sys_pipe.c revision 1.83 1 /* $NetBSD: sys_pipe.c,v 1.83 2007/03/23 18:33:43 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2003, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1996 John S. Dyson
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice immediately at the beginning of the file, without modification,
48 * this list of conditions, and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. Absolutely no warranty of function or purpose is made by the author
53 * John S. Dyson.
54 * 4. Modifications may be freely made to this file if the above conditions
55 * are met.
56 *
57 * $FreeBSD: src/sys/kern/sys_pipe.c,v 1.95 2002/03/09 22:06:31 alfred Exp $
58 */
59
60 /*
61 * This file contains a high-performance replacement for the socket-based
62 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support
63 * all features of sockets, but does do everything that pipes normally
64 * do.
65 *
66 * Adaption for NetBSD UVM, including uvm_loan() based direct write, was
67 * written by Jaromir Dolecek.
68 */
69
70 /*
71 * This code has two modes of operation, a small write mode and a large
72 * write mode. The small write mode acts like conventional pipes with
73 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
74 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
75 * and PIPE_SIZE in size it is mapped read-only into the kernel address space
76 * using the UVM page loan facility from where the receiving process can copy
77 * the data directly from the pages in the sending process.
78 *
79 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
80 * happen for small transfers so that the system will not spend all of
81 * its time context switching. PIPE_SIZE is constrained by the
82 * amount of kernel virtual memory.
83 */
84
85 #include <sys/cdefs.h>
86 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.83 2007/03/23 18:33:43 ad Exp $");
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/proc.h>
91 #include <sys/fcntl.h>
92 #include <sys/file.h>
93 #include <sys/filedesc.h>
94 #include <sys/filio.h>
95 #include <sys/kernel.h>
96 #include <sys/ttycom.h>
97 #include <sys/stat.h>
98 #include <sys/malloc.h>
99 #include <sys/poll.h>
100 #include <sys/signalvar.h>
101 #include <sys/vnode.h>
102 #include <sys/uio.h>
103 #include <sys/lock.h>
104 #include <sys/select.h>
105 #include <sys/mount.h>
106 #include <sys/syscallargs.h>
107 #include <uvm/uvm.h>
108 #include <sys/sysctl.h>
109 #include <sys/kernel.h>
110 #include <sys/kauth.h>
111
112 #include <sys/pipe.h>
113
114 /*
115 * Use this define if you want to disable *fancy* VM things. Expect an
116 * approx 30% decrease in transfer rate.
117 */
118 /* #define PIPE_NODIRECT */
119
120 /*
121 * interfaces to the outside world
122 */
123 static int pipe_read(struct file *fp, off_t *offset, struct uio *uio,
124 kauth_cred_t cred, int flags);
125 static int pipe_write(struct file *fp, off_t *offset, struct uio *uio,
126 kauth_cred_t cred, int flags);
127 static int pipe_close(struct file *fp, struct lwp *l);
128 static int pipe_poll(struct file *fp, int events, struct lwp *l);
129 static int pipe_kqfilter(struct file *fp, struct knote *kn);
130 static int pipe_stat(struct file *fp, struct stat *sb, struct lwp *l);
131 static int pipe_ioctl(struct file *fp, u_long cmd, void *data,
132 struct lwp *l);
133
134 static const struct fileops pipeops = {
135 pipe_read, pipe_write, pipe_ioctl, fnullop_fcntl, pipe_poll,
136 pipe_stat, pipe_close, pipe_kqfilter
137 };
138
139 /*
140 * Default pipe buffer size(s), this can be kind-of large now because pipe
141 * space is pageable. The pipe code will try to maintain locality of
142 * reference for performance reasons, so small amounts of outstanding I/O
143 * will not wipe the cache.
144 */
145 #define MINPIPESIZE (PIPE_SIZE/3)
146 #define MAXPIPESIZE (2*PIPE_SIZE/3)
147
148 /*
149 * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
150 * is there so that on large systems, we don't exhaust it.
151 */
152 #define MAXPIPEKVA (8*1024*1024)
153 static int maxpipekva = MAXPIPEKVA;
154
155 /*
156 * Limit for direct transfers, we cannot, of course limit
157 * the amount of kva for pipes in general though.
158 */
159 #define LIMITPIPEKVA (16*1024*1024)
160 static int limitpipekva = LIMITPIPEKVA;
161
162 /*
163 * Limit the number of "big" pipes
164 */
165 #define LIMITBIGPIPES 32
166 static int maxbigpipes = LIMITBIGPIPES;
167 static int nbigpipe = 0;
168
169 /*
170 * Amount of KVA consumed by pipe buffers.
171 */
172 static int amountpipekva = 0;
173
174 MALLOC_DEFINE(M_PIPE, "pipe", "Pipe structures");
175
176 static void pipeclose(struct file *fp, struct pipe *pipe);
177 static void pipe_free_kmem(struct pipe *pipe);
178 static int pipe_create(struct pipe **pipep, int allockva);
179 static int pipelock(struct pipe *pipe, int catch);
180 static inline void pipeunlock(struct pipe *pipe);
181 static void pipeselwakeup(struct pipe *pipe, struct pipe *sigp, int code);
182 #ifndef PIPE_NODIRECT
183 static int pipe_direct_write(struct file *fp, struct pipe *wpipe,
184 struct uio *uio);
185 #endif
186 static int pipespace(struct pipe *pipe, int size);
187
188 #ifndef PIPE_NODIRECT
189 static int pipe_loan_alloc(struct pipe *, int);
190 static void pipe_loan_free(struct pipe *);
191 #endif /* PIPE_NODIRECT */
192
193 static POOL_INIT(pipe_pool, sizeof(struct pipe), 0, 0, 0, "pipepl",
194 &pool_allocator_nointr, IPL_NONE);
195
196 static krwlock_t pipe_peer_lock;
197
198 void
199 pipe_init(void)
200 {
201
202 rw_init(&pipe_peer_lock);
203 }
204
205 /*
206 * The pipe system call for the DTYPE_PIPE type of pipes
207 */
208
209 /* ARGSUSED */
210 int
211 sys_pipe(struct lwp *l, void *v, register_t *retval)
212 {
213 struct file *rf, *wf;
214 struct pipe *rpipe, *wpipe;
215 int fd, error;
216
217 rpipe = wpipe = NULL;
218 if (pipe_create(&rpipe, 1) || pipe_create(&wpipe, 0)) {
219 pipeclose(NULL, rpipe);
220 pipeclose(NULL, wpipe);
221 return (ENFILE);
222 }
223
224 /*
225 * Note: the file structure returned from falloc() is marked
226 * as 'larval' initially. Unless we mark it as 'mature' by
227 * FILE_SET_MATURE(), any attempt to do anything with it would
228 * return EBADF, including e.g. dup(2) or close(2). This avoids
229 * file descriptor races if we block in the second falloc().
