva == 0)
    598 		return (ENOMEM);
    599 
    600 	amountpipekva += len;
    601 	wpipe->pipe_map.npages = npages;
    602 	wpipe->pipe_map.pgs = malloc(npages * sizeof(struct vm_page *), M_PIPE,
    603 	    M_WAITOK);
    604 	return (0);
    605 }
    606 
    607 /*
    608  * Free resources allocated for loan transfer.
    609  */
    610 static void
    611 pipe_loan_free(struct pipe *wpipe)
    612 {
    613 	vsize_t len;
    614 
    615 	len = (vsize_t)wpipe->pipe_map.npages << PAGE_SHIFT;
    616 	uvm_km_free(kernel_map, wpipe->pipe_map.kva, len, UVM_KMF_VAONLY);
    617 	wpipe->pipe_map.kva = 0;
    618 	amountpipekva -= len;
    619 	free(wpipe->pipe_map.pgs, M_PIPE);
    620 	wpipe->pipe_map.pgs = NULL;
    621 }
    622 
    623 /*
    624  * NetBSD direct write, using uvm_loan() mechanism.
    625  * This implements the pipe buffer write mechanism.  Note that only
    626  * a direct write OR a normal pipe write can be pending at any given time.
    627  * If there are any characters in the pipe buffer, the direct write will
    628  * be deferred until the receiving process grabs all of the bytes from
    629  * the pipe buffer.  Then the direct mapping write is set-up.
    630  *
    631  * Called with the long-term pipe lock held.
    632  */
    633 static int
    634 pipe_direct_write(struct file *fp, struct pipe *wpipe, struct uio *uio)
    635 {
    636 	int error, npages, j;
    637 	struct vm_page **pgs;
    638 	vaddr_t bbase, kva, base, bend;
    639 	vsize_t blen, bcnt;
    640 	voff_t bpos;
    641 
    642 	KASSERT(wpipe->pipe_map.cnt == 0);
    643 
    644 	/*
    645 	 * Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers
    646 	 * not aligned to PAGE_SIZE.
    647 	 */
    648 	bbase = (vaddr_t)uio->uio_iov->iov_base;
    649 	base = trunc_page(bbase);
    650 	bend = round_page(bbase + uio->uio_iov->iov_len);
    651 	blen = bend - base;
    652 	bpos = bbase - base;
    653 
    654 	if (blen > PIPE_DIRECT_CHUNK) {
    655 		blen = PIPE_DIRECT_CHUNK;
    656 		bend = base + blen;
    657 		bcnt = PIPE_DIRECT_CHUNK - bpos;
    658 	} else {
    659 		bcnt = uio->uio_iov->iov_len;
    660 	}
    661 	npages = blen >> PAGE_SHIFT;
    662 
    663 	/*
    664 	 * Free the old kva if we need more pages than we have
    665 	 * allocated.
    666 	 */
    667 	if (wpipe->pipe_map.kva != 0 && npages > wpipe->pipe_map.npages)
    668 		pipe_loan_free(wpipe);
    669 
    670 	/* Allocate new kva. */
    671 	if (wpipe->pipe_map.kva == 0) {
    672 		error = pipe_loan_alloc(wpipe, npages);
    673 		if (error)
    674 			return (error);
    675 	}
    676 
    677 	/* Loan the write buffer memory from writer process */
    678 	pgs = wpipe->pipe_map.pgs;
    679 	error = uvm_loan(&uio->uio_vmspace->vm_map, base, blen,
    680 			 pgs, UVM_LOAN_TOPAGE);
    681 	if (error) {
    682 		pipe_loan_free(wpipe);
    683 		return (ENOMEM); /* so that caller fallback to ordinary write */
    684 	}
    685 
    686 	/* Enter the loaned pages to kva */
    687 	kva = wpipe->pipe_map.kva;
    688 	for (j = 0; j < npages; j++, kva += PAGE_SIZE) {
    689 		pmap_kenter_pa(kva, VM_PAGE_TO_PHYS(pgs[j]), VM_PROT_READ);
    690 	}
    691 	pmap_update(pmap_kernel());
    692 
    693 	/* Now we can put the pipe in direct write mode */
    694 	wpipe->pipe_map.pos = bpos;
    695 	wpipe->pipe_map.cnt = bcnt;
    696 	wpipe->pipe_state |= PIPE_DIRECTW;
    697 
    698 	/*
    699 	 * But before we can let someone do a direct read,
    700 	 * we have to wait until the pipe is drained.
