Home | History | Annotate | Line # | Download | only in kern
sys_pipe.c revision 1.80
      1 /*	$NetBSD: sys_pipe.c,v 1.80 2007/03/12 16:20:53 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2003, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Paul Kranenburg, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Copyright (c) 1996 John S. Dyson
     41  * All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice immediately at the beginning of the file, without modification,
     48  *    this list of conditions, and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. Absolutely no warranty of function or purpose is made by the author
     53  *    John S. Dyson.
     54  * 4. Modifications may be freely made to this file if the above conditions
     55  *    are met.
     56  *
     57  * $FreeBSD: src/sys/kern/sys_pipe.c,v 1.95 2002/03/09 22:06:31 alfred Exp $
     58  */
     59 
     60 /*
     61  * This file contains a high-performance replacement for the socket-based
     62  * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
     63  * all features of sockets, but does do everything that pipes normally
     64  * do.
     65  *
     66  * Adaption for NetBSD UVM, including uvm_loan() based direct write, was
     67  * written by Jaromir Dolecek.
     68  */
     69 
     70 /*
     71  * This code has two modes of operation, a small write mode and a large
     72  * write mode.  The small write mode acts like conventional pipes with
     73  * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
     74  * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
     75  * and PIPE_SIZE in size it is mapped read-only into the kernel address space
     76  * using the UVM page loan facility from where the receiving process can copy
     77  * the data directly from the pages in the sending process.
     78  *
     79  * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
     80  * happen for small transfers so that the system will not spend all of
     81  * its time context switching.  PIPE_SIZE is constrained by the
     82  * amount of kernel virtual memory.
     83  */
     84 
     85 #include <sys/cdefs.h>
     86 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.80 2007/03/12 16:20:53 ad Exp $");
     87 
     88 #include <sys/param.h>
     89 #include <sys/systm.h>
     90 #include <sys/proc.h>
     91 #include <sys/fcntl.h>
     92 #include <sys/file.h>
     93 #include <sys/filedesc.h>
     94 #include <sys/filio.h>
     95 #include <sys/kernel.h>
     96 #include <sys/ttycom.h>
     97 #include <sys/stat.h>
     98 #include <sys/malloc.h>
     99 #include <sys/poll.h>
    100 #include <sys/signalvar.h>
    101 #include <sys/vnode.h>
    102 #include <sys/uio.h>
    103 #include <sys/lock.h>
    104 #include <sys/select.h>
    105 #include <sys/mount.h>
    106 #include <sys/syscallargs.h>
    107 #include <uvm/uvm.h>
    108 #include <sys/sysctl.h>
    109 #include <sys/kernel.h>
    110 #include <sys/kauth.h>
    111 
    112 #include <sys/pipe.h>
    113 
    114 /*
    115  * Use this define if you want to disable *fancy* VM things.  Expect an
    116  * approx 30% decrease in transfer rate.
    117  */
    118 /* #define PIPE_NODIRECT */
    119 
    120 /*
    121  * interfaces to the outside world
    122  */
    123 static int pipe_read(struct file *fp, off_t *offset, struct uio *uio,
    124 		kauth_cred_t cred, int flags);
    125 static int pipe_write(struct file *fp, off_t *offset, struct uio *uio,
    126 		kauth_cred_t cred, int flags);
    127 static int pipe_close(struct file *fp, struct lwp *l);
    128 static int pipe_poll(struct file *fp, int events, struct lwp *l);
    129 static int pipe_kqfilter(struct file *fp, struct knote *kn);
    130 static int pipe_stat(struct file *fp, struct stat *sb, struct lwp *l);
    131 static int pipe_ioctl(struct file *fp, u_long cmd, void *data,
    132 		struct lwp *l);
    133 
    134 static const struct fileops pipeops = {
    135 	pipe_read, pipe_write, pipe_ioctl, fnullop_fcntl, pipe_poll,
    136 	pipe_stat, pipe_close, pipe_kqfilter
    137 };
    138 
    139 /*
    140  * Default pipe buffer size(s), this can be kind-of large now because pipe
    141  * space is pageable.  The pipe code will try to maintain locality of
    142  * reference for performance reasons, so small amounts of outstanding I/O
    143  * will not wipe the cache.
    144  */
    145 #define MINPIPESIZE (PIPE_SIZE/3)
    146 #define MAXPIPESIZE (2*PIPE_SIZE/3)
    147 
    148 /*
    149  * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
    150  * is there so that on large systems, we don't exhaust it.
    151  */
    152 #define MAXPIPEKVA (8*1024*1024)
    153 static int maxpipekva = MAXPIPEKVA;
    154 
    155 /*
    156  * Limit for direct transfers, we cannot, of course limit
    157  * the amount of kva for pipes in general though.
    158  */
    159 #define LIMITPIPEKVA (16*1024*1024)
    160 static int limitpipekva = LIMITPIPEKVA;
    161 
    162 /*
    163  * Limit the number of "big" pipes
    164  */
    165 #define LIMITBIGPIPES  32
    166 static int maxbigpipes = LIMITBIGPIPES;
    167 static int nbigpipe = 0;
    168 
    169 /*
    170  * Amount of KVA consumed by pipe buffers.
    171  */
    172 static int amountpipekva = 0;
    173 
    174 MALLOC_DEFINE(M_PIPE, "pipe", "Pipe structures");
    175 
    176 static void pipeclose(struct file *fp, struct pipe *pipe);
    177 static void pipe_free_kmem(struct pipe *pipe);
    178 static int pipe_create(struct pipe **pipep, int allockva);
    179 static int pipelock(struct pipe *pipe, int catch);
    180 static inline void pipeunlock(struct pipe *pipe);
    181 static void pipeselwakeup(struct pipe *pipe, struct pipe *sigp, int code);
    182 #ifndef PIPE_NODIRECT
    183 static int pipe_direct_write(struct file *fp, struct pipe *wpipe,
    184     struct uio *uio);
    185 #endif
    186 static int pipespace(struct pipe *pipe, int size);
    187 
    188 #ifndef PIPE_NODIRECT
    189 static int pipe_loan_alloc(struct pipe *, int);
    190 static void pipe_loan_free(struct pipe *);
    191 #endif /* PIPE_NODIRECT */
    192 
    193 static POOL_INIT(pipe_pool, sizeof(struct pipe), 0, 0, 0, "pipepl",
    194     &pool_allocator_nointr);
    195 
    196 /*
    197  * The pipe system call for the DTYPE_PIPE type of pipes
    198  */
    199 
    200 /* ARGSUSED */
    201 int
    202 sys_pipe(struct lwp *l, void *v, register_t *retval)
    203 {
    204 	struct file *rf, *wf;
    205 	struct pipe *rpipe, *wpipe;
    206 	int fd, error;
    207 
    208 	rpipe = wpipe = NULL;
    209 	if (pipe_create(&rpipe, 1) || pipe_create(&wpipe, 0)) {
    210 		pipeclose(NULL, rpipe);
    211 		pipeclose(NULL, wpipe);
    212 		return (ENFILE);
    213 	}
    214 
    215 	/*
    216 	 * Note: the file structure returned from falloc() is marked
    217 	 * as 'larval' initially. Unless we mark it as 'mature' by
    218 	 * FILE_SET_MATURE(), any attempt to do anything with it would
    219 	 * return EBADF, including e.g. dup(2) or close(2). This avoids
    220 	 * file descriptor races if we block in the second falloc().
