Home | History | Annotate | Line # | Download | only in kern
sys_pipe.c revision 1.85
      1 /*	$NetBSD: sys_pipe.c,v 1.85 2007/07/09 21:10:56 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2003, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Paul Kranenburg, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Copyright (c) 1996 John S. Dyson
     41  * All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice immediately at the beginning of the file, without modification,
     48  *    this list of conditions, and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. Absolutely no warranty of function or purpose is made by the author
     53  *    John S. Dyson.
     54  * 4. Modifications may be freely made to this file if the above conditions
     55  *    are met.
     56  *
     57  * $FreeBSD: src/sys/kern/sys_pipe.c,v 1.95 2002/03/09 22:06:31 alfred Exp $
     58  */
     59 
     60 /*
     61  * This file contains a high-performance replacement for the socket-based
     62  * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
     63  * all features of sockets, but does do everything that pipes normally
     64  * do.
     65  *
     66  * Adaption for NetBSD UVM, including uvm_loan() based direct write, was
     67  * written by Jaromir Dolecek.
     68  */
     69 
     70 /*
     71  * This code has two modes of operation, a small write mode and a large
     72  * write mode.  The small write mode acts like conventional pipes with
     73  * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
     74  * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
     75  * and PIPE_SIZE in size it is mapped read-only into the kernel address space
     76  * using the UVM page loan facility from where the receiving process can copy
     77  * the data directly from the pages in the sending process.
     78  *
     79  * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
     80  * happen for small transfers so that the system will not spend all of
     81  * its time context switching.  PIPE_SIZE is constrained by the
     82  * amount of kernel virtual memory.
     83  */
     84 
     85 #include <sys/cdefs.h>
     86 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.85 2007/07/09 21:10:56 ad Exp $");
     87 
     88 #include <sys/param.h>
     89 #include <sys/systm.h>
     90 #include <sys/proc.h>
     91 #include <sys/fcntl.h>
     92 #include <sys/file.h>
     93 #include <sys/filedesc.h>
     94 #include <sys/filio.h>
     95 #include <sys/kernel.h>
     96 #include <sys/ttycom.h>
     97 #include <sys/stat.h>
     98 #include <sys/malloc.h>
     99 #include <sys/poll.h>
    100 #include <sys/signalvar.h>
    101 #include <sys/vnode.h>
    102 #include <sys/uio.h>
    103 #include <sys/lock.h>
    104 #include <sys/select.h>
    105 #include <sys/mount.h>
    106 #include <sys/syscallargs.h>
    107 #include <uvm/uvm.h>
    108 #include <sys/sysctl.h>
    109 #include <sys/kauth.h>
    110 
    111 #include <sys/pipe.h>
    112 
    113 /*
    114  * Use this define if you want to disable *fancy* VM things.  Expect an
    115  * approx 30% decrease in transfer rate.
    116  */
    117 /* #define PIPE_NODIRECT */
    118 
    119 /*
    120  * interfaces to the outside world
    121  */
    122 static int pipe_read(struct file *fp, off_t *offset, struct uio *uio,
    123 		kauth_cred_t cred, int flags);
    124 static int pipe_write(struct file *fp, off_t *offset, struct uio *uio,
    125 		kauth_cred_t cred, int flags);
    126 static int pipe_close(struct file *fp, struct lwp *l);
    127 static int pipe_poll(struct file *fp, int events, struct lwp *l);
    128 static int pipe_kqfilter(struct file *fp, struct knote *kn);
    129 static int pipe_stat(struct file *fp, struct stat *sb, struct lwp *l);
    130 static int pipe_ioctl(struct file *fp, u_long cmd, void *data,
    131 		struct lwp *l);
    132 
    133 static const struct fileops pipeops = {
    134 	pipe_read, pipe_write, pipe_ioctl, fnullop_fcntl, pipe_poll,
    135 	pipe_stat, pipe_close, pipe_kqfilter
    136 };
    137 
    138 /*
    139  * Default pipe buffer size(s), this can be kind-of large now because pipe
    140  * space is pageable.  The pipe code will try to maintain locality of
    141  * reference for performance reasons, so small amounts of outstanding I/O
    142  * will not wipe the cache.