    701 	 */
    702 
    703 	/* Relase the pipe lock while we wait */
    704 	PIPE_LOCK(wpipe);
    705 	pipeunlock(wpipe);
    706 
    707 	while (error == 0 && wpipe->pipe_buffer.cnt > 0) {
    708 		if (wpipe->pipe_state & PIPE_WANTR) {
    709 			wpipe->pipe_state &= ~PIPE_WANTR;
    710 			wakeup(wpipe);
    711 		}
    712 
    713 		wpipe->pipe_state |= PIPE_WANTW;
    714 		error = ltsleep(wpipe, PSOCK | PCATCH, "pipdwc", 0,
    715 				&wpipe->pipe_slock);
    716 		if (error == 0 && wpipe->pipe_state & PIPE_EOF)
    717 			error = EPIPE;
    718 	}
    719 
    720 	/* Pipe is drained; next read will off the direct buffer */
    721 	wpipe->pipe_state |= PIPE_DIRECTR;
    722 
    723 	/* Wait until the reader is done */
    724 	while (error == 0 && (wpipe->pipe_state & PIPE_DIRECTR)) {
    725 		if (wpipe->pipe_state & PIPE_WANTR) {
    726 			wpipe->pipe_state &= ~PIPE_WANTR;
    727 			wakeup(wpipe);
    728 		}
    729 		pipeselwakeup(wpipe, wpipe, POLL_IN);
    730 		error = ltsleep(wpipe, PSOCK | PCATCH, "pipdwt", 0,
    731 				&wpipe->pipe_slock);
    732 		if (error == 0 && wpipe->pipe_state & PIPE_EOF)
    733 			error = EPIPE;
    734 	}
    735 
    736 	/* Take pipe out of direct write mode */
    737 	wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTR);
    738 
    739 	/* Acquire the pipe lock and cleanup */
    740 	(void)pipelock(wpipe, 0);
    741 	if (pgs != NULL) {
    742 		pmap_kremove(wpipe->pipe_map.kva, blen);
    743 		uvm_unloan(pgs, npages, UVM_LOAN_TOPAGE);
    744 	}
    745 	if (error || amountpipekva > maxpipekva)
    746 		pipe_loan_free(wpipe);
    747 
    748 	if (error) {
    749 		pipeselwakeup(wpipe, wpipe, POLL_ERR);
    750 
    751 		/*
    752 		 * If nothing was read from what we offered, return error
    753 		 * straight on. Otherwise update uio resid first. Caller
    754 		 * will deal with the error condition, returning short
    755 		 * write, error, or restarting the write(2) as appropriate.
    756 		 */
    757 		if (wpipe->pipe_map.cnt == bcnt) {
    758 			wpipe->pipe_map.cnt = 0;
    759 			wakeup(wpipe);
    760 			return (error);
    761 		}
    762 
    763 		bcnt -= wpipe->pipe_map.cnt;
    764 	}
    765 
    766 	uio->uio_resid -= bcnt;
    767 	/* uio_offset not updated, not set/used for write(2) */
    768 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt;
    769 	uio->uio_iov->iov_len -= bcnt;
    770 	if (uio->uio_iov->iov_len == 0) {
    771 		uio->uio_iov++;
    772 		uio->uio_iovcnt--;
    773 	}
    774 
    775 	wpipe->pipe_map.cnt = 0;
    776 	return (error);
    777 }
    778 #endif /* !PIPE_NODIRECT */
    779 
    780 static int
    781 pipe_write(struct file *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
    782     int flags)
    783 {
    784 	struct pipe *wpipe, *rpipe;
    785 	struct pipebuf *bp;
    786 	int error;
    787 
    788 	/* We want to write to our peer */
    789 	rpipe = (struct pipe *) fp->f_data;
    790 
    791 retry:
    792 	error = 0;
    793 	PIPE_LOCK(rpipe);
    794 	wpipe = rpipe->pipe_peer;
    795 
    796 	/*
    797 	 * Detect loss of pipe read side, issue SIGPIPE if lost.