230 */
231
232 error = falloc(l, &rf, &fd);
233 if (error)
234 goto free2;
235 retval[0] = fd;
236 rf->f_flag = FREAD;
237 rf->f_type = DTYPE_PIPE;
238 rf->f_data = (void *)rpipe;
239 rf->f_ops = &pipeops;
240
241 error = falloc(l, &wf, &fd);
242 if (error)
243 goto free3;
244 retval[1] = fd;
245 wf->f_flag = FWRITE;
246 wf->f_type = DTYPE_PIPE;
247 wf->f_data = (void *)wpipe;
248 wf->f_ops = &pipeops;
249
250 rpipe->pipe_peer = wpipe;
251 wpipe->pipe_peer = rpipe;
252
253 FILE_SET_MATURE(rf);
254 FILE_SET_MATURE(wf);
255 FILE_UNUSE(rf, l);
256 FILE_UNUSE(wf, l);
257 return (0);
258 free3:
259 FILE_UNUSE(rf, l);
260 ffree(rf);
261 fdremove(l->l_proc->p_fd, retval[0]);
262 free2:
263 pipeclose(NULL, wpipe);
264 pipeclose(NULL, rpipe);
265
266 return (error);
267 }
268
269 /*
270 * Allocate kva for pipe circular buffer, the space is pageable
271 * This routine will 'realloc' the size of a pipe safely, if it fails
272 * it will retain the old buffer.
273 * If it fails it will return ENOMEM.
274 */
275 static int
276 pipespace(struct pipe *pipe, int size)
277 {
278 void *buffer;
279 /*
280 * Allocate pageable virtual address space. Physical memory is
281 * allocated on demand.
282 */
283 buffer = (void *) uvm_km_alloc(kernel_map, round_page(size), 0,
284 UVM_KMF_PAGEABLE);
285 if (buffer == NULL)
286 return (ENOMEM);
287
288 /* free old resources if we're resizing */
289 pipe_free_kmem(pipe);
290 pipe->pipe_buffer.buffer = buffer;
291 pipe->pipe_buffer.size = size;
292 pipe->pipe_buffer.in = 0;
293 pipe->pipe_buffer.out = 0;
294 pipe->pipe_buffer.cnt = 0;
295 amountpipekva += pipe->pipe_buffer.size;
296 return (0);
297 }
298
299 /*
300 * Initialize and allocate VM and memory for pipe.
301 */
302 static int
303 pipe_create(struct pipe **pipep, int allockva)
304 {
305 struct pipe *pipe;
306 int error;
307
308 pipe = *pipep = pool_get(&pipe_pool, PR_WAITOK);
309
310 /* Initialize */
311 memset(pipe, 0, sizeof(struct pipe));
312 pipe->pipe_state = PIPE_SIGNALR;
313
314 getmicrotime(&pipe->pipe_ctime);
315 pipe->pipe_atime = pipe->pipe_ctime;
316 pipe->pipe_mtime = pipe->pipe_ctime;
317 mutex_init(&pipe->pipe_lock, MUTEX_DEFAULT, IPL_NONE);
318 cv_init(&pipe->pipe_cv, "pipe");
319 cv_init(&pipe->pipe_lkcv, "pipelk");
320
321 if (allockva && (error = pipespace(pipe, PIPE_SIZE)))
322 return (error);
323
324 return (0);
325 }
326
327
328 /*
329 * Lock a pipe for I/O, blocking other access
330 * Called with pipe spin lock held.
331 * Return with pipe spin lock released on success.
332 */
333 static int
334 pipelock(struct pipe *pipe, int catch)
335 {
336 int error;
337
338 KASSERT(mutex_owned(&pipe->pipe_lock));
339
340 while (pipe->pipe_state & PIPE_LOCKFL) {
341 pipe->pipe_state |= PIPE_LWANT;
342 if (catch) {
343 error = cv_wait_sig(&pipe->pipe_lkcv,
344 &pipe->pipe_lock);
345 if (error != 0)
346 return error;
347 } else
348 cv_wait(&pipe->pipe_lkcv, &pipe->pipe_lock);
349 }
350
351 pipe->pipe_state |= PIPE_LOCKFL;
352 mutex_exit(&pipe->pipe_lock);
353
354 return 0;
355 }
356
357 /*
358 * unlock a pipe I/O lock
359 */
360 static inline void
361 pipeunlock(struct pipe *pipe)
362 {
363
364 KASSERT(pipe->pipe_state & PIPE_LOCKFL);
365
366 pipe->pipe_state &= ~PIPE_LOCKFL;
367 if (pipe->pipe_state & PIPE_LWANT) {
368 pipe->pipe_state &= ~PIPE_LWANT;
369 cv_broadcast(&pipe->pipe_lkcv);
370 }
371 }
372
373 /*
374 * Select/poll wakup. This also sends SIGIO to peer connected to
375 * 'sigpipe' side of pipe.
376 */
377 static void
378 pipeselwakeup(struct pipe *selp, struct pipe *sigp, int code)
379 {
380 int band;
381
382 selnotify(&selp->pipe_sel, NOTE_SUBMIT);
383
384 if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0)
385 return;
386
387 switch (code) {
388 case POLL_IN:
389 band = POLLIN|POLLRDNORM;
390 break;
391 case POLL_OUT:
392 band = POLLOUT|POLLWRNORM;
393 break;
394 case POLL_HUP:
395 band = POLLHUP;
396 break;
397 #if POLL_HUP != POLL_ERR
398 case POLL_ERR:
399 band = POLLERR;
400 break;
401 #endif
402 default:
403 band = 0;
404 #ifdef DIAGNOSTIC
405 printf("bad siginfo code %d in pipe notification.\n", code);
406 #endif
407 break;
408 }
409
410 fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp);
411 }
412
413 /* ARGSUSED */
414 static int
415 pipe_read(struct file *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
416 int flags)
417 {
418 struct pipe *rpipe = (struct pipe *) fp->f_data;
419 struct pipebuf *bp = &rpipe->pipe_buffer;
420 int error;
421 size_t nread = 0;
422 size_t size;
423 size_t ocnt;
424
425 mutex_enter(&rpipe->pipe_lock);
426 ++rpipe->pipe_busy;
427 ocnt = bp->cnt;
428
429 again:
430 error = pipelock(rpipe, 1);
431 if (error)
432 goto unlocked_error;
433
434 while (uio->uio_resid) {
435 /*
436 * normal pipe buffer receive
437 */
438 if (bp->cnt > 0) {
439 size = bp->size - bp->out;
440 if (size > bp->cnt)
441 size = bp->cnt;
442 if (size > uio->uio_resid)
443 size = uio->uio_resid;
444
445 error = uiomove((char *)bp->buffer + bp->out, size, uio);
446 if (error)
447 break;
448
449 bp->out += size;
450 if (bp->out >= bp->size)
451 bp->out = 0;
452
453 bp->cnt -= size;
454
455 /*
456 * If there is no more to read in the pipe, reset
457 * its pointers to the beginning. This improves
458 * cache hit stats.