    143  */
    144 #define MINPIPESIZE (PIPE_SIZE/3)
    145 #define MAXPIPESIZE (2*PIPE_SIZE/3)
    146 
    147 /*
    148  * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
    149  * is there so that on large systems, we don't exhaust it.
    150  */
    151 #define MAXPIPEKVA (8*1024*1024)
    152 static int maxpipekva = MAXPIPEKVA;
    153 
    154 /*
    155  * Limit for direct transfers, we cannot, of course limit
    156  * the amount of kva for pipes in general though.
    157  */
    158 #define LIMITPIPEKVA (16*1024*1024)
    159 static int limitpipekva = LIMITPIPEKVA;
    160 
    161 /*
    162  * Limit the number of "big" pipes
    163  */
    164 #define LIMITBIGPIPES  32
    165 static int maxbigpipes = LIMITBIGPIPES;
    166 static int nbigpipe = 0;
    167 
    168 /*
    169  * Amount of KVA consumed by pipe buffers.
    170  */
    171 static int amountpipekva = 0;
    172 
    173 MALLOC_DEFINE(M_PIPE, "pipe", "Pipe structures");
    174 
    175 static void pipeclose(struct file *fp, struct pipe *pipe);
    176 static void pipe_free_kmem(struct pipe *pipe);
    177 static int pipe_create(struct pipe **pipep, int allockva);
    178 static int pipelock(struct pipe *pipe, int catch);
    179 static inline void pipeunlock(struct pipe *pipe);
    180 static void pipeselwakeup(struct pipe *pipe, struct pipe *sigp, int code);
    181 #ifndef PIPE_NODIRECT
    182 static int pipe_direct_write(struct file *fp, struct pipe *wpipe,
    183     struct uio *uio);
    184 #endif
    185 static int pipespace(struct pipe *pipe, int size);
    186 
    187 #ifndef PIPE_NODIRECT
    188 static int pipe_loan_alloc(struct pipe *, int);
    189 static void pipe_loan_free(struct pipe *);
    190 #endif /* PIPE_NODIRECT */
    191 
    192 static POOL_INIT(pipe_pool, sizeof(struct pipe), 0, 0, 0, "pipepl",
    193     &pool_allocator_nointr, IPL_NONE);
    194 
    195 static krwlock_t pipe_peer_lock;
    196 
    197 void
    198 pipe_init(void)
    199 {
    200 
    201 	rw_init(&pipe_peer_lock);
    202 }
    203 
    204 /*
    205  * The pipe system call for the DTYPE_PIPE type of pipes
    206  */
    207 
    208 /* ARGSUSED */
    209 int
    210 sys_pipe(struct lwp *l, void *v, register_t *retval)
    211 {
    212 	struct file *rf, *wf;
    213 	struct pipe *rpipe, *wpipe;
    214 	int fd, error;
    215 
    216 	rpipe = wpipe = NULL;
    217 	if (pipe_create(&rpipe, 1) || pipe_create(&wpipe, 0)) {
    218 		pipeclose(NULL, rpipe);
    219 		pipeclose(NULL, wpipe);
    220 		return (ENFILE);
    221 	}
    222 
    223 	/*
    224 	 * Note: the file structure returned from falloc() is marked
    225 	 * as 'larval' initially. Unless we mark it as 'mature' by
    226 	 * FILE_SET_MATURE(), any attempt to do anything with it would
    227 	 * return EBADF, including e.g. dup(2) or close(2). This avoids
    228 	 * file descriptor races if we block in the second falloc().