    798 	 */
    799 	if (wpipe == NULL)
    800 		error = EPIPE;
    801 	else if (simple_lock_try(&wpipe->pipe_slock) == 0) {
    802 		/* Deal with race for peer */
    803 		PIPE_UNLOCK(rpipe);
    804 		goto retry;
    805 	} else if ((wpipe->pipe_state & PIPE_EOF) != 0) {
    806 		PIPE_UNLOCK(wpipe);
    807 		error = EPIPE;
    808 	}
    809 
    810 	PIPE_UNLOCK(rpipe);
    811 	if (error != 0)
    812 		return (error);
    813 
    814 	++wpipe->pipe_busy;
    815 
    816 	/* Aquire the long-term pipe lock */
    817 	if ((error = pipelock(wpipe,1)) != 0) {
    818 		--wpipe->pipe_busy;
    819 		if (wpipe->pipe_busy == 0
    820 		    && (wpipe->pipe_state & PIPE_WANTCLOSE)) {
    821 			wpipe->pipe_state &= ~(PIPE_WANTCLOSE | PIPE_WANTR);
    822 			wakeup(wpipe);
    823 		}
    824 		PIPE_UNLOCK(wpipe);
    825 		return (error);
    826 	}
    827 
    828 	bp = &wpipe->pipe_buffer;
    829 
    830 	/*
    831 	 * If it is advantageous to resize the pipe buffer, do so.
    832 	 */
    833 	if ((uio->uio_resid > PIPE_SIZE) &&
    834 	    (nbigpipe < maxbigpipes) &&
    835 #ifndef PIPE_NODIRECT
    836 	    (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
    837 #endif
    838 	    (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) {
    839 
    840 		if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
    841 			nbigpipe++;
    842 	}
    843 
    844 	while (uio->uio_resid) {
    845 		size_t space;
    846 
    847 #ifndef PIPE_NODIRECT
    848 		/*
    849 		 * Pipe buffered writes cannot be coincidental with
    850 		 * direct writes.  Also, only one direct write can be
    851 		 * in progress at any one time.  We wait until the currently
    852 		 * executing direct write is completed before continuing.
    853 		 *
    854 		 * We break out if a signal occurs or the reader goes away.
    855 		 */
    856 		while (error == 0 && wpipe->pipe_state & PIPE_DIRECTW) {
    857 			PIPE_LOCK(wpipe);
    858 			if (wpipe->pipe_state & PIPE_WANTR) {
    859 				wpipe->pipe_state &= ~PIPE_WANTR;
    860 				wakeup(wpipe);
    861 			}
    862 			pipeunlock(wpipe);
    863 			error = ltsleep(wpipe, PSOCK | PCATCH,
    864 					"pipbww", 0, &wpipe->pipe_slock);
    865 
    866 			(void)pipelock(wpipe, 0);
    867 			if (wpipe->pipe_state & PIPE_EOF)
    868 				error = EPIPE;
    869 		}
    870 		if (error)
    871 			break;
    872 
    873 		/*
    874 		 * If the transfer is large, we can gain performance if
    875 		 * we do process-to-process copies directly.
    876 		 * If the write is non-blocking, we don't use the
    877 		 * direct write mechanism.
    878 		 *
    879 		 * The direct write mechanism will detect the reader going
    880 		 * away on us.
    881 		 */
    882 		if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
    883 		    (fp->f_flag & FNONBLOCK) == 0 &&
    884 		    (wpipe->pipe_map.kva || (amountpipekva < limitpipekva))) {
    885 			error = pipe_direct_write(fp, wpipe, uio);
    886 
    887 			/*
    888 			 * Break out if error occurred, unless it's ENOMEM.
    889 			 * ENOMEM means we failed to allocate some resources
    890 			 * for direct write, so we just fallback to ordinary
    891 			 * write. If the direct write was successful,
    892 			 * process rest of data via ordinary write.
    893 			 */
    894 			if (error == 0)
    895 				continue;
    896 
    897 			if (error != ENOMEM)
    898 				break;
    899 		}
    900 #endif /* PIPE_NODIRECT */
    901 
    902 		space = bp->size - bp->cnt;
    903 
    904 		/* Writes of size <= PIPE_BUF must be atomic. */
    905 		if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
    906 			space = 0;
    907 
    908 		if (space > 0) {
    909 			int size;	/* Transfer size */
    910 			int segsize;	/* first segment to transfer */
    911 
    912 			/*
    913 			 * Transfer size is minimum of uio transfer
    914 			 * and free space in pipe buffer.
    915 			 */
    916 			if (space > uio->uio_resid)
    917 				size = uio->uio_resid;
    918 			else
    919 				size = space;
    920 			/*
    921 			 * First segment to transfer is minimum of
    922 			 * transfer size and contiguous space in
    923 			 * pipe buffer.  If first segment to transfer
    924 			 * is less than the transfer size, we've got
    925 			 * a wraparound in the buffer.
    926 			 */
    927 			segsize = bp->size - bp->in;
    928 			if (segsize > size)
    929 				segsize = size;
    930 
    931 			/* Transfer first segment */
    932 			error = uiomove((char *)bp->buffer + bp->in, segsize,
    933 			    uio);
    934 
    935 			if (error == 0 && segsize < size) {
    936 				/*
    937 				 * Transfer remaining part now, to
    938 				 * support atomic writes.  Wraparound
    939 				 * happened.