459 */
460 if (bp->cnt == 0) {
461 bp->in = 0;
462 bp->out = 0;
463 }
464 nread += size;
465 #ifndef PIPE_NODIRECT
466 } else if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) {
467 /*
468 * Direct copy, bypassing a kernel buffer.
469 */
470 void * va;
471
472 KASSERT(rpipe->pipe_state & PIPE_DIRECTW);
473
474 size = rpipe->pipe_map.cnt;
475 if (size > uio->uio_resid)
476 size = uio->uio_resid;
477
478 va = (char *)rpipe->pipe_map.kva + rpipe->pipe_map.pos;
479 error = uiomove(va, size, uio);
480 if (error)
481 break;
482 nread += size;
483 rpipe->pipe_map.pos += size;
484 rpipe->pipe_map.cnt -= size;
485 if (rpipe->pipe_map.cnt == 0) {
486 mutex_enter(&rpipe->pipe_lock);
487 rpipe->pipe_state &= ~PIPE_DIRECTR;
488 cv_broadcast(&rpipe->pipe_cv);
489 mutex_exit(&rpipe->pipe_lock);
490 }
491 #endif
492 } else {
493 /*
494 * Break if some data was read.
495 */
496 if (nread > 0)
497 break;
498
499 mutex_enter(&rpipe->pipe_lock);
500
501 /*
502 * detect EOF condition
503 * read returns 0 on EOF, no need to set error
504 */
505 if (rpipe->pipe_state & PIPE_EOF) {
506 mutex_exit(&rpipe->pipe_lock);
507 break;
508 }
509
510 /*
511 * don't block on non-blocking I/O
512 */
513 if (fp->f_flag & FNONBLOCK) {
514 mutex_exit(&rpipe->pipe_lock);
515 error = EAGAIN;
516 break;
517 }
518
519 /*
520 * Unlock the pipe buffer for our remaining processing.
521 * We will either break out with an error or we will
522 * sleep and relock to loop.
523 */
524 pipeunlock(rpipe);
525
526 /*
527 * The PIPE_DIRECTR flag is not under the control
528 * of the long-term lock (see pipe_direct_write()),
529 * so re-check now while holding the spin lock.
530 */
531 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0)
532 goto again;
533
534 /*
535 * We want to read more, wake up select/poll.
536 */
537 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_IN);
538
539 /*
540 * If the "write-side" is blocked, wake it up now.
541 */
542 if (rpipe->pipe_state & PIPE_WANTW) {
543 rpipe->pipe_state &= ~PIPE_WANTW;
544 cv_broadcast(&rpipe->pipe_cv);
545 }
546
547 /* Now wait until the pipe is filled */
548 rpipe->pipe_state |= PIPE_WANTR;
549 error = cv_wait_sig(&rpipe->pipe_cv,
550 &rpipe->pipe_lock);
551 if (error != 0)
552 goto unlocked_error;
553 goto again;
554 }
555 }
556
557 if (error == 0)
558 getmicrotime(&rpipe->pipe_atime);
559
560 mutex_enter(&rpipe->pipe_lock);
561 pipeunlock(rpipe);
562
563 unlocked_error:
564 --rpipe->pipe_busy;
565
566 /*
567 * PIPE_WANTCLOSE processing only makes sense if pipe_busy is 0.
568 */
569 if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANTCLOSE)) {
570 rpipe->pipe_state &= ~(PIPE_WANTCLOSE|PIPE_WANTW);
571 cv_broadcast(&rpipe->pipe_cv);
572 } else if (bp->cnt < MINPIPESIZE) {
573 /*
574 * Handle write blocking hysteresis.
575 */
576 if (rpipe->pipe_state & PIPE_WANTW) {
577 rpipe->pipe_state &= ~PIPE_WANTW;
578 cv_broadcast(&rpipe->pipe_cv);
579 }
580 }
581
582 /*
583 * If anything was read off the buffer, signal to the writer it's
584 * possible to write more data. Also send signal if we are here for the
585 * first time after last write.
586 */
587 if ((bp->size - bp->cnt) >= PIPE_BUF
588 && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
589 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
590 rpipe->pipe_state &= ~PIPE_SIGNALR;
591 }
592
593 mutex_exit(&rpipe->pipe_lock);
594 return (error);
595 }
596
597 #ifndef PIPE_NODIRECT
598 /*
599 * Allocate structure for loan transfer.
600 */
601 static int
602 pipe_loan_alloc(struct pipe *wpipe, int npages)
603 {
604 vsize_t len;
605
606 len = (vsize_t)npages << PAGE_SHIFT;
607 wpipe->pipe_map.kva = uvm_km_alloc(kernel_map, len, 0,
608 UVM_KMF_VAONLY | UVM_KMF_WAITVA);
609 if (wpipe->pipe_map.kva == 0)
610 return (ENOMEM);
611
612 amountpipekva += len;
613 wpipe->pipe_map.npages = npages;
614 wpipe->pipe_map.pgs = malloc(npages * sizeof(struct vm_page *), M_PIPE,
615 M_WAITOK);
616 return (0);
617 }
618
619 /*
620 * Free resources allocated for loan transfer.
621 */
622 static void
623 pipe_loan_free(struct pipe *wpipe)
624 {
625 vsize_t len;
626
627 len = (vsize_t)wpipe->pipe_map.npages << PAGE_SHIFT;
628 uvm_km_free(kernel_map, wpipe->pipe_map.kva, len, UVM_KMF_VAONLY);
629 wpipe->pipe_map.kva = 0;
630 amountpipekva -= len;
631 free(wpipe->pipe_map.pgs, M_PIPE);
632 wpipe->pipe_map.pgs = NULL;
633 }
634
635 /*
636 * NetBSD direct write, using uvm_loan() mechanism.
637 * This implements the pipe buffer write mechanism. Note that only
638 * a direct write OR a normal pipe write can be pending at any given time.