    221 	 */
    222 
    223 	error = falloc(l, &rf, &fd);
    224 	if (error)
    225 		goto free2;
    226 	retval[0] = fd;
    227 	rf->f_flag = FREAD;
    228 	rf->f_type = DTYPE_PIPE;
    229 	rf->f_data = (void *)rpipe;
    230 	rf->f_ops = &pipeops;
    231 
    232 	error = falloc(l, &wf, &fd);
    233 	if (error)
    234 		goto free3;
    235 	retval[1] = fd;
    236 	wf->f_flag = FWRITE;
    237 	wf->f_type = DTYPE_PIPE;
    238 	wf->f_data = (void *)wpipe;
    239 	wf->f_ops = &pipeops;
    240 
    241 	rpipe->pipe_peer = wpipe;
    242 	wpipe->pipe_peer = rpipe;
    243 
    244 	FILE_SET_MATURE(rf);
    245 	FILE_SET_MATURE(wf);
    246 	FILE_UNUSE(rf, l);
    247 	FILE_UNUSE(wf, l);
    248 	return (0);
    249 free3:
    250 	FILE_UNUSE(rf, l);
    251 	ffree(rf);
    252 	fdremove(l->l_proc->p_fd, retval[0]);
    253 free2:
    254 	pipeclose(NULL, wpipe);
    255 	pipeclose(NULL, rpipe);
    256 
    257 	return (error);
    258 }
    259 
    260 /*
    261  * Allocate kva for pipe circular buffer, the space is pageable
    262  * This routine will 'realloc' the size of a pipe safely, if it fails
    263  * it will retain the old buffer.
    264  * If it fails it will return ENOMEM.
    265  */
    266 static int
    267 pipespace(struct pipe *pipe, int size)
    268 {
    269 	void *buffer;
    270 	/*
    271 	 * Allocate pageable virtual address space. Physical memory is
    272 	 * allocated on demand.
    273 	 */
    274 	buffer = (void *) uvm_km_alloc(kernel_map, round_page(size), 0,
    275 	    UVM_KMF_PAGEABLE);
    276 	if (buffer == NULL)
    277 		return (ENOMEM);
    278 
    279 	/* free old resources if we're resizing */
    280 	pipe_free_kmem(pipe);
    281 	pipe->pipe_buffer.buffer = buffer;
    282 	pipe->pipe_buffer.size = size;
    283 	pipe->pipe_buffer.in = 0;
    284 	pipe->pipe_buffer.out = 0;
    285 	pipe->pipe_buffer.cnt = 0;
    286 	amountpipekva += pipe->pipe_buffer.size;
    287 	return (0);
    288 }
    289 
    290 /*
    291  * Initialize and allocate VM and memory for pipe.
    292  */
    293 static int
    294 pipe_create(struct pipe **pipep, int allockva)
    295 {
    296 	struct pipe *pipe;
    297 	int error;
    298 
    299 	pipe = *pipep = pool_get(&pipe_pool, PR_WAITOK);
    300 
    301 	/* Initialize */
    302 	memset(pipe, 0, sizeof(struct pipe));
    303 	pipe->pipe_state = PIPE_SIGNALR;
    304 
    305 	getmicrotime(&pipe->pipe_ctime);
    306 	pipe->pipe_atime = pipe->pipe_ctime;
    307 	pipe->pipe_mtime = pipe->pipe_ctime;
    308 	mutex_init(&pipe->pipe_lock, MUTEX_DEFAULT, IPL_NONE);
    309 	cv_init(&pipe->pipe_cv, "pipe");
    310 	cv_init(&pipe->pipe_lkcv, "pipelk");
    311 
    312 	if (allockva && (error = pipespace(pipe, PIPE_SIZE)))
    313 		return (error);
    314 
    315 	return (0);
    316 }
    317 
    318 
    319 /*
    320  * Lock a pipe for I/O, blocking other access
    321  * Called with pipe spin lock held.
    322  * Return with pipe spin lock released on success.
    323  */
    324 static int
    325 pipelock(struct pipe *pipe, int catch)
    326 {
    327 	int error;
    328 
    329 	KASSERT(mutex_owned(&pipe->pipe_lock));
    330 
    331 	while (pipe->pipe_state & PIPE_LOCKFL) {
    332 		pipe->pipe_state |= PIPE_LWANT;
    333 		if (catch) {
    334 			error = cv_wait_sig(&pipe->pipe_lkcv,
    335 			    &pipe->pipe_lock);
    336 			if (error != 0)
    337 				return error;
    338 		} else
    339 			cv_wait(&pipe->pipe_lkcv, &pipe->pipe_lock);
    340 	}
    341 
    342 	pipe->pipe_state |= PIPE_LOCKFL;
    343 	mutex_exit(&pipe->pipe_lock);
    344 
    345 	return 0;
    346 }
    347 
    348 /*
    349  * unlock a pipe I/O lock
    350  */
    351 static inline void
    352 pipeunlock(struct pipe *pipe)
    353 {
    354 
    355 	KASSERT(pipe->pipe_state & PIPE_LOCKFL);
    356 
    357 	pipe->pipe_state &= ~PIPE_LOCKFL;
    358 	if (pipe->pipe_state & PIPE_LWANT) {
    359 		pipe->pipe_state &= ~PIPE_LWANT;
    360 		cv_broadcast(&pipe->pipe_lkcv);
    361 	}
    362 }
    363 
    364 /*
    365  * Select/poll wakup. This also sends SIGIO to peer connected to
    366  * 'sigpipe' side of pipe.
    367  */
    368 static void
    369 pipeselwakeup(struct pipe *selp, struct pipe *sigp, int code)
    370 {
    371 	int band;
    372 
    373 	selnotify(&selp->pipe_sel, NOTE_SUBMIT);
    374 
    375 	if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0)
    376 		return;
    377 
    378 	switch (code) {
    379 	case POLL_IN:
    380 		band = POLLIN|POLLRDNORM;
    381 		break;
    382 	case POLL_OUT:
    383 		band = POLLOUT|POLLWRNORM;
    384 		break;
    385 	case POLL_HUP:
    386 		band = POLLHUP;
    387 		break;
    388 #if POLL_HUP != POLL_ERR
    389 	case POLL_ERR:
    390 		band = POLLERR;
    391 		break;
    392 #endif
    393 	default:
    394 		band = 0;
    395 #ifdef DIAGNOSTIC
    396 		printf("bad siginfo code %d in pipe notification.\n", code);
    397 #endif
    398 		break;
    399 	}
    400 
    401 	fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp);
    402 }
    403 
    404 /* ARGSUSED */
    405 static int
    406 pipe_read(struct file *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
    407     int flags)
    408 {
    409 	struct pipe *rpipe = (struct pipe *) fp->f_data;
    410 	struct pipebuf *bp = &rpipe->pipe_buffer;
    411 	int error;
    412 	size_t nread = 0;
    413 	size_t size;
    414 	size_t ocnt;
    415 
    416 	mutex_enter(&rpipe->pipe_lock);
    417 	++rpipe->pipe_busy;
    418 	ocnt = bp->cnt;
    419 
    420 again:
    421 	error = pipelock(rpipe, 1);
    422 	if (error)
    423 		goto unlocked_error;
    424 
    425 	while (uio->uio_resid) {
    426 		/*
    427 		 * normal pipe buffer receive
    428 		 */
    429 		if (bp->cnt > 0) {
    430 			size = bp->size - bp->out;
    431 			if (size > bp->cnt)
    432 				size = bp->cnt;
    433 			if (size > uio->uio_resid)
    434 				size = uio->uio_resid;
    435 
    436 			error = uiomove((char *)bp->buffer + bp->out, size, uio);
    437 			if (error)
    438 				break;
    439 
    440 			bp->out += size;
    441 			if (bp->out >= bp->size)
    442 				bp->out = 0;
    443 
    444 			bp->cnt -= size;
    445 
    446 			/*
    447 			 * If there is no more to read in the pipe, reset
    448 			 * its pointers to the beginning.  This improves
    449 			 * cache hit stats.