    940 				 */
    941 #ifdef DEBUG
    942 				if (bp->in + segsize != bp->size)
    943 					panic("Expected pipe buffer wraparound disappeared");
    944 #endif
    945 
    946 				error = uiomove(bp->buffer,
    947 				    size - segsize, uio);
    948 			}
    949 			if (error)
    950 				break;
    951 
    952 			bp->in += size;
    953 			if (bp->in >= bp->size) {
    954 #ifdef DEBUG
    955 				if (bp->in != size - segsize + bp->size)
    956 					panic("Expected wraparound bad");
    957 #endif
    958 				bp->in = size - segsize;
    959 			}
    960 
    961 			bp->cnt += size;
    962 #ifdef DEBUG
    963 			if (bp->cnt > bp->size)
    964 				panic("Pipe buffer overflow");
    965 #endif
    966 		} else {
    967 			/*
    968 			 * If the "read-side" has been blocked, wake it up now.
    969 			 */
    970 			PIPE_LOCK(wpipe);
    971 			if (wpipe->pipe_state & PIPE_WANTR) {
    972 				wpipe->pipe_state &= ~PIPE_WANTR;
    973 				wakeup(wpipe);
    974 			}
    975 			PIPE_UNLOCK(wpipe);
    976 
    977 			/*
    978 			 * don't block on non-blocking I/O
    979 			 */
    980 			if (fp->f_flag & FNONBLOCK) {
    981 				error = EAGAIN;
    982 				break;
    983 			}
    984 
    985 			/*
    986 			 * We have no more space and have something to offer,
    987 			 * wake up select/poll.
    988 			 */
    989 			if (bp->cnt)
    990 				pipeselwakeup(wpipe, wpipe, POLL_OUT);
    991 
    992 			PIPE_LOCK(wpipe);
    993 			pipeunlock(wpipe);
    994 			wpipe->pipe_state |= PIPE_WANTW;
    995 			error = ltsleep(wpipe, PSOCK | PCATCH, "pipewr", 0,
    996 					&wpipe->pipe_slock);
    997 			(void)pipelock(wpipe, 0);
    998 			if (error != 0)
    999 				break;
   1000 			/*
   1001 			 * If read side wants to go away, we just issue a signal
   1002 			 * to ourselves.
   1003 			 */
   1004 			if (wpipe->pipe_state & PIPE_EOF) {
   1005 				error = EPIPE;
   1006 				break;
   1007 			}
   1008 		}
   1009 	}
   1010 
   1011 	PIPE_LOCK(wpipe);
   1012 	--wpipe->pipe_busy;
   1013 	if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANTCLOSE)) {
   1014 		wpipe->pipe_state &= ~(PIPE_WANTCLOSE | PIPE_WANTR);
   1015 		wakeup(wpipe);
   1016 	} else if (bp->cnt > 0) {
   1017 		/*
   1018 		 * If we have put any characters in the buffer, we wake up
   1019 		 * the reader.
   1020 		 */
   1021 		if (wpipe->pipe_state & PIPE_WANTR) {
   1022 			wpipe->pipe_state &= ~PIPE_WANTR;
   1023 			wakeup(wpipe);
   1024 		}
   1025 	}
   1026 
   1027 	/*
   1028 	 * Don't return EPIPE if I/O was successful
   1029 	 */
   1030 	if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0)
   1031 		error = 0;
   1032 
   1033 	if (error == 0)
   1034 		getmicrotime(&wpipe->pipe_mtime);
   1035 
   1036 	/*
   1037 	 * We have something to offer, wake up select/poll.
   1038 	 * wpipe->pipe_map.cnt is always 0 in this point (direct write
   1039 	 * is only done synchronously), so check only wpipe->pipe_buffer.cnt
   1040 	 */
   1041 	if (bp->cnt)
   1042 		pipeselwakeup(wpipe, wpipe, POLL_OUT);
   1043 
   1044 	/*
   1045 	 * Arrange for next read(2) to do a signal.
   1046 	 */
   1047 	wpipe->pipe_state |= PIPE_SIGNALR;
   1048 
   1049 	pipeunlock(wpipe);
   1050 	PIPE_UNLOCK(wpipe);
   1051 	return (error);
   1052 }
   1053 
   1054 /*
   1055  * we implement a very minimal set of ioctls for compatibility with sockets.