639 * If there are any characters in the pipe buffer, the direct write will
640 * be deferred until the receiving process grabs all of the bytes from
641 * the pipe buffer. Then the direct mapping write is set-up.
642 *
643 * Called with the long-term pipe lock held.
644 */
645 static int
646 pipe_direct_write(struct file *fp, struct pipe *wpipe, struct uio *uio)
647 {
648 int error, npages, j;
649 struct vm_page **pgs;
650 vaddr_t bbase, kva, base, bend;
651 vsize_t blen, bcnt;
652 voff_t bpos;
653
654 KASSERT(wpipe->pipe_map.cnt == 0);
655
656 /*
657 * Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers
658 * not aligned to PAGE_SIZE.
659 */
660 bbase = (vaddr_t)uio->uio_iov->iov_base;
661 base = trunc_page(bbase);
662 bend = round_page(bbase + uio->uio_iov->iov_len);
663 blen = bend - base;
664 bpos = bbase - base;
665
666 if (blen > PIPE_DIRECT_CHUNK) {
667 blen = PIPE_DIRECT_CHUNK;
668 bend = base + blen;
669 bcnt = PIPE_DIRECT_CHUNK - bpos;
670 } else {
671 bcnt = uio->uio_iov->iov_len;
672 }
673 npages = blen >> PAGE_SHIFT;
674
675 /*
676 * Free the old kva if we need more pages than we have
677 * allocated.
678 */
679 if (wpipe->pipe_map.kva != 0 && npages > wpipe->pipe_map.npages)
680 pipe_loan_free(wpipe);
681
682 /* Allocate new kva. */
683 if (wpipe->pipe_map.kva == 0) {
684 error = pipe_loan_alloc(wpipe, npages);
685 if (error)
686 return (error);
687 }
688
689 /* Loan the write buffer memory from writer process */
690 pgs = wpipe->pipe_map.pgs;
691 error = uvm_loan(&uio->uio_vmspace->vm_map, base, blen,
692 pgs, UVM_LOAN_TOPAGE);
693 if (error) {
694 pipe_loan_free(wpipe);
695 return (ENOMEM); /* so that caller fallback to ordinary write */
696 }
697
698 /* Enter the loaned pages to kva */
699 kva = wpipe->pipe_map.kva;
700 for (j = 0; j < npages; j++, kva += PAGE_SIZE) {
701 pmap_kenter_pa(kva, VM_PAGE_TO_PHYS(pgs[j]), VM_PROT_READ);
702 }
703 pmap_update(pmap_kernel());
704
705 /* Now we can put the pipe in direct write mode */
706 wpipe->pipe_map.pos = bpos;
707 wpipe->pipe_map.cnt = bcnt;
708 wpipe->pipe_state |= PIPE_DIRECTW;
709
710 /*
711 * But before we can let someone do a direct read,
712 * we have to wait until the pipe is drained.
713 */
714
715 /* Relase the pipe lock while we wait */
716 mutex_enter(&wpipe->pipe_lock);
717 pipeunlock(wpipe);
718
719 while (error == 0 && wpipe->pipe_buffer.cnt > 0) {
720 if (wpipe->pipe_state & PIPE_WANTR) {
721 wpipe->pipe_state &= ~PIPE_WANTR;
722 cv_broadcast(&wpipe->pipe_cv);
723 }
724
725 wpipe->pipe_state |= PIPE_WANTW;
726 error = cv_wait_sig(&wpipe->pipe_cv, &wpipe->pipe_lock);
727 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
728 error = EPIPE;
729 }
730
731 /* Pipe is drained; next read will off the direct buffer */
732 wpipe->pipe_state |= PIPE_DIRECTR;
733
734 /* Wait until the reader is done */
735 while (error == 0 && (wpipe->pipe_state & PIPE_DIRECTR)) {
736 if (wpipe->pipe_state & PIPE_WANTR) {
737 wpipe->pipe_state &= ~PIPE_WANTR;
738 cv_broadcast(&wpipe->pipe_cv);
739 }
740 pipeselwakeup(wpipe, wpipe, POLL_IN);
741 error = cv_wait_sig(&wpipe->pipe_cv, &wpipe->pipe_lock);
742 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
743 error = EPIPE;
744 }
745
746 /* Take pipe out of direct write mode */
747 wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTR);
748
749 /* Acquire the pipe lock and cleanup */
750 (void)pipelock(wpipe, 0);
751 if (pgs != NULL) {
752 pmap_kremove(wpipe->pipe_map.kva, blen);
753 uvm_unloan(pgs, npages, UVM_LOAN_TOPAGE);
754 }
755 if (error || amountpipekva > maxpipekva)
756 pipe_loan_free(wpipe);
757
758 if (error) {
759 pipeselwakeup(wpipe, wpipe, POLL_ERR);
760
761 /*
762 * If nothing was read from what we offered, return error
763 * straight on. Otherwise update uio resid first. Caller
764 * will deal with the error condition, returning short
765 * write, error, or restarting the write(2) as appropriate.
766 */
767 if (wpipe->pipe_map.cnt == bcnt) {
768 wpipe->pipe_map.cnt = 0;
769 cv_broadcast(&wpipe->pipe_cv);
770 return (error);
771 }
772
773 bcnt -= wpipe->pipe_map.cnt;
774 }
775
776 uio->uio_resid -= bcnt;
777 /* uio_offset not updated, not set/used for write(2) */
778 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt;
779 uio->uio_iov->iov_len -= bcnt;
780 if (uio->uio_iov->iov_len == 0) {
781 uio->uio_iov++;
782 uio->uio_iovcnt--;
783 }
784
785 wpipe->pipe_map.cnt = 0;
786 return (error);
787 }
788 #endif /* !PIPE_NODIRECT */
789
790 static int
791 pipe_write(struct file *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
792 int flags)
793 {
794 struct pipe *wpipe, *rpipe;
795 struct pipebuf *bp;
796 int error;
797
798 /* We want to write to our peer */
799 rpipe = (struct pipe *) fp->f_data;
800
801 retry:
802 error = 0;
803 mutex_enter(&rpipe->pipe_lock);
804 wpipe = rpipe->pipe_peer;
805
806 /*
807 * Detect loss of pipe read side, issue SIGPIPE if lost.