    450 			 */
    451 			if (bp->cnt == 0) {
    452 				bp->in = 0;
    453 				bp->out = 0;
    454 			}
    455 			nread += size;
    456 #ifndef PIPE_NODIRECT
    457 		} else if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) {
    458 			/*
    459 			 * Direct copy, bypassing a kernel buffer.
    460 			 */
    461 			void *	va;
    462 
    463 			KASSERT(rpipe->pipe_state & PIPE_DIRECTW);
    464 
    465 			size = rpipe->pipe_map.cnt;
    466 			if (size > uio->uio_resid)
    467 				size = uio->uio_resid;
    468 
    469 			va = (char *)rpipe->pipe_map.kva + rpipe->pipe_map.pos;
    470 			error = uiomove(va, size, uio);
    471 			if (error)
    472 				break;
    473 			nread += size;
    474 			rpipe->pipe_map.pos += size;
    475 			rpipe->pipe_map.cnt -= size;
    476 			if (rpipe->pipe_map.cnt == 0) {
    477 				mutex_enter(&rpipe->pipe_lock);
    478 				rpipe->pipe_state &= ~PIPE_DIRECTR;
    479 				cv_broadcast(&rpipe->pipe_cv);
    480 				mutex_exit(&rpipe->pipe_lock);
    481 			}
    482 #endif
    483 		} else {
    484 			/*
    485 			 * Break if some data was read.
    486 			 */
    487 			if (nread > 0)
    488 				break;
    489 
    490 			mutex_enter(&rpipe->pipe_lock);
    491 
    492 			/*
    493 			 * detect EOF condition
    494 			 * read returns 0 on EOF, no need to set error
    495 			 */
    496 			if (rpipe->pipe_state & PIPE_EOF) {
    497 				mutex_exit(&rpipe->pipe_lock);
    498 				break;
    499 			}
    500 
    501 			/*
    502 			 * don't block on non-blocking I/O
    503 			 */
    504 			if (fp->f_flag & FNONBLOCK) {
    505 				mutex_exit(&rpipe->pipe_lock);
    506 				error = EAGAIN;
    507 				break;
    508 			}
    509 
    510 			/*
    511 			 * Unlock the pipe buffer for our remaining processing.
    512 			 * We will either break out with an error or we will
    513 			 * sleep and relock to loop.
    514 			 */
    515 			pipeunlock(rpipe);
    516 
    517 			/*
    518 			 * The PIPE_DIRECTR flag is not under the control
    519 			 * of the long-term lock (see pipe_direct_write()),
    520 			 * so re-check now while holding the spin lock.
    521 			 */
    522 			if ((rpipe->pipe_state & PIPE_DIRECTR) != 0)
    523 				goto again;
    524 
    525 			/*
    526 			 * We want to read more, wake up select/poll.
    527 			 */
    528 			pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_IN);
    529 
    530 			/*
    531 			 * If the "write-side" is blocked, wake it up now.
    532 			 */
    533 			if (rpipe->pipe_state & PIPE_WANTW) {
    534 				rpipe->pipe_state &= ~PIPE_WANTW;
    535 				cv_broadcast(&rpipe->pipe_cv);
    536 			}
    537 
    538 			/* Now wait until the pipe is filled */
    539 			rpipe->pipe_state |= PIPE_WANTR;
    540 			error = cv_wait_sig(&rpipe->pipe_cv,
    541 			    &rpipe->pipe_lock);
    542 			if (error != 0)
    543 				goto unlocked_error;
    544 			goto again;
    545 		}
    546 	}
    547 
    548 	if (error == 0)
    549 		getmicrotime(&rpipe->pipe_atime);
    550 
    551 	mutex_enter(&rpipe->pipe_lock);
    552 	pipeunlock(rpipe);
    553 
    554 unlocked_error:
    555 	--rpipe->pipe_busy;
    556 
    557 	/*
    558 	 * PIPE_WANTCLOSE processing only makes sense if pipe_busy is 0.
    559 	 */
    560 	if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANTCLOSE)) {
    561 		rpipe->pipe_state &= ~(PIPE_WANTCLOSE|PIPE_WANTW);
    562 		cv_broadcast(&rpipe->pipe_cv);
    563 	} else if (bp->cnt < MINPIPESIZE) {
    564 		/*
    565 		 * Handle write blocking hysteresis.
    566 		 */
    567 		if (rpipe->pipe_state & PIPE_WANTW) {
    568 			rpipe->pipe_state &= ~PIPE_WANTW;
    569 			cv_broadcast(&rpipe->pipe_cv);
    570 		}
    571 	}
    572 
    573 	/*
    574 	 * If anything was read off the buffer, signal to the writer it's
    575 	 * possible to write more data. Also send signal if we are here for the
    576 	 * first time after last write.
    577 	 */
    578 	if ((bp->size - bp->cnt) >= PIPE_BUF
    579 	    && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
    580 		pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
    581 		rpipe->pipe_state &= ~PIPE_SIGNALR;
    582 	}
    583 
    584 	mutex_exit(&rpipe->pipe_lock);
    585 	return (error);
    586 }
    587 
    588 #ifndef PIPE_NODIRECT
    589 /*
    590  * Allocate structure for loan transfer.
    591  */
    592 static int
    593 pipe_loan_alloc(struct pipe *wpipe, int npages)
    594 {
    595 	vsize_t len;
    596 
    597 	len = (vsize_t)npages << PAGE_SHIFT;
    598 	wpipe->pipe_map.kva = uvm_km_alloc(kernel_map, len, 0,
    599 	    UVM_KMF_VAONLY | UVM_KMF_WAITVA);
    600 	if (wpipe->pipe_map.kva == 0)
    601 		return (ENOMEM);
    602 
    603 	amountpipekva += len;
    604 	wpipe->pipe_map.npages = npages;
    605 	wpipe->pipe_map.pgs = malloc(npages * sizeof(struct vm_page *), M_PIPE,
    606 	    M_WAITOK);
    607 	return (0);
    608 }
    609 
    610 /*
    611  * Free resources allocated for loan transfer.