   1056  */
   1057 int
   1058 pipe_ioctl(struct file *fp, u_long cmd, void *data, struct lwp *l)
   1059 {
   1060 	struct pipe *pipe = (struct pipe *)fp->f_data;
   1061 	struct proc *p = l->l_proc;
   1062 
   1063 	switch (cmd) {
   1064 
   1065 	case FIONBIO:
   1066 		return (0);
   1067 
   1068 	case FIOASYNC:
   1069 		PIPE_LOCK(pipe);
   1070 		if (*(int *)data) {
   1071 			pipe->pipe_state |= PIPE_ASYNC;
   1072 		} else {
   1073 			pipe->pipe_state &= ~PIPE_ASYNC;
   1074 		}
   1075 		PIPE_UNLOCK(pipe);
   1076 		return (0);
   1077 
   1078 	case FIONREAD:
   1079 		PIPE_LOCK(pipe);
   1080 #ifndef PIPE_NODIRECT
   1081 		if (pipe->pipe_state & PIPE_DIRECTW)
   1082 			*(int *)data = pipe->pipe_map.cnt;
   1083 		else
   1084 #endif
   1085 			*(int *)data = pipe->pipe_buffer.cnt;
   1086 		PIPE_UNLOCK(pipe);
   1087 		return (0);
   1088 
   1089 	case FIONWRITE:
   1090 		/* Look at other side */
   1091 		pipe = pipe->pipe_peer;
   1092 		PIPE_LOCK(pipe);
   1093 #ifndef PIPE_NODIRECT
   1094 		if (pipe->pipe_state & PIPE_DIRECTW)
   1095 			*(int *)data = pipe->pipe_map.cnt;
   1096 		else
   1097 #endif
   1098 			*(int *)data = pipe->pipe_buffer.cnt;
   1099 		PIPE_UNLOCK(pipe);
   1100 		return (0);
   1101 
   1102 	case FIONSPACE:
   1103 		/* Look at other side */
   1104 		pipe = pipe->pipe_peer;
   1105 		PIPE_LOCK(pipe);
   1106 #ifndef PIPE_NODIRECT
   1107 		/*
   1108 		 * If we're in direct-mode, we don't really have a
   1109 		 * send queue, and any other write will block. Thus
   1110 		 * zero seems like the best answer.
   1111 		 */
   1112 		if (pipe->pipe_state & PIPE_DIRECTW)
   1113 			*(int *)data = 0;
   1114 		else
   1115 #endif
   1116 			*(int *)data = pipe->pipe_buffer.size -
   1117 					pipe->pipe_buffer.cnt;
   1118 		PIPE_UNLOCK(pipe);
   1119 		return (0);
   1120 
   1121 	case TIOCSPGRP:
   1122 	case FIOSETOWN:
   1123 		return fsetown(p, &pipe->pipe_pgid, cmd, data);
   1124 
   1125 	case TIOCGPGRP:
   1126 	case FIOGETOWN:
   1127 		return fgetown(p, pipe->pipe_pgid, cmd, data);
   1128 
   1129 	}
   1130 	return (EPASSTHROUGH);
   1131 }
   1132 
   1133 int
   1134 pipe_poll(struct file *fp, int events, struct lwp *l)
   1135 {
   1136 	struct pipe *rpipe = (struct pipe *)fp->f_data;
   1137 	struct pipe *wpipe;
   1138 	int eof = 0;
   1139 	int revents = 0;
   1140 
   1141 retry:
   1142 	PIPE_LOCK(rpipe);
   1143 	wpipe = rpipe->pipe_peer;
   1144 	if (wpipe != NULL && simple_lock_try(&wpipe->pipe_slock) == 0) {
   1145 		/* Deal with race for peer */
   1146 		PIPE_UNLOCK(rpipe);
   1147 		goto retry;
   1148 	}
   1149 
   1150 	if (events & (POLLIN | POLLRDNORM))
   1151 		if ((rpipe->pipe_buffer.cnt > 0) ||
   1152 #ifndef PIPE_NODIRECT
   1153 		    (rpipe->pipe_state & PIPE_DIRECTR) ||
   1154 #endif
   1155 		    (rpipe->pipe_state & PIPE_EOF))
   1156 			revents |= events & (POLLIN | POLLRDNORM);
   1157 
   1158 	eof |= (rpipe->pipe_state & PIPE_EOF);
   1159 	PIPE_UNLOCK(rpipe);
   1160 
   1161 	if (wpipe == NULL)
   1162 		revents |= events & (POLLOUT | POLLWRNORM);
   1163 	else {
   1164 		if (events & (POLLOUT | POLLWRNORM))
   1165 			if ((wpipe->pipe_state & PIPE_EOF) || (