808 */
809 if (wpipe == NULL)
810 error = EPIPE;
811 else if (mutex_tryenter(&wpipe->pipe_lock) == 0) {
812 /* Deal with race for peer */
813 mutex_exit(&rpipe->pipe_lock);
814 goto retry;
815 } else if ((wpipe->pipe_state & PIPE_EOF) != 0) {
816 mutex_exit(&wpipe->pipe_lock);
817 error = EPIPE;
818 }
819
820 mutex_exit(&rpipe->pipe_lock);
821 if (error != 0)
822 return (error);
823
824 ++wpipe->pipe_busy;
825
826 /* Aquire the long-term pipe lock */
827 if ((error = pipelock(wpipe,1)) != 0) {
828 --wpipe->pipe_busy;
829 if (wpipe->pipe_busy == 0
830 && (wpipe->pipe_state & PIPE_WANTCLOSE)) {
831 wpipe->pipe_state &= ~(PIPE_WANTCLOSE | PIPE_WANTR);
832 cv_broadcast(&wpipe->pipe_cv);
833 }
834 mutex_exit(&wpipe->pipe_lock);
835 return (error);
836 }
837
838 bp = &wpipe->pipe_buffer;
839
840 /*
841 * If it is advantageous to resize the pipe buffer, do so.
842 */
843 if ((uio->uio_resid > PIPE_SIZE) &&
844 (nbigpipe < maxbigpipes) &&
845 #ifndef PIPE_NODIRECT
846 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
847 #endif
848 (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) {
849
850 if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
851 nbigpipe++;
852 }
853
854 while (uio->uio_resid) {
855 size_t space;
856
857 #ifndef PIPE_NODIRECT
858 /*
859 * Pipe buffered writes cannot be coincidental with
860 * direct writes. Also, only one direct write can be
861 * in progress at any one time. We wait until the currently
862 * executing direct write is completed before continuing.
863 *
864 * We break out if a signal occurs or the reader goes away.
865 */
866 while (error == 0 && wpipe->pipe_state & PIPE_DIRECTW) {
867 mutex_enter(&wpipe->pipe_lock);
868 if (wpipe->pipe_state & PIPE_WANTR) {
869 wpipe->pipe_state &= ~PIPE_WANTR;
870 cv_broadcast(&wpipe->pipe_cv);
871 }
872 pipeunlock(wpipe);
873 error = cv_wait_sig(&wpipe->pipe_cv,
874 &wpipe->pipe_lock);
875
876 (void)pipelock(wpipe, 0);
877 if (wpipe->pipe_state & PIPE_EOF)
878 error = EPIPE;
879 }
880 if (error)
881 break;
882
883 /*
884 * If the transfer is large, we can gain performance if
885 * we do process-to-process copies directly.
886 * If the write is non-blocking, we don't use the
887 * direct write mechanism.
888 *
889 * The direct write mechanism will detect the reader going
890 * away on us.
891 */
892 if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
893 (fp->f_flag & FNONBLOCK) == 0 &&
894 (wpipe->pipe_map.kva || (amountpipekva < limitpipekva))) {
895 error = pipe_direct_write(fp, wpipe, uio);
896
897 /*
898 * Break out if error occurred, unless it's ENOMEM.
899 * ENOMEM means we failed to allocate some resources
900 * for direct write, so we just fallback to ordinary
901 * write. If the direct write was successful,
902 * process rest of data via ordinary write.
903 */
904 if (error == 0)
905 continue;
906
907 if (error != ENOMEM)
908 break;
909 }
910 #endif /* PIPE_NODIRECT */
911
912 space = bp->size - bp->cnt;
913
914 /* Writes of size <= PIPE_BUF must be atomic. */
915 if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
916 space = 0;
917
918 if (space > 0) {
919 int size; /* Transfer size */
920 int segsize; /* first segment to transfer */
921
922 /*
923 * Transfer size is minimum of uio transfer
924 * and free space in pipe buffer.
925 */
926 if (space > uio->uio_resid)
927 size = uio->uio_resid;
928 else
929 size = space;
930 /*
931 * First segment to transfer is minimum of
932 * transfer size and contiguous space in
933 * pipe buffer. If first segment to transfer
934 * is less than the transfer size, we've got
935 * a wraparound in the buffer.
936 */
937 segsize = bp->size - bp->in;
938 if (segsize > size)
939 segsize = size;
940
941 /* Transfer first segment */
942 error = uiomove((char *)bp->buffer + bp->in, segsize,
943 uio);
944
945 if (error == 0 && segsize < size) {
946 /*
947 * Transfer remaining part now, to
948 * support atomic writes. Wraparound
949 * happened.
950 */
951 #ifdef DEBUG
952 if (bp->in + segsize != bp->size)
953 panic("Expected pipe buffer wraparound disappeared");
954 #endif
955
956 error = uiomove(bp->buffer,
957 size - segsize, uio);
958 }
959 if (error)
960 break;
961
962 bp->in += size;
963 if (bp->in >= bp->size) {
964 #ifdef DEBUG
965 if (bp->in != size - segsize + bp->size)
966 panic("Expected wraparound bad");
967 #endif
968 bp->in = size - segsize;
969 }
970
971 bp->cnt += size;
972 #ifdef DEBUG
973 if (bp->cnt > bp->size)
974 panic("Pipe buffer overflow");
975 #endif
976 } else {
977 /*
978 * If the "read-side" has been blocked, wake it up now.
979 */
980 mutex_enter(&wpipe->pipe_lock);
981 if (wpipe->pipe_state & PIPE_WANTR) {
982 wpipe->pipe_state &= ~PIPE_WANTR;
983 cv_broadcast(&wpipe->pipe_cv);
984 }
985 mutex_exit(&wpipe->pipe_lock);
986
987 /*
988 * don't block on non-blocking I/O
989 */
990 if (fp->f_flag & FNONBLOCK) {
991 error = EAGAIN;
992 break;
993 }
994
995 /*
996 * We have no more space and have something to offer,
997 * wake up select/poll.
998 */
999 if (bp->cnt)
1000 pipeselwakeup(wpipe, wpipe, POLL_OUT);
1001
1002 mutex_enter(&wpipe->pipe_lock);
1003 pipeunlock(wpipe);
1004 wpipe->pipe_state |= PIPE_WANTW;
1005 error = cv_wait_sig(&wpipe->pipe_cv,
1006 &wpipe->pipe_lock);
1007 (void)pipelock(wpipe, 0);
1008 if (error != 0)
1009 break;
1010 /*
1011 * If read side wants to go away, we just issue a signal
1012 * to ourselves.