    612  */
    613 static void
    614 pipe_loan_free(struct pipe *wpipe)
    615 {
    616 	vsize_t len;
    617 
    618 	len = (vsize_t)wpipe->pipe_map.npages << PAGE_SHIFT;
    619 	uvm_km_free(kernel_map, wpipe->pipe_map.kva, len, UVM_KMF_VAONLY);
    620 	wpipe->pipe_map.kva = 0;
    621 	amountpipekva -= len;
    622 	free(wpipe->pipe_map.pgs, M_PIPE);
    623 	wpipe->pipe_map.pgs = NULL;
    624 }
    625 
    626 /*
    627  * NetBSD direct write, using uvm_loan() mechanism.
    628  * This implements the pipe buffer write mechanism.  Note that only
    629  * a direct write OR a normal pipe write can be pending at any given time.
    630  * If there are any characters in the pipe buffer, the direct write will
    631  * be deferred until the receiving process grabs all of the bytes from
    632  * the pipe buffer.  Then the direct mapping write is set-up.
    633  *
    634  * Called with the long-term pipe lock held.
    635  */
    636 static int
    637 pipe_direct_write(struct file *fp, struct pipe *wpipe, struct uio *uio)
    638 {
    639 	int error, npages, j;
    640 	struct vm_page **pgs;
    641 	vaddr_t bbase, kva, base, bend;
    642 	vsize_t blen, bcnt;
    643 	voff_t bpos;
    644 
    645 	KASSERT(wpipe->pipe_map.cnt == 0);
    646 
    647 	/*
    648 	 * Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers
    649 	 * not aligned to PAGE_SIZE.
    650 	 */
    651 	bbase = (vaddr_t)uio->uio_iov->iov_base;
    652 	base = trunc_page(bbase);
    653 	bend = round_page(bbase + uio->uio_iov->iov_len);
    654 	blen = bend - base;
    655 	bpos = bbase - base;
    656 
    657 	if (blen > PIPE_DIRECT_CHUNK) {
    658 		blen = PIPE_DIRECT_CHUNK;
    659 		bend = base + blen;
    660 		bcnt = PIPE_DIRECT_CHUNK - bpos;
    661 	} else {
    662 		bcnt = uio->uio_iov->iov_len;
    663 	}
    664 	npages = blen >> PAGE_SHIFT;
    665 
    666 	/*
    667 	 * Free the old kva if we need more pages than we have
    668 	 * allocated.
    669 	 */
    670 	if (wpipe->pipe_map.kva != 0 && npages > wpipe->pipe_map.npages)
    671 		pipe_loan_free(wpipe);
    672 
    673 	/* Allocate new kva. */
    674 	if (wpipe->pipe_map.kva == 0) {
    675 		error = pipe_loan_alloc(wpipe, npages);
    676 		if (error)
    677 			return (error);
    678 	}
    679 
    680 	/* Loan the write buffer memory from writer process */
    681 	pgs = wpipe->pipe_map.pgs;
    682 	error = uvm_loan(&uio->uio_vmspace->vm_map, base, blen,
    683 			 pgs, UVM_LOAN_TOPAGE);
    684 	if (error) {
    685 		pipe_loan_free(wpipe);
    686 		return (ENOMEM); /* so that caller fallback to ordinary write */
    687 	}
    688 
    689 	/* Enter the loaned pages to kva */
    690 	kva = wpipe->pipe_map.kva;
    691 	for (j = 0; j < npages; j++, kva += PAGE_SIZE) {
    692 		pmap_kenter_pa(kva, VM_PAGE_TO_PHYS(pgs[j]), VM_PROT_READ);
    693 	}
    694 	pmap_update(pmap_kernel());
    695 
    696 	/* Now we can put the pipe in direct write mode */
    697 	wpipe->pipe_map.pos = bpos;
    698 	wpipe->pipe_map.cnt = bcnt;
    699 	wpipe->pipe_state |= PIPE_DIRECTW;
    700 
    701 	/*
    702 	 * But before we can let someone do a direct read,
    703 	 * we have to wait until the pipe is drained.
    704 	 */
    705 
    706 	/* Relase the pipe lock while we wait */
    707 	mutex_enter(&wpipe->pipe_lock);
    708 	pipeunlock(wpipe);
    709 
    710 	while (error == 0 && wpipe->pipe_buffer.cnt > 0) {
    711 		if (wpipe->pipe_state & PIPE_WANTR) {
    712 			wpipe->pipe_state &= ~PIPE_WANTR;
    713 			cv_broadcast(&wpipe->pipe_cv);
    714 		}
    715 
    716 		wpipe->pipe_state |= PIPE_WANTW;
    717 		error = cv_wait_sig(&wpipe->pipe_cv, &wpipe->pipe_lock);
    718 		if (error == 0 && wpipe->pipe_state & PIPE_EOF)
    719 			error = EPIPE;
    720 	}
    721 
    722 	/* Pipe is drained; next read will off the direct buffer */
    723 	wpipe->pipe_state |= PIPE_DIRECTR;
    724 
    725 	/* Wait until the reader is done */
    726 	while (error == 0 && (wpipe->pipe_state & PIPE_DIRECTR)) {
    727 		if (wpipe->pipe_state & PIPE_WANTR) {
    728 			wpipe->pipe_state &= ~PIPE_WANTR;
    729 			cv_broadcast(&wpipe->pipe_cv);
    730 		}
    731 		pipeselwakeup(wpipe, wpipe, POLL_IN);
    732 		error = cv_wait_sig(&wpipe->pipe_cv, &wpipe->pipe_lock);
    733 		if (error == 0 && wpipe->pipe_state & PIPE_EOF)
    734 			error = EPIPE;
    735 	}
    736 
    737 	/* Take pipe out of direct write mode */
    738 	wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTR);
    739 
    740 	/* Acquire the pipe lock and cleanup */
    741 	(void)pipelock(wpipe, 0);
    742 	if (pgs != NULL) {
    743 		pmap_kremove(wpipe->pipe_map.kva, blen);
    744 		uvm_unloan(pgs, npages, UVM_LOAN_TOPAGE);
    745 	}
    746 	if (error || amountpipekva > maxpipekva)
    747 		pipe_loan_free(wpipe);
    748 
    749 	if (error) {
    750 		pipeselwakeup(wpipe, wpipe, POLL_ERR);
    751 
    752 		/*
    753 		 * If nothing was read from what we offered, return error
    754 		 * straight on. Otherwise update uio resid first. Caller
    755 		 * will deal with the error condition, returning short
    756 		 * write, error, or restarting the write(2) as appropriate.
    757 		 */
    758 		if (wpipe->pipe_map.cnt == bcnt) {
    759 			wpipe->pipe_map.cnt = 0;
    760 			cv_broadcast(&wpipe->pipe_cv);
    761 			return (error);
    762 		}
    763 
    764 		bcnt -= wpipe->pipe_map.cnt;
    765 	}
    766 
    767 	uio->uio_resid -= bcnt;
    768 	/* uio_offset not updated, not set/used for write(2) */
    769 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt;
    770 	uio->uio_iov->iov_len -= bcnt;
    771 	if (uio->uio_iov->iov_len == 0) {
    772 		uio->uio_iov++;
    773 		uio->uio_iovcnt--;
    774 	}
    775 
    776 	wpipe->pipe_map.cnt = 0;
    777 	return (error);
    778 }
    779 #endif /* !PIPE_NODIRECT */
    780 
    781 static int
    782 pipe_write(struct file *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
    783     int flags)
    784 {
    785 	struct pipe *wpipe, *rpipe;
    786 	struct pipebuf *bp;
    787 	int error;
    788 
    789 	/* We want to write to our peer */
    790 	rpipe = (struct pipe *) fp->f_data;
    791 
    792 retry:
    793 	error = 0;
    794 	mutex_enter(&rpipe->pipe_lock);
    795 	wpipe = rpipe->pipe_peer;
    796 
    797 	/*
    798 	 * Detect loss of pipe read side, issue SIGPIPE if lost.