   1166 #ifndef PIPE_NODIRECT
   1167 			     (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
   1168 #endif
   1169 			     (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
   1170 				revents |= events & (POLLOUT | POLLWRNORM);
   1171 
   1172 		eof |= (wpipe->pipe_state & PIPE_EOF);
   1173 		PIPE_UNLOCK(wpipe);
   1174 	}
   1175 
   1176 	if (wpipe == NULL || eof)
   1177 		revents |= POLLHUP;
   1178 
   1179 	if (revents == 0) {
   1180 		if (events & (POLLIN | POLLRDNORM))
   1181 			selrecord(l, &rpipe->pipe_sel);
   1182 
   1183 		if (events & (POLLOUT | POLLWRNORM))
   1184 			selrecord(l, &wpipe->pipe_sel);
   1185 	}
   1186 
   1187 	return (revents);
   1188 }
   1189 
   1190 static int
   1191 pipe_stat(struct file *fp, struct stat *ub, struct lwp *l)
   1192 {
   1193 	struct pipe *pipe = (struct pipe *)fp->f_data;
   1194 
   1195 	memset((void *)ub, 0, sizeof(*ub));
   1196 	ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
   1197 	ub->st_blksize = pipe->pipe_buffer.size;
   1198 	if (ub->st_blksize == 0 && pipe->pipe_peer)
   1199 		ub->st_blksize = pipe->pipe_peer->pipe_buffer.size;
   1200 	ub->st_size = pipe->pipe_buffer.cnt;
   1201 	ub->st_blocks = (ub->st_size) ? 1 : 0;
   1202 	TIMEVAL_TO_TIMESPEC(&pipe->pipe_atime, &ub->st_atimespec);
   1203 	TIMEVAL_TO_TIMESPEC(&pipe->pipe_mtime, &ub->st_mtimespec);
   1204 	TIMEVAL_TO_TIMESPEC(&pipe->pipe_ctime, &ub->st_ctimespec);
   1205 	ub->st_uid = kauth_cred_geteuid(fp->f_cred);
   1206 	ub->st_gid = kauth_cred_getegid(fp->f_cred);
   1207 	/*
   1208 	 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
   1209 	 * XXX (st_dev, st_ino) should be unique.
   1210 	 */
   1211 	return (0);
   1212 }
   1213 
   1214 /* ARGSUSED */
   1215 static int
   1216 pipe_close(struct file *fp, struct lwp *l)
   1217 {
   1218 	struct pipe *pipe = (struct pipe *)fp->f_data;
   1219 
   1220 	fp->f_data = NULL;
   1221 	pipeclose(fp, pipe);
   1222 	return (0);
   1223 }
   1224 
   1225 static void
   1226 pipe_free_kmem(struct pipe *pipe)
   1227 {
   1228 
   1229 	if (pipe->pipe_buffer.buffer != NULL) {
   1230 		if (pipe->pipe_buffer.size > PIPE_SIZE)
   1231 			--nbigpipe;
   1232 		amountpipekva -= pipe->pipe_buffer.size;
   1233 		uvm_km_free(kernel_map,
   1234 			(vaddr_t)pipe->pipe_buffer.buffer,
   1235 			pipe->pipe_buffer.size, UVM_KMF_PAGEABLE);
   1236 		pipe->pipe_buffer.buffer = NULL;
   1237 	}
   1238 #ifndef PIPE_NODIRECT
   1239 	if (pipe->pipe_map.kva != 0) {
   1240 		pipe_loan_free(pipe);
   1241 		pipe->pipe_map.cnt = 0;
   1242 		pipe->pipe_map.kva = 0;
   1243 		pipe->pipe_map.pos = 0;
   1244 		pipe->pipe_map.npages = 0;
   1245 	}
   1246 #endif /* !PIPE_NODIRECT */
   1247 }
   1248 
   1249 /*
   1250  * shutdown the pipe
   1251  */
   1252 static void
   1253 pipeclose(struct file *fp, struct pipe *pipe)
   1254 {
   1255 	struct pipe *ppipe;
   1256 
   1257 	if (pipe == NULL)
   1258 		return;
   1259 
   1260 retry:
   1261 	PIPE_LOCK(pipe);
   1262 
   1263 	pipeselwakeup(pipe, pipe, POLL_HUP);
   1264 
   1265 	/*
   1266 	 * If the other side is blocked, wake it up saying that
   1267 	 * we want to close it down.