1013 */
1014 if (wpipe->pipe_state & PIPE_EOF) {
1015 error = EPIPE;
1016 break;
1017 }
1018 }
1019 }
1020
1021 mutex_enter(&wpipe->pipe_lock);
1022 --wpipe->pipe_busy;
1023 if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANTCLOSE)) {
1024 wpipe->pipe_state &= ~(PIPE_WANTCLOSE | PIPE_WANTR);
1025 cv_broadcast(&wpipe->pipe_cv);
1026 } else if (bp->cnt > 0) {
1027 /*
1028 * If we have put any characters in the buffer, we wake up
1029 * the reader.
1030 */
1031 if (wpipe->pipe_state & PIPE_WANTR) {
1032 wpipe->pipe_state &= ~PIPE_WANTR;
1033 cv_broadcast(&wpipe->pipe_cv);
1034 }
1035 }
1036
1037 /*
1038 * Don't return EPIPE if I/O was successful
1039 */
1040 if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0)
1041 error = 0;
1042
1043 if (error == 0)
1044 getmicrotime(&wpipe->pipe_mtime);
1045
1046 /*
1047 * We have something to offer, wake up select/poll.
1048 * wpipe->pipe_map.cnt is always 0 in this point (direct write
1049 * is only done synchronously), so check only wpipe->pipe_buffer.cnt
1050 */
1051 if (bp->cnt)
1052 pipeselwakeup(wpipe, wpipe, POLL_OUT);
1053
1054 /*
1055 * Arrange for next read(2) to do a signal.
1056 */
1057 wpipe->pipe_state |= PIPE_SIGNALR;
1058
1059 pipeunlock(wpipe);
1060 mutex_exit(&wpipe->pipe_lock);
1061 return (error);
1062 }
1063
1064 /*
1065 * we implement a very minimal set of ioctls for compatibility with sockets.
1066 */
1067 int
1068 pipe_ioctl(struct file *fp, u_long cmd, void *data, struct lwp *l)
1069 {
1070 struct pipe *pipe = (struct pipe *)fp->f_data;
1071 struct proc *p = l->l_proc;
1072
1073 switch (cmd) {
1074
1075 case FIONBIO:
1076 return (0);
1077
1078 case FIOASYNC:
1079 mutex_enter(&pipe->pipe_lock);
1080 if (*(int *)data) {
1081 pipe->pipe_state |= PIPE_ASYNC;
1082 } else {
1083 pipe->pipe_state &= ~PIPE_ASYNC;
1084 }
1085 mutex_exit(&pipe->pipe_lock);
1086 return (0);
1087
1088 case FIONREAD:
1089 mutex_enter(&pipe->pipe_lock);
1090 #ifndef PIPE_NODIRECT
1091 if (pipe->pipe_state & PIPE_DIRECTW)
1092 *(int *)data = pipe->pipe_map.cnt;
1093 else
1094 #endif
1095 *(int *)data = pipe->pipe_buffer.cnt;
1096 mutex_exit(&pipe->pipe_lock);
1097 return (0);
1098
1099 case FIONWRITE:
1100 /* Look at other side */
1101 rw_enter(&pipe_peer_lock, RW_READER);
1102 pipe = pipe->pipe_peer;
1103 mutex_enter(&pipe->pipe_lock);
1104 #ifndef PIPE_NODIRECT
1105 if (pipe->pipe_state & PIPE_DIRECTW)
1106 *(int *)data = pipe->pipe_map.cnt;
1107 else
1108 #endif
1109 *(int *)data = pipe->pipe_buffer.cnt;
1110 mutex_exit(&pipe->pipe_lock);
1111 rw_exit(&pipe_peer_lock);
1112 return (0);
1113
1114 case FIONSPACE:
1115 /* Look at other side */
1116 rw_enter(&pipe_peer_lock, RW_READER);
1117 pipe = pipe->pipe_peer;
1118 mutex_enter(&pipe->pipe_lock);
1119 #ifndef PIPE_NODIRECT
1120 /*
1121 * If we're in direct-mode, we don't really have a
1122 * send queue, and any other write will block. Thus
1123 * zero seems like the best answer.
1124 */
1125 if (pipe->pipe_state & PIPE_DIRECTW)
1126 *(int *)data = 0;
1127 else
1128 #endif
1129 *(int *)data = pipe->pipe_buffer.size -
1130 pipe->pipe_buffer.cnt;
1131 mutex_exit(&pipe->pipe_lock);
1132 rw_exit(&pipe_peer_lock);
1133 return (0);
1134
1135 case TIOCSPGRP:
1136 case FIOSETOWN:
1137 return fsetown(p, &pipe->pipe_pgid, cmd, data);
1138
1139 case TIOCGPGRP:
1140 case FIOGETOWN:
1141 return fgetown(p, pipe->pipe_pgid, cmd, data);
1142
1143 }
1144 return (EPASSTHROUGH);
1145 }
1146
1147 int
1148 pipe_poll(struct file *fp, int events, struct lwp *l)
1149 {
1150 struct pipe *rpipe = (struct pipe *)fp->f_data;
1151 struct pipe *wpipe;
1152 int eof = 0;
1153 int revents = 0;
1154
1155 retry:
1156 mutex_enter(&rpipe->pipe_lock);
1157 wpipe = rpipe->pipe_peer;
1158 if (wpipe != NULL && mutex_tryenter(&wpipe->pipe_lock) == 0) {
1159 /* Deal with race for peer */
1160 mutex_exit(&rpipe->pipe_lock);
1161 goto retry;
1162 }
1163
1164 if (events & (POLLIN | POLLRDNORM))
1165 if ((rpipe->pipe_buffer.cnt > 0) ||
1166 #ifndef PIPE_NODIRECT
1167 (rpipe->pipe_state & PIPE_DIRECTR) ||
1168 #endif
1169 (rpipe->pipe_state & PIPE_EOF))
1170 revents |= events & (POLLIN | POLLRDNORM);
1171
1172 eof |= (rpipe->pipe_state & PIPE_EOF);
1173 mutex_exit(&rpipe->pipe_lock);
1174
1175 if (wpipe == NULL)
1176 revents |= events & (POLLOUT | POLLWRNORM);
1177 else {
1178 if (events & (POLLOUT | POLLWRNORM))
1179 if ((wpipe->pipe_state & PIPE_EOF) || (
1180 #ifndef PIPE_NODIRECT
1181 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
1182 #endif
1183 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1184 revents |= events & (POLLOUT | POLLWRNORM);
1185
1186 eof |= (wpipe->pipe_state & PIPE_EOF);
1187 mutex_exit(&wpipe->pipe_lock);
1188 }
1189
1190 if (wpipe == NULL || eof)
1191 revents |= POLLHUP;
1192
1193 if (revents == 0) {
1194 if (events & (POLLIN | POLLRDNORM))
1195 selrecord(l, &rpipe->pipe_sel);
1196
1197 if (events & (POLLOUT | POLLWRNORM))
1198 selrecord(l, &wpipe->pipe_sel);
1199 }
1200
1201 return (revents);
1202 }
1203
1204 static int
1205 pipe_stat(struct file *fp, struct stat *ub, struct lwp *l)
1206 {
1207 struct pipe *pipe = (struct pipe *)fp->f_data;
1208
1209 rw_enter(&pipe_peer_lock, RW_READER);
1210
1211 memset((void *)ub, 0, sizeof(*ub));
1212 ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
1213 ub->st_blksize = pipe->pipe_buffer.size;
1214 if (ub->st_blksize == 0 && pipe->pipe_peer)
1215 ub->st_blksize = pipe->pipe_peer->pipe_buffer.size;
1216 ub->st_size = pipe->pipe_buffer.cnt;
1217 ub->st_blocks = (ub->st_size) ? 1 : 0;
1218 TIMEVAL_TO_TIMESPEC(&pipe->pipe_atime, &ub->st_atimespec);
1219 TIMEVAL_TO_TIMESPEC(&pipe->pipe_mtime, &ub->st_mtimespec);
1220 TIMEVAL_TO_TIMESPEC(&pipe->pipe_ctime, &ub->st_ctimespec);
1221 ub->st_uid = kauth_cred_geteuid(fp->f_cred);
1222 ub->st_gid = kauth_cred_getegid(fp->f_cred);
1223
1224 rw_exit(&pipe_peer_lock);
1225
1226 /*
1227 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1228 * XXX (st_dev, st_ino) should be unique.