    799 	 */
    800 	if (wpipe == NULL)
    801 		error = EPIPE;
    802 	else if (mutex_tryenter(&wpipe->pipe_lock) == 0) {
    803 		/* Deal with race for peer */
    804 		mutex_exit(&rpipe->pipe_lock);
    805 		goto retry;
    806 	} else if ((wpipe->pipe_state & PIPE_EOF) != 0) {
    807 		mutex_exit(&wpipe->pipe_lock);
    808 		error = EPIPE;
    809 	}
    810 
    811 	mutex_exit(&rpipe->pipe_lock);
    812 	if (error != 0)
    813 		return (error);
    814 
    815 	++wpipe->pipe_busy;
    816 
    817 	/* Aquire the long-term pipe lock */
    818 	if ((error = pipelock(wpipe,1)) != 0) {
    819 		--wpipe->pipe_busy;
    820 		if (wpipe->pipe_busy == 0
    821 		    && (wpipe->pipe_state & PIPE_WANTCLOSE)) {
    822 			wpipe->pipe_state &= ~(PIPE_WANTCLOSE | PIPE_WANTR);
    823 			cv_broadcast(&wpipe->pipe_cv);
    824 		}
    825 		mutex_exit(&wpipe->pipe_lock);
    826 		return (error);
    827 	}
    828 
    829 	bp = &wpipe->pipe_buffer;
    830 
    831 	/*
    832 	 * If it is advantageous to resize the pipe buffer, do so.
    833 	 */
    834 	if ((uio->uio_resid > PIPE_SIZE) &&
    835 	    (nbigpipe < maxbigpipes) &&
    836 #ifndef PIPE_NODIRECT
    837 	    (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
    838 #endif
    839 	    (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) {
    840 
    841 		if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
    842 			nbigpipe++;
    843 	}
    844 
    845 	while (uio->uio_resid) {
    846 		size_t space;
    847 
    848 #ifndef PIPE_NODIRECT
    849 		/*
    850 		 * Pipe buffered writes cannot be coincidental with
    851 		 * direct writes.  Also, only one direct write can be
    852 		 * in progress at any one time.  We wait until the currently
    853 		 * executing direct write is completed before continuing.
    854 		 *
    855 		 * We break out if a signal occurs or the reader goes away.
    856 		 */
    857 		while (error == 0 && wpipe->pipe_state & PIPE_DIRECTW) {
    858 			mutex_enter(&wpipe->pipe_lock);
    859 			if (wpipe->pipe_state & PIPE_WANTR) {
    860 				wpipe->pipe_state &= ~PIPE_WANTR;
    861 				cv_broadcast(&wpipe->pipe_cv);
    862 			}
    863 			pipeunlock(wpipe);
    864 			error = cv_wait_sig(&wpipe->pipe_cv,
    865 			    &wpipe->pipe_lock);
    866 
    867 			(void)pipelock(wpipe, 0);
    868 			if (wpipe->pipe_state & PIPE_EOF)
    869 				error = EPIPE;
    870 		}
    871 		if (error)
    872 			break;
    873 
    874 		/*
    875 		 * If the transfer is large, we can gain performance if
    876 		 * we do process-to-process copies directly.
    877 		 * If the write is non-blocking, we don't use the
    878 		 * direct write mechanism.
    879 		 *
    880 		 * The direct write mechanism will detect the reader going
    881 		 * away on us.
    882 		 */
    883 		if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
    884 		    (fp->f_flag & FNONBLOCK) == 0 &&
    885 		    (wpipe->pipe_map.kva || (amountpipekva < limitpipekva))) {
    886 			error = pipe_direct_write(fp, wpipe, uio);
    887 
    888 			/*
    889 			 * Break out if error occurred, unless it's ENOMEM.
    890 			 * ENOMEM means we failed to allocate some resources
    891 			 * for direct write, so we just fallback to ordinary
    892 			 * write. If the direct write was successful,
    893 			 * process rest of data via ordinary write.
    894 			 */
    895 			if (error == 0)
    896 				continue;
    897 
    898 			if (error != ENOMEM)
    899 				break;
    900 		}
    901 #endif /* PIPE_NODIRECT */
    902 
    903 		space = bp->size - bp->cnt;
    904 
    905 		/* Writes of size <= PIPE_BUF must be atomic. */
    906 		if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
    907 			space = 0;
    908 
    909 		if (space > 0) {
    910 			int size;	/* Transfer size */
    911 			int segsize;	/* first segment to transfer */
    912 
    913 			/*
    914 			 * Transfer size is minimum of uio transfer
    915 			 * and free space in pipe buffer.
    916 			 */
    917 			if (space > uio->uio_resid)
    918 				size = uio->uio_resid;
    919 			else
    920 				size = space;
    921 			/*
    922 			 * First segment to transfer is minimum of
    923 			 * transfer size and contiguous space in
    924 			 * pipe buffer.  If first segment to transfer
    925 			 * is less than the transfer size, we've got
    926 			 * a wraparound in the buffer.
    927 			 */
    928 			segsize = bp->size - bp->in;
    929 			if (segsize > size)
    930 				segsize = size;
    931 
    932 			/* Transfer first segment */
    933 			error = uiomove((char *)bp->buffer + bp->in, segsize,
    934 			    uio);
    935 
    936 			if (error == 0 && segsize < size) {
    937 				/*
    938 				 * Transfer remaining part now, to
    939 				 * support atomic writes.  Wraparound
    940 				 * happened.
    941 				 */
    942 #ifdef DEBUG
    943 				if (bp->in + segsize != bp->size)
    944 					panic("Expected pipe buffer wraparound disappeared");
    945 #endif
    946 
    947 				error = uiomove(bp->buffer,
    948 				    size - segsize, uio);
    949 			}
    950 			if (error)
    951 				break;
    952 
    953 			bp->in += size;
    954 			if (bp->in >= bp->size) {
    955 #ifdef DEBUG
    956 				if (bp->in != size - segsize + bp->size)
    957 					panic("Expected wraparound bad");
    958 #endif
    959 				bp->in = size - segsize;
    960 			}
    961 
    962 			bp->cnt += size;
    963 #ifdef DEBUG
    964 			if (bp->cnt > bp->size)
    965 				panic("Pipe buffer overflow");
    966 #endif
    967 		} else {
    968 			/*
    969 			 * If the "read-side" has been blocked, wake it up now.