   1268 	 */
   1269 	pipe->pipe_state |= PIPE_EOF;
   1270 	while (pipe->pipe_busy) {
   1271 		wakeup(pipe);
   1272 		pipe->pipe_state |= PIPE_WANTCLOSE;
   1273 		ltsleep(pipe, PSOCK, "pipecl", 0, &pipe->pipe_slock);
   1274 	}
   1275 
   1276 	/*
   1277 	 * Disconnect from peer
   1278 	 */
   1279 	if ((ppipe = pipe->pipe_peer) != NULL) {
   1280 		/* Deal with race for peer */
   1281 		if (simple_lock_try(&ppipe->pipe_slock) == 0) {
   1282 			PIPE_UNLOCK(pipe);
   1283 			goto retry;
   1284 		}
   1285 		pipeselwakeup(ppipe, ppipe, POLL_HUP);
   1286 
   1287 		ppipe->pipe_state |= PIPE_EOF;
   1288 		wakeup(ppipe);
   1289 		ppipe->pipe_peer = NULL;
   1290 		PIPE_UNLOCK(ppipe);
   1291 	}
   1292 
   1293 	KASSERT((pipe->pipe_state & PIPE_LOCKFL) == 0);
   1294 
   1295 	PIPE_UNLOCK(pipe);
   1296 
   1297 	/*
   1298 	 * free resources
   1299 	 */
   1300 	pipe_free_kmem(pipe);
   1301 	pool_put(&pipe_pool, pipe);
   1302 }
   1303 
   1304 static void
   1305 filt_pipedetach(struct knote *kn)
   1306 {
   1307 	struct pipe *pipe = (struct pipe *)kn->kn_fp->f_data;
   1308 
   1309 	switch(kn->kn_filter) {
   1310 	case EVFILT_WRITE:
   1311 		/* need the peer structure, not our own */
   1312 		pipe = pipe->pipe_peer;
   1313 		/* XXXSMP: race for peer */
   1314 
   1315 		/* if reader end already closed, just return */
   1316 		if (pipe == NULL)
   1317 			return;
   1318 
   1319 		break;
   1320 	default:
   1321 		/* nothing to do */
   1322 		break;
   1323 	}
   1324 
   1325 #ifdef DIAGNOSTIC
   1326 	if (kn->kn_hook != pipe)
   1327 		panic("filt_pipedetach: inconsistent knote");
   1328 #endif
   1329 
   1330 	PIPE_LOCK(pipe);
   1331 	SLIST_REMOVE(&pipe->pipe_sel.sel_klist, kn, knote, kn_selnext);
   1332 	PIPE_UNLOCK(pipe);
   1333 }
   1334 
   1335 /*ARGSUSED*/
   1336 static int
   1337 filt_piperead(struct knote *kn, long hint)
   1338 {
   1339 	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
   1340 	struct pipe *wpipe = rpipe->pipe_peer;
   1341 
   1342 	if ((hint & NOTE_SUBMIT) == 0)
   1343 		PIPE_LOCK(rpipe);
   1344 	kn->kn_data = rpipe->pipe_buffer.cnt;
   1345 	if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
   1346 		kn->kn_data = rpipe->pipe_map.cnt;
   1347 
   1348 	/* XXXSMP: race for peer */
   1349 	if ((rpipe->pipe_state & PIPE_EOF) ||
   1350 	    (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
   1351 		kn->kn_flags |= EV_EOF;
   1352 		if ((hint & NOTE_SUBMIT) == 0)
   1353 			PIPE_UNLOCK(rpipe);
   1354 		return (1);
   1355 	}
   1356 	if ((hint & NOTE_SUBMIT) == 0)
   1357 		PIPE_UNLOCK(rpipe);
   1358 	return (kn->kn_data > 0);
   1359 }
   1360 
   1361 /*ARGSUSED*/
   1362 static int
   1363 filt_pipewrite(struct knote *kn, long hint)
   1364 {
   1365 	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
   1366 	struct pipe *wpipe = rpipe->pipe_peer;
   1367 
   1368 	if ((hint & NOTE_SUBMIT) == 0)
   1369 		PIPE_LOCK(rpipe);
   1370 	/* XXXSMP: race for peer */
   1371 	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
   1372 		kn->kn_data = 0;
   1373 		kn->kn_flags |= EV_EOF;
   1374 		if ((hint & NOTE_SUBMIT) == 0)
   1375 			PIPE_UNLOCK(rpipe);
   1376 		return (1);
   1377 	}
   1378 	kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
   1379 	if (wpipe->pipe_state & PIPE_DIRECTW)
   1380 		kn->kn_data = 0;
   1381 
   1382 	if ((hint & NOTE_SUBMIT) == 0)