1229 */
1230 return (0);
1231 }
1232
1233 /* ARGSUSED */
1234 static int
1235 pipe_close(struct file *fp, struct lwp *l)
1236 {
1237 struct pipe *pipe = (struct pipe *)fp->f_data;
1238
1239 fp->f_data = NULL;
1240 pipeclose(fp, pipe);
1241 return (0);
1242 }
1243
1244 static void
1245 pipe_free_kmem(struct pipe *pipe)
1246 {
1247
1248 if (pipe->pipe_buffer.buffer != NULL) {
1249 if (pipe->pipe_buffer.size > PIPE_SIZE)
1250 --nbigpipe;
1251 amountpipekva -= pipe->pipe_buffer.size;
1252 uvm_km_free(kernel_map,
1253 (vaddr_t)pipe->pipe_buffer.buffer,
1254 pipe->pipe_buffer.size, UVM_KMF_PAGEABLE);
1255 pipe->pipe_buffer.buffer = NULL;
1256 }
1257 #ifndef PIPE_NODIRECT
1258 if (pipe->pipe_map.kva != 0) {
1259 pipe_loan_free(pipe);
1260 pipe->pipe_map.cnt = 0;
1261 pipe->pipe_map.kva = 0;
1262 pipe->pipe_map.pos = 0;
1263 pipe->pipe_map.npages = 0;
1264 }
1265 #endif /* !PIPE_NODIRECT */
1266 }
1267
1268 /*
1269 * shutdown the pipe
1270 */
1271 static void
1272 pipeclose(struct file *fp, struct pipe *pipe)
1273 {
1274 struct pipe *ppipe;
1275
1276 if (pipe == NULL)
1277 return;
1278
1279 retry:
1280 rw_enter(&pipe_peer_lock, RW_WRITER);
1281 mutex_enter(&pipe->pipe_lock);
1282
1283 pipeselwakeup(pipe, pipe, POLL_HUP);
1284
1285 /*
1286 * If the other side is blocked, wake it up saying that
1287 * we want to close it down.
1288 */
1289 pipe->pipe_state |= PIPE_EOF;
1290 if (pipe->pipe_busy) {
1291 rw_exit(&pipe_peer_lock);
1292 while (pipe->pipe_busy) {
1293 cv_broadcast(&pipe->pipe_cv);
1294 pipe->pipe_state |= PIPE_WANTCLOSE;
1295 cv_wait_sig(&pipe->pipe_cv, &pipe->pipe_lock);
1296 }
1297 if (!rw_tryenter(&pipe_peer_lock, RW_READER)) {
1298 mutex_exit(&pipe->pipe_lock);
1299 goto retry;
1300 }
1301 }
1302
1303 /*
1304 * Disconnect from peer
1305 */
1306 if ((ppipe = pipe->pipe_peer) != NULL) {
1307 /* Deal with race for peer */
1308 if (mutex_tryenter(&ppipe->pipe_lock) == 0) {
1309 mutex_exit(&pipe->pipe_lock);
1310 rw_exit(&pipe_peer_lock);
1311 goto retry;
1312 }
1313 pipeselwakeup(ppipe, ppipe, POLL_HUP);
1314
1315 ppipe->pipe_state |= PIPE_EOF;
1316 cv_broadcast(&ppipe->pipe_cv);
1317 ppipe->pipe_peer = NULL;
1318 mutex_exit(&ppipe->pipe_lock);
1319 }
1320
1321 KASSERT((pipe->pipe_state & PIPE_LOCKFL) == 0);
1322
1323 mutex_exit(&pipe->pipe_lock);
1324 rw_exit(&pipe_peer_lock);
1325
1326 /*
1327 * free resources
1328 */
1329 pipe_free_kmem(pipe);
1330 mutex_destroy(&pipe->pipe_lock);
1331 cv_destroy(&pipe->pipe_cv);
1332 cv_destroy(&pipe->pipe_lkcv);
1333 pool_put(&pipe_pool, pipe);
1334 }
1335
1336 static void
1337 filt_pipedetach(struct knote *kn)
1338 {
1339 struct pipe *pipe = (struct pipe *)kn->kn_fp->f_data;
1340
1341 rw_enter(&pipe_peer_lock, RW_READER);
1342
1343 switch(kn->kn_filter) {
1344 case EVFILT_WRITE:
1345 /* need the peer structure, not our own */
1346 pipe = pipe->pipe_peer;
1347
1348 /* if reader end already closed, just return */
1349 if (pipe == NULL) {
1350 rw_exit(&pipe_peer_lock);
1351 return;
1352 }
1353
1354 break;
1355 default:
1356 /* nothing to do */
1357 break;
1358 }
1359
1360 #ifdef DIAGNOSTIC
1361 if (kn->kn_hook != pipe)
1362 panic("filt_pipedetach: inconsistent knote");
1363 #endif
1364
1365 mutex_enter(&pipe->pipe_lock);
1366 SLIST_REMOVE(&pipe->pipe_sel.sel_klist, kn, knote, kn_selnext);
1367 mutex_exit(&pipe->pipe_lock);
1368 rw_exit(&pipe_peer_lock);
1369 }
1370
1371 /*ARGSUSED*/
1372 static int
1373 filt_piperead(struct knote *kn, long hint)
1374 {
1375 struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1376 struct pipe *wpipe;
1377
1378 if ((hint & NOTE_SUBMIT) == 0) {
1379 rw_enter(&pipe_peer_lock, RW_READER);
1380 mutex_enter(&rpipe->pipe_lock);
1381 }
1382 wpipe = rpipe->pipe_peer;
1383 kn->kn_data = rpipe->pipe_buffer.cnt;
1384
1385 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1386 kn->kn_data = rpipe->pipe_map.cnt;
1387
1388 if ((rpipe->pipe_state & PIPE_EOF) ||
1389 (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1390 kn->kn_flags |= EV_EOF;
1391 if ((hint & NOTE_SUBMIT) == 0) {