    970 			 */
    971 			mutex_enter(&wpipe->pipe_lock);
    972 			if (wpipe->pipe_state & PIPE_WANTR) {
    973 				wpipe->pipe_state &= ~PIPE_WANTR;
    974 				cv_broadcast(&wpipe->pipe_cv);
    975 			}
    976 			mutex_exit(&wpipe->pipe_lock);
    977 
    978 			/*
    979 			 * don't block on non-blocking I/O
    980 			 */
    981 			if (fp->f_flag & FNONBLOCK) {
    982 				error = EAGAIN;
    983 				break;
    984 			}
    985 
    986 			/*
    987 			 * We have no more space and have something to offer,
    988 			 * wake up select/poll.
    989 			 */
    990 			if (bp->cnt)
    991 				pipeselwakeup(wpipe, wpipe, POLL_OUT);
    992 
    993 			mutex_enter(&wpipe->pipe_lock);
    994 			pipeunlock(wpipe);
    995 			wpipe->pipe_state |= PIPE_WANTW;
    996 			error = cv_wait_sig(&wpipe->pipe_cv,
    997 			    &wpipe->pipe_lock);
    998 			(void)pipelock(wpipe, 0);
    999 			if (error != 0)
   1000 				break;
   1001 			/*
   1002 			 * If read side wants to go away, we just issue a signal
   1003 			 * to ourselves.
   1004 			 */
   1005 			if (wpipe->pipe_state & PIPE_EOF) {
   1006 				error = EPIPE;
   1007 				break;
   1008 			}
   1009 		}
   1010 	}
   1011 
   1012 	mutex_enter(&wpipe->pipe_lock);
   1013 	--wpipe->pipe_busy;
   1014 	if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANTCLOSE)) {
   1015 		wpipe->pipe_state &= ~(PIPE_WANTCLOSE | PIPE_WANTR);
   1016 		cv_broadcast(&wpipe->pipe_cv);
   1017 	} else if (bp->cnt > 0) {
   1018 		/*
   1019 		 * If we have put any characters in the buffer, we wake up
   1020 		 * the reader.
   1021 		 */
   1022 		if (wpipe->pipe_state & PIPE_WANTR) {
   1023 			wpipe->pipe_state &= ~PIPE_WANTR;
   1024 			cv_broadcast(&wpipe->pipe_cv);
   1025 		}
   1026 	}
   1027 
   1028 	/*
   1029 	 * Don't return EPIPE if I/O was successful
   1030 	 */
   1031 	if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0)
   1032 		error = 0;
   1033 
   1034 	if (error == 0)
   1035 		getmicrotime(&wpipe->pipe_mtime);
   1036 
   1037 	/*
   1038 	 * We have something to offer, wake up select/poll.
   1039 	 * wpipe->pipe_map.cnt is always 0 in this point (direct write
   1040 	 * is only done synchronously), so check only wpipe->pipe_buffer.cnt
   1041 	 */
   1042 	if (bp->cnt)
   1043 		pipeselwakeup(wpipe, wpipe, POLL_OUT);
   1044 
   1045 	/*
   1046 	 * Arrange for next read(2) to do a signal.
   1047 	 */
   1048 	wpipe->pipe_state |= PIPE_SIGNALR;
   1049 
   1050 	pipeunlock(wpipe);
   1051 	mutex_exit(&wpipe->pipe_lock);
   1052 	return (error);
   1053 }
   1054 
   1055 /*
   1056  * we implement a very minimal set of ioctls for compatibility with sockets.
   1057  */
   1058 int
   1059 pipe_ioctl(struct file *fp, u_long cmd, void *data, struct lwp *l)
   1060 {
   1061 	struct pipe *pipe = (struct pipe *)fp->f_data;
   1062 	struct proc *p = l->l_proc;
   1063 
   1064 	switch (cmd) {
   1065 
   1066 	case FIONBIO:
   1067 		return (0);
   1068 
   1069 	case FIOASYNC:
   1070 		mutex_enter(&pipe->pipe_lock);
   1071 		if (*(int *)data) {
   1072 			pipe->pipe_state |= PIPE_ASYNC;
   1073 		} else {
   1074 			pipe->pipe_state &= ~PIPE_ASYNC;
   1075 		}
   1076 		mutex_exit(&pipe->pipe_lock);
   1077 		return (0);
   1078 
   1079 	case FIONREAD:
   1080 		mutex_enter(&pipe->pipe_lock);
   1081 #ifndef PIPE_NODIRECT
   1082 		if (pipe->pipe_state & PIPE_DIRECTW)
   1083 			*(int *)data = pipe->pipe_map.cnt;
   1084 		else
   1085 #endif
   1086 			*(int *)data = pipe->pipe_buffer.cnt;
   1087 		mutex_exit(&pipe->pipe_lock);
   1088 		return (0);
   1089 
   1090 	case FIONWRITE:
   1091 		/* Look at other side */
   1092 		pipe = pipe->pipe_peer;
   1093 		mutex_enter(&pipe->pipe_lock);
   1094 #ifndef PIPE_NODIRECT
   1095 		if (pipe->pipe_state & PIPE_DIRECTW)
   1096 			*(int *)data = pipe->pipe_map.cnt;
   1097 		else
   1098 #endif
   1099 			*(int *)data = pipe->pipe_buffer.cnt;
   1100 		mutex_exit(&pipe->pipe_lock);
   1101 		return (0);
   1102 
   1103 	case FIONSPACE:
   1104 		/* Look at other side */
   1105 		pipe = pipe->pipe_peer;
   1106 		mutex_enter(&pipe->pipe_lock);
   1107 #ifndef PIPE_NODIRECT
   1108 		/*
   1109 		 * If we're in direct-mode, we don't really have a
   1110 		 * send queue, and any other write will block. Thus
   1111 		 * zero seems like the best answer.