   1383 		PIPE_UNLOCK(rpipe);
   1384 	return (kn->kn_data >= PIPE_BUF);
   1385 }
   1386 
   1387 static const struct filterops pipe_rfiltops =
   1388 	{ 1, NULL, filt_pipedetach, filt_piperead };
   1389 static const struct filterops pipe_wfiltops =
   1390 	{ 1, NULL, filt_pipedetach, filt_pipewrite };
   1391 
   1392 /*ARGSUSED*/
   1393 static int
   1394 pipe_kqfilter(struct file *fp, struct knote *kn)
   1395 {
   1396 	struct pipe *pipe;
   1397 
   1398 	pipe = (struct pipe *)kn->kn_fp->f_data;
   1399 	switch (kn->kn_filter) {
   1400 	case EVFILT_READ:
   1401 		kn->kn_fop = &pipe_rfiltops;
   1402 		break;
   1403 	case EVFILT_WRITE:
   1404 		kn->kn_fop = &pipe_wfiltops;
   1405 		/* XXXSMP: race for peer */
   1406 		pipe = pipe->pipe_peer;
   1407 		if (pipe == NULL) {
   1408 			/* other end of pipe has been closed */
   1409 			return (EBADF);
   1410 		}
   1411 		break;
   1412 	default:
   1413 		return (1);
   1414 	}
   1415 	kn->kn_hook = pipe;
   1416 
   1417 	PIPE_LOCK(pipe);
   1418 	SLIST_INSERT_HEAD(&pipe->pipe_sel.sel_klist, kn, kn_selnext);
   1419 	PIPE_UNLOCK(pipe);
   1420 	return (0);
   1421 }
   1422 
   1423 /*
   1424  * Handle pipe sysctls.
   1425  */
   1426 SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup")
   1427 {
   1428 
   1429 	sysctl_createv(clog, 0, NULL, NULL,
   1430 		       CTLFLAG_PERMANENT,
   1431 		       CTLTYPE_NODE, "kern", NULL,
   1432 		       NULL, 0, NULL, 0,
   1433 		       CTL_KERN, CTL_EOL);
   1434 	sysctl_createv(clog, 0, NULL, NULL,
   1435 		       CTLFLAG_PERMANENT,
   1436 		       CTLTYPE_NODE, "pipe",
   1437 		       SYSCTL_DESCR("Pipe settings"),
   1438 		       NULL, 0, NULL, 0,
   1439 		       CTL_KERN, KERN_PIPE, CTL_EOL);
   1440 
   1441 	sysctl_createv(clog, 0, NULL, NULL,
   1442 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1443 		       CTLTYPE_INT, "maxkvasz",
   1444 		       SYSCTL_DESCR("Maximum amount of kernel memory to be "
   1445 				    "used for pipes"),
   1446 		       NULL, 0, &maxpipekva, 0,
   1447 		       CTL_KERN, KERN_PIPE, KERN_PIPE_MAXKVASZ, CTL_EOL);
   1448 	sysctl_createv(clog, 0, NULL, NULL,
   1449 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1450 		       CTLTYPE_INT, "maxloankvasz",
   1451 		       SYSCTL_DESCR("Limit for direct transfers via page loan"),
   1452 		       NULL, 0, &limitpipekva, 0,
   1453 		       CTL_KERN, KERN_PIPE, KERN_PIPE_LIMITKVA, CTL_EOL);
   1454 	sysctl_createv(clog, 0, NULL, NULL,
   1455 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1456 		       CTLTYPE_INT, "maxbigpipes",
   1457 		       SYSCTL_DESCR("Maximum number of \"big\" pipes"),
   1458 		       NULL, 0, &maxbigpipes, 0,
   1459 		       CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL);
   1460 	sysctl_createv(clog, 0, NULL, NULL,
   1461 		       CTLFLAG_PERMANENT,
   1462 		       CTLTYPE_INT, "nbigpipes",
   1463 		       SYSCTL_DESCR("Number of \"big\" pipes"),
   1464 		       NULL, 0, &nbigpipe, 0,
   1465 		       CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL);
   1466 	sysctl_createv(clog, 0, NULL, NULL,
   1467 		       CTLFLAG_PERMANENT,
   1468 		       CTLTYPE_INT, "kvasize",
   1469 		       SYSCTL_DESCR("Amount of kernel memory consumed by pipe "
   1470 				    "buffers"),
   1471 		       NULL, 0, &amountpipekva, 0,
   1472 		       CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL);
   1473 }
   1474