    229 	 */
    230 
    231 	error = falloc(l, &rf, &fd);
    232 	if (error)
    233 		goto free2;
    234 	retval[0] = fd;
    235 	rf->f_flag = FREAD;
    236 	rf->f_type = DTYPE_PIPE;
    237 	rf->f_data = (void *)rpipe;
    238 	rf->f_ops = &pipeops;
    239 
    240 	error = falloc(l, &wf, &fd);
    241 	if (error)
    242 		goto free3;
    243 	retval[1] = fd;
    244 	wf->f_flag = FWRITE;
    245 	wf->f_type = DTYPE_PIPE;
    246 	wf->f_data = (void *)wpipe;
    247 	wf->f_ops = &pipeops;
    248 
    249 	rpipe->pipe_peer = wpipe;
    250 	wpipe->pipe_peer = rpipe;
    251 
    252 	FILE_SET_MATURE(rf);
    253 	FILE_SET_MATURE(wf);
    254 	FILE_UNUSE(rf, l);
    255 	FILE_UNUSE(wf, l);
    256 	return (0);
    257 free3:
    258 	FILE_UNUSE(rf, l);
    259 	ffree(rf);
    260 	fdremove(l->l_proc->p_fd, retval[0]);
    261 free2:
    262 	pipeclose(NULL, wpipe);
    263 	pipeclose(NULL, rpipe);
    264 
    265 	return (error);
    266 }
    267 
    268 /*
    269  * Allocate kva for pipe circular buffer, the space is pageable
    270  * This routine will 'realloc' the size of a pipe safely, if it fails
    271  * it will retain the old buffer.
    272  * If it fails it will return ENOMEM.
    273  */
    274 static int
    275 pipespace(struct pipe *pipe, int size)
    276 {
    277 	void *buffer;
    278 	/*
    279 	 * Allocate pageable virtual address space. Physical memory is
    280 	 * allocated on demand.
    281 	 */
    282 	buffer = (void *) uvm_km_alloc(kernel_map, round_page(size), 0,
    283 	    UVM_KMF_PAGEABLE);
    284 	if (buffer == NULL)
    285 		return (ENOMEM);
    286 
    287 	/* free old resources if we're resizing */
    288 	pipe_free_kmem(pipe);
    289 	pipe->pipe_buffer.buffer = buffer;
    290 	pipe->pipe_buffer.size = size;
    291 	pipe->pipe_buffer.in = 0;
    292 	pipe->pipe_buffer.out = 0;
    293 	pipe->pipe_buffer.cnt = 0;
    294 	amountpipekva += pipe->pipe_buffer.size;
    295 	return (0);
    296 }
    297 
    298 /*
    299  * Initialize and allocate VM and memory for pipe.
    300  */
    301 static int
    302 pipe_create(struct pipe **pipep, int allockva)
    303 {
    304 	struct pipe *pipe;
    305 	int error;
    306 
    307 	pipe = *pipep = pool_get(&pipe_pool, PR_WAITOK);
    308 
    309 	/* Initialize */
    310 	memset(pipe, 0, sizeof(struct pipe));
    311 	pipe->pipe_state = PIPE_SIGNALR;
    312 
    313 	getmicrotime(&pipe->pipe_ctime);
    314 	pipe->pipe_atime = pipe->pipe_ctime;
    315 	pipe->pipe_mtime = pipe->pipe_ctime;
    316 	mutex_init(&pipe->pipe_lock, MUTEX_DEFAULT, IPL_NONE);
    317 	cv_init(&pipe->pipe_cv, "pipe");
    318 	cv_init(&pipe->pipe_lkcv, "pipelk");
    319 
    320 	if (allockva && (error = pipespace(pipe, PIPE_SIZE)))
    321 		return (error);
    322 
    323 	return (0);
    324 }
    325 
    326 
    327 /*
    328  * Lock a pipe for I/O, blocking other access
    329  * Called with pipe spin lock held.
    330  * Return with pipe spin lock released on success.
    331  */
    332 static int
    333 pipelock(struct pipe *pipe, int catch)
    334 {
    335 	int error;
    336 
    337 	KASSERT(mutex_owned(&pipe->pipe_lock));
    338 
    339 	while (pipe->pipe_state & PIPE_LOCKFL) {
    340 		pipe->pipe_state |= PIPE_LWANT;
    341 		if (catch) {
    342 			error = cv_wait_sig(&pipe->pipe_lkcv,
    343 			    &pipe->pipe_lock);
    344 			if (error != 0)
    345 				return error;
    346 		} else
    347 			cv_wait(&pipe->pipe_lkcv, &pipe->pipe_lock);
    348 	}
    349 
    350 	pipe->pipe_state |= PIPE_LOCKFL;
    351 	mutex_exit(&pipe->pipe_lock);
    352 
    353 	return 0;
    354 }
    355 
    356 /*
    357  * unlock a pipe I/O lock
    358  */
    359 static inline void
    360 pipeunlock(struct pipe *pipe)
    361 {
    362 
    363 	KASSERT(pipe->pipe_state & PIPE_LOCKFL);
    364 
    365 	pipe->pipe_state &= ~PIPE_LOCKFL;
    366 	if (pipe->pipe_state & PIPE_LWANT) {
    367 		pipe->pipe_state &= ~PIPE_LWANT;
    368 		cv_broadcast(&pipe->pipe_lkcv);
    369 	}
    370 }
    371 
    372 /*
    373  * Select/poll wakup. This also sends SIGIO to peer connected to
    374  * 'sigpipe' side of pipe.