   1112 		 */
   1113 		if (pipe->pipe_state & PIPE_DIRECTW)
   1114 			*(int *)data = 0;
   1115 		else
   1116 #endif
   1117 			*(int *)data = pipe->pipe_buffer.size -
   1118 					pipe->pipe_buffer.cnt;
   1119 		mutex_exit(&pipe->pipe_lock);
   1120 		return (0);
   1121 
   1122 	case TIOCSPGRP:
   1123 	case FIOSETOWN:
   1124 		return fsetown(p, &pipe->pipe_pgid, cmd, data);
   1125 
   1126 	case TIOCGPGRP:
   1127 	case FIOGETOWN:
   1128 		return fgetown(p, pipe->pipe_pgid, cmd, data);
   1129 
   1130 	}
   1131 	return (EPASSTHROUGH);
   1132 }
   1133 
   1134 int
   1135 pipe_poll(struct file *fp, int events, struct lwp *l)
   1136 {
   1137 	struct pipe *rpipe = (struct pipe *)fp->f_data;
   1138 	struct pipe *wpipe;
   1139 	int eof = 0;
   1140 	int revents = 0;
   1141 
   1142 retry:
   1143 	mutex_enter(&rpipe->pipe_lock);
   1144 	wpipe = rpipe->pipe_peer;
   1145 	if (wpipe != NULL && mutex_tryenter(&wpipe->pipe_lock) == 0) {
   1146 		/* Deal with race for peer */
   1147 		mutex_exit(&rpipe->pipe_lock);
   1148 		goto retry;
   1149 	}
   1150 
   1151 	if (events & (POLLIN | POLLRDNORM))
   1152 		if ((rpipe->pipe_buffer.cnt > 0) ||
   1153 #ifndef PIPE_NODIRECT
   1154 		    (rpipe->pipe_state & PIPE_DIRECTR) ||
   1155 #endif
   1156 		    (rpipe->pipe_state & PIPE_EOF))
   1157 			revents |= events & (POLLIN | POLLRDNORM);
   1158 
   1159 	eof |= (rpipe->pipe_state & PIPE_EOF);
   1160 	mutex_exit(&rpipe->pipe_lock);
   1161 
   1162 	if (wpipe == NULL)
   1163 		revents |= events & (POLLOUT | POLLWRNORM);
   1164 	else {
   1165 		if (events & (POLLOUT | POLLWRNORM))
   1166 			if ((wpipe->pipe_state & PIPE_EOF) || (
   1167 #ifndef PIPE_NODIRECT
   1168 			     (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
   1169 #endif
   1170 			     (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
   1171 				revents |= events & (POLLOUT | POLLWRNORM);
   1172 
   1173 		eof |= (wpipe->pipe_state & PIPE_EOF);
   1174 		mutex_exit(&wpipe->pipe_lock);
   1175 	}
   1176 
   1177 	if (wpipe == NULL || eof)
   1178 		revents |= POLLHUP;
   1179 
   1180 	if (revents == 0) {
   1181 		if (events & (POLLIN | POLLRDNORM))
   1182 			selrecord(l, &rpipe->pipe_sel);
   1183 
   1184 		if (events & (POLLOUT | POLLWRNORM))
   1185 			selrecord(l, &wpipe->pipe_sel);
   1186 	}
   1187 
   1188 	return (revents);
   1189 }
   1190 
   1191 static int
   1192 pipe_stat(struct file *fp, struct stat *ub, struct lwp *l)
   1193 {
   1194 	struct pipe *pipe = (struct pipe *)fp->f_data;
   1195 
   1196 	memset((void *)ub, 0, sizeof(*ub));
   1197 	ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
   1198 	ub->st_blksize = pipe->pipe_buffer.size;
   1199 	if (ub->st_blksize == 0 && pipe->pipe_peer)
   1200 		ub->st_blksize = pipe->pipe_peer->pipe_buffer.size;
   1201 	ub->st_size = pipe->pipe_buffer.cnt;
   1202 	ub->st_blocks = (ub->st_size) ? 1 : 0;
   1203 	TIMEVAL_TO_TIMESPEC(&pipe->pipe_atime, &ub->st_atimespec);
   1204 	TIMEVAL_TO_TIMESPEC(&pipe->pipe_mtime, &ub->st_mtimespec);
   1205 	TIMEVAL_TO_TIMESPEC(&pipe->pipe_ctime, &ub->st_ctimespec);
   1206 	ub->st_uid = kauth_cred_geteuid(fp->f_cred);
   1207 	ub->st_gid = kauth_cred_getegid(fp->f_cred);
   1208 	/*
   1209 	 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
   1210 	 * XXX (st_dev, st_ino) should be unique.
   1211 	 */
   1212 	return (0);
   1213 }
   1214 
   1215 /* ARGSUSED */
   1216 static int
   1217 pipe_close(struct file *fp, struct lwp *l)
   1218 {
   1219 	struct pipe *pipe = (struct pipe *)fp->f_data;
   1220 
   1221 	fp->f_data = NULL;
   1222 	pipeclose(fp, pipe);
   1223 	return (0);
   1224 }
   1225 
   1226 static void
   1227 pipe_free_kmem(struct pipe *pipe)
   1228 {
   1229 
   1230 	if (pipe->pipe_buffer.buffer != NULL) {
   1231 		if (pipe->pipe_buffer.size > PIPE_SIZE)
   1232 			--nbigpipe;
   1233 		amountpipekva -= pipe->pipe_buffer.size;
   1234 		uvm_km_free(kernel_map,
   1235 			(vaddr_t)pipe->pipe_buffer.buffer,
   1236 			pipe->pipe_buffer.size, UVM_KMF_PAGEABLE);
   1237 		pipe->pipe_buffer.buffer = NULL;
   1238 	}
   1239 #ifndef PIPE_NODIRECT
   1240 	if (pipe->pipe_map.kva != 0) {
   1241 		pipe_loan_free(pipe);
   1242 		pipe->pipe_map.cnt = 0;
   1243 		pipe->pipe_map.kva = 0;
   1244 		pipe->pipe_map.pos = 0;
   1245 		pipe->pipe_map.npages = 0;
   1246 	}
   1247 #endif /* !PIPE_NODIRECT */
   1248 }
   1249 
   1250 /*
   1251  * shutdown the pipe
   1252  */
   1253 static void
   1254 pipeclose(struct file *fp, struct pipe *pipe)
   1255 {
   1256 	struct pipe *ppipe;
   1257 
   1258 	if (pipe == NULL)
   1259 		return;
   1260 
   1261 retry:
   1262 	mutex_enter(&pipe->pipe_lock);
   1263 
   1264 	pipeselwakeup(pipe, pipe, POLL_HUP);
   1265 
   1266 	/*
   1267 	 * If the other side is blocked, wake it up saying that
   1268 	 * we want to close it down.
   1269 	 */
   1270 	pipe->pipe_state |= PIPE_EOF;
   1271 	while (pipe->pipe_busy) {
   1272 		cv_broadcast(&pipe->pipe_cv);
   1273 		pipe->pipe_state |= PIPE_WANTCLOSE;
   1274 		cv_wait_sig(&pipe->pipe_cv, &pipe->pipe_lock);
   1275 	}
   1276 
   1277 	/*
   1278 	 * Disconnect from peer
   1279 	 */
   1280 	if ((ppipe = pipe->pipe_peer) != NULL) {
   1281 		/* Deal with race for peer */
   1282 		if (mutex_tryenter(&ppipe->pipe_lock) == 0) {
   1283 			mutex_exit(&pipe->pipe_lock);
   1284 			goto retry;
   1285 		}
   1286 		pipeselwakeup(ppipe, ppipe, POLL_HUP);
   1287 
   1288 		ppipe->pipe_state |= PIPE_EOF;
   1289 		cv_broadcast(&ppipe->pipe_cv);
   1290 		ppipe->pipe_peer = NULL;
   1291 		mutex_exit(&ppipe->pipe_lock);
   1292 	}
   1293 
   1294 	KASSERT((pipe->pipe_state & PIPE_LOCKFL) == 0);
   1295 
   1296 	mutex_exit(&pipe->pipe_lock);
   1297 
   1298 	/*
   1299 	 * free resources
   1300 	 */
   1301 	pipe_free_kmem(pipe);
   1302 	mutex_destroy(&pipe->pipe_lock);
   1303 	cv_destroy(&pipe->pipe_cv);
   1304 	cv_destroy(&pipe->pipe_lkcv);
   1305 	pool_put(&pipe_pool, pipe);
   1306 }
   1307 