1392 mutex_exit(&rpipe->pipe_lock);
1393 rw_exit(&pipe_peer_lock);
1394 }
1395 return (1);
1396 }
1397
1398 if ((hint & NOTE_SUBMIT) == 0) {
1399 mutex_exit(&rpipe->pipe_lock);
1400 rw_exit(&pipe_peer_lock);
1401 }
1402 return (kn->kn_data > 0);
1403 }
1404
1405 /*ARGSUSED*/
1406 static int
1407 filt_pipewrite(struct knote *kn, long hint)
1408 {
1409 struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1410 struct pipe *wpipe;
1411
1412 if ((hint & NOTE_SUBMIT) == 0) {
1413 rw_enter(&pipe_peer_lock, RW_READER);
1414 mutex_enter(&rpipe->pipe_lock);
1415 }
1416 wpipe = rpipe->pipe_peer;
1417
1418 if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1419 kn->kn_data = 0;
1420 kn->kn_flags |= EV_EOF;
1421 if ((hint & NOTE_SUBMIT) == 0) {
1422 mutex_exit(&rpipe->pipe_lock);
1423 rw_exit(&pipe_peer_lock);
1424 }
1425 return (1);
1426 }
1427 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1428 if (wpipe->pipe_state & PIPE_DIRECTW)
1429 kn->kn_data = 0;
1430
1431 if ((hint & NOTE_SUBMIT) == 0) {
1432 mutex_exit(&rpipe->pipe_lock);
1433 rw_exit(&pipe_peer_lock);
1434 }
1435 return (kn->kn_data >= PIPE_BUF);
1436 }
1437
1438 static const struct filterops pipe_rfiltops =
1439 { 1, NULL, filt_pipedetach, filt_piperead };
1440 static const struct filterops pipe_wfiltops =
1441 { 1, NULL, filt_pipedetach, filt_pipewrite };
1442
1443 /*ARGSUSED*/
1444 static int
1445 pipe_kqfilter(struct file *fp, struct knote *kn)
1446 {
1447 struct pipe *pipe;
1448
1449 rw_enter(&pipe_peer_lock, RW_READER);
1450 pipe = (struct pipe *)kn->kn_fp->f_data;
1451
1452 switch (kn->kn_filter) {
1453 case EVFILT_READ:
1454 kn->kn_fop = &pipe_rfiltops;
1455 break;
1456 case EVFILT_WRITE:
1457 kn->kn_fop = &pipe_wfiltops;
1458 pipe = pipe->pipe_peer;
1459 if (pipe == NULL) {
1460 /* other end of pipe has been closed */
1461 rw_exit(&pipe_peer_lock);
1462 return (EBADF);
1463 }
1464 break;
1465 default:
1466 rw_exit(&pipe_peer_lock);
1467 return (1);
1468 }
1469
1470 kn->kn_hook = pipe;
1471 mutex_enter(&pipe->pipe_lock);
1472 SLIST_INSERT_HEAD(&pipe->pipe_sel.sel_klist, kn, kn_selnext);
1473 mutex_exit(&pipe->pipe_lock);
1474 rw_exit(&pipe_peer_lock);
1475
1476 return (0);
1477 }
1478
1479 /*
1480 * Handle pipe sysctls.
1481 */
1482 SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup")
1483 {
1484
1485 sysctl_createv(clog, 0, NULL, NULL,
1486 CTLFLAG_PERMANENT,
1487 CTLTYPE_NODE, "kern", NULL,
1488 NULL, 0, NULL, 0,
1489 CTL_KERN, CTL_EOL);
1490 sysctl_createv(clog, 0, NULL, NULL,
1491 CTLFLAG_PERMANENT,
1492 CTLTYPE_NODE, "pipe",
1493 SYSCTL_DESCR("Pipe settings"),
1494 NULL, 0, NULL, 0,
1495 CTL_KERN, KERN_PIPE, CTL_EOL);
1496
1497 sysctl_createv(clog, 0, NULL, NULL,
1498 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1499 CTLTYPE_INT, "maxkvasz",
1500 SYSCTL_DESCR("Maximum amount of kernel memory to be "
1501 "used for pipes"),
1502 NULL, 0, &maxpipekva, 0,
1503 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXKVASZ, CTL_EOL);
1504 sysctl_createv(clog, 0, NULL, NULL,
1505 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1506 CTLTYPE_INT, "maxloankvasz",
1507 SYSCTL_DESCR("Limit for direct transfers via page loan"),
1508 NULL, 0, &limitpipekva, 0,
1509 CTL_KERN, KERN_PIPE, KERN_PIPE_LIMITKVA, CTL_EOL);
1510 sysctl_createv(clog, 0, NULL, NULL,
1511 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1512 CTLTYPE_INT, "maxbigpipes",
1513 SYSCTL_DESCR("Maximum number of \"big\" pipes"),
1514 NULL, 0, &maxbigpipes, 0,
1515 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL);
1516 sysctl_createv(clog, 0, NULL, NULL,
1517 CTLFLAG_PERMANENT,
1518 CTLTYPE_INT, "nbigpipes",
1519 SYSCTL_DESCR("Number of \"big\" pipes"),
1520 NULL, 0, &nbigpipe, 0,
1521 CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL);
1522 sysctl_createv(clog, 0, NULL, NULL,
1523 CTLFLAG_PERMANENT,
1524 CTLTYPE_INT, "kvasize",
1525 SYSCTL_DESCR("Amount of kernel memory consumed by pipe "
1526 "buffers"),
1527 NULL, 0, &amountpipekva, 0,
1528 CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL);
1529 }
1530