   1308 static void
   1309 filt_pipedetach(struct knote *kn)
   1310 {
   1311 	struct pipe *pipe = (struct pipe *)kn->kn_fp->f_data;
   1312 
   1313 	switch(kn->kn_filter) {
   1314 	case EVFILT_WRITE:
   1315 		/* need the peer structure, not our own */
   1316 		pipe = pipe->pipe_peer;
   1317 		/* XXXSMP: race for peer */
   1318 
   1319 		/* if reader end already closed, just return */
   1320 		if (pipe == NULL)
   1321 			return;
   1322 
   1323 		break;
   1324 	default:
   1325 		/* nothing to do */
   1326 		break;
   1327 	}
   1328 
   1329 #ifdef DIAGNOSTIC
   1330 	if (kn->kn_hook != pipe)
   1331 		panic("filt_pipedetach: inconsistent knote");
   1332 #endif
   1333 
   1334 	mutex_enter(&pipe->pipe_lock);
   1335 	SLIST_REMOVE(&pipe->pipe_sel.sel_klist, kn, knote, kn_selnext);
   1336 	mutex_exit(&pipe->pipe_lock);
   1337 }
   1338 
   1339 /*ARGSUSED*/
   1340 static int
   1341 filt_piperead(struct knote *kn, long hint)
   1342 {
   1343 	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
   1344 	struct pipe *wpipe = rpipe->pipe_peer;
   1345 
   1346 	if ((hint & NOTE_SUBMIT) == 0)
   1347 		mutex_enter(&rpipe->pipe_lock);
   1348 	kn->kn_data = rpipe->pipe_buffer.cnt;
   1349 	if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
   1350 		kn->kn_data = rpipe->pipe_map.cnt;
   1351 
   1352 	/* XXXSMP: race for peer */
   1353 	if ((rpipe->pipe_state & PIPE_EOF) ||
   1354 	    (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
   1355 		kn->kn_flags |= EV_EOF;
   1356 		if ((hint & NOTE_SUBMIT) == 0)
   1357 			mutex_exit(&rpipe->pipe_lock);
   1358 		return (1);
   1359 	}
   1360 	if ((hint & NOTE_SUBMIT) == 0)
   1361 		mutex_exit(&rpipe->pipe_lock);
   1362 	return (kn->kn_data > 0);
   1363 }
   1364 
   1365 /*ARGSUSED*/
   1366 static int
   1367 filt_pipewrite(struct knote *kn, long hint)
   1368 {
   1369 	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
   1370 	struct pipe *wpipe = rpipe->pipe_peer;
   1371 
   1372 	if ((hint & NOTE_SUBMIT) == 0)
   1373 		mutex_enter(&rpipe->pipe_lock);
   1374 	/* XXXSMP: race for peer */
   1375 	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
   1376 		kn->kn_data = 0;
   1377 		kn->kn_flags |= EV_EOF;
   1378 		if ((hint & NOTE_SUBMIT) == 0)
   1379 			mutex_exit(&rpipe->pipe_lock);
   1380 		return (1);
   1381 	}
   1382 	kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
   1383 	if (wpipe->pipe_state & PIPE_DIRECTW)
   1384 		kn->kn_data = 0;
   1385 
   1386 	if ((hint & NOTE_SUBMIT) == 0)
   1387 		mutex_exit(&rpipe->pipe_lock);
   1388 	return (kn->kn_data >= PIPE_BUF);
   1389 }
   1390 
   1391 static const struct filterops pipe_rfiltops =
   1392 	{ 1, NULL, filt_pipedetach, filt_piperead };
   1393 static const struct filterops pipe_wfiltops =
   1394 	{ 1, NULL, filt_pipedetach, filt_pipewrite };
   1395 
   1396 /*ARGSUSED*/
   1397 static int
   1398 pipe_kqfilter(struct file *fp, struct knote *kn)
   1399 {
   1400 	struct pipe *pipe;
   1401 
   1402 	pipe = (struct pipe *)kn->kn_fp->f_data;
   1403 	switch (kn->kn_filter) {
   1404 	case EVFILT_READ:
   1405 		kn->kn_fop = &pipe_rfiltops;
   1406 		break;
   1407 	case EVFILT_WRITE:
   1408 		kn->kn_fop = &pipe_wfiltops;
   1409 		/* XXXSMP: race for peer */
   1410 		pipe = pipe->pipe_peer;
   1411 		if (pipe == NULL) {
   1412 			/* other end of pipe has been closed */
   1413 			return (EBADF);
   1414 		}
   1415 		break;
   1416 	default:
   1417 		return (1);
   1418 	}
   1419 	kn->kn_hook = pipe;
   1420 
   1421 	mutex_enter(&pipe->pipe_lock);
   1422 	SLIST_INSERT_HEAD(&pipe->pipe_sel.sel_klist, kn, kn_selnext);
   1423 	mutex_exit(&pipe->pipe_lock);
   1424 	return (0);
   1425 }
   1426 
   1427 /*
   1428  * Handle pipe sysctls.
   1429  */
   1430 SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup")
   1431 {
   1432 
   1433 	sysctl_createv(clog, 0, NULL, NULL,
   1434 		       CTLFLAG_PERMANENT,
   1435 		       CTLTYPE_NODE, "kern", NULL,
   1436 		       NULL, 0, NULL, 0,
   1437 		       CTL_KERN, CTL_EOL);
   1438 	sysctl_createv(clog, 0, NULL, NULL,
   1439 		       CTLFLAG_PERMANENT,
   1440 		       CTLTYPE_NODE, "pipe",
   1441 		       SYSCTL_DESCR("Pipe settings"),
   1442 		       NULL, 0, NULL, 0,
   1443 		       CTL_KERN, KERN_PIPE, CTL_EOL);
   1444 
   1445 	sysctl_createv(clog, 0, NULL, NULL,
   1446 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1447 		       CTLTYPE_INT, "maxkvasz",
   1448 		       SYSCTL_DESCR("Maximum amount of kernel memory to be "
   1449 				    "used for pipes"),
   1450 		       NULL, 0, &maxpipekva, 0,
   1451 		       CTL_KERN, KERN_PIPE, KERN_PIPE_MAXKVASZ, CTL_EOL);
   1452 	sysctl_createv(clog, 0, NULL, NULL,
   1453 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1454 		       CTLTYPE_INT, "maxloankvasz",
   1455 		       SYSCTL_DESCR("Limit for direct transfers via page loan"),
   1456 		       NULL, 0, &limitpipekva, 0,
   1457 		       CTL_KERN, KERN_PIPE, KERN_PIPE_LIMITKVA, CTL_EOL);
   1458 	sysctl_createv(clog, 0, NULL, NULL,
   1459 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1460 		       CTLTYPE_INT, "maxbigpipes",
   1461 		       SYSCTL_DESCR("Maximum number of \"big\" pipes"),
   1462 		       NULL, 0, &maxbigpipes, 0,
   1463 		       CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL);
   1464 	sysctl_createv(clog, 0, NULL, NULL,
   1465 		       CTLFLAG_PERMANENT,
   1466 		       CTLTYPE_INT, "nbigpipes",
   1467 		       SYSCTL_DESCR("Number of \"big\" pipes"),
   1468 		       NULL, 0, &nbigpipe, 0,
   1469 		       CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL);
   1470 	sysctl_createv(clog, 0, NULL, NULL,
   1471 		       CTLFLAG_PERMANENT,
   1472 		       CTLTYPE_INT, "kvasize",
   1473 		       SYSCTL_DESCR("Amount of kernel memory consumed by pipe "
   1474 				    "buffers"),
   1475 		       NULL, 0, &amountpipekva, 0,
   1476 		       CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL);
   1477 }
   1478