    375  */
    376 static void
    377 pipeselwakeup(struct pipe *selp, struct pipe *sigp, int code)
    378 {
    379 	int band;
    380 
    381 	selnotify(&selp->pipe_sel, NOTE_SUBMIT);
    382 
    383 	if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0)
    384 		return;
    385 
    386 	switch (code) {
    387 	case POLL_IN:
    388 		band = POLLIN|POLLRDNORM;
    389 		break;
    390 	case POLL_OUT:
    391 		band = POLLOUT|POLLWRNORM;
    392 		break;
    393 	case POLL_HUP:
    394 		band = POLLHUP;
    395 		break;
    396 #if POLL_HUP != POLL_ERR
    397 	case POLL_ERR:
    398 		band = POLLERR;
    399 		break;
    400 #endif
    401 	default:
    402 		band = 0;
    403 #ifdef DIAGNOSTIC
    404 		printf("bad siginfo code %d in pipe notification.\n", code);
    405 #endif
    406 		break;
    407 	}
    408 
    409 	fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp);
    410 }
    411 
    412 /* ARGSUSED */
    413 static int
    414 pipe_read(struct file *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
    415     int flags)
    416 {
    417 	struct pipe *rpipe = (struct pipe *) fp->f_data;
    418 	struct pipebuf *bp = &rpipe->pipe_buffer;
    419 	int error;
    420 	size_t nread = 0;
    421 	size_t size;
    422 	size_t ocnt;
    423 
    424 	mutex_enter(&rpipe->pipe_lock);
    425 	++rpipe->pipe_busy;
    426 	ocnt = bp->cnt;
    427 
    428 again:
    429 	error = pipelock(rpipe, 1);
    430 	if (error)
    431 		goto unlocked_error;
    432 
    433 	while (uio->uio_resid) {
    434 		/*
    435 		 * normal pipe buffer receive
    436 		 */
    437 		if (bp->cnt > 0) {
    438 			size = bp->size - bp->out;
    439 			if (size > bp->cnt)
    440 				size = bp->cnt;
    441 			if (size > uio->uio_resid)
    442 				size = uio->uio_resid;
    443 
    444 			error = uiomove((char *)bp->buffer + bp->out, size, uio);
    445 			if (error)
    446 				break;
    447 
    448 			bp->out += size;
    449 			if (bp->out >= bp->size)
    450 				bp->out = 0;
    451 
    452 			bp->cnt -= size;
    453 
    454 			/*
    455 			 * If there is no more to read in the pipe, reset
    456 			 * its pointers to the beginning.  This improves
    457 			 * cache hit stats.
    458 			 */
    459 			if (bp->cnt == 0) {
    460 				bp->in = 0;
    461 				bp->out = 0;
    462 			}
    463 			nread += size;
    464 			continue;
    465 		}
    466 
    467 		/* Lock to see up-to-date value of pipe_status. */
    468 		mutex_enter(&rpipe->pipe_lock);
    469 
    470 #ifndef PIPE_NODIRECT
    471 		if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) {
    472 			/*
    473 			 * Direct copy, bypassing a kernel buffer.
    474 			 */
    475 			void *	va;
    476 
    477 			KASSERT(rpipe->pipe_state & PIPE_DIRECTW);
    478 			mutex_exit(&rpipe->pipe_lock);
    479 
    480 			size = rpipe->pipe_map.cnt;
    481 			if (size > uio->uio_resid)
    482 				size = uio->uio_resid;
    483 
    484 			va = (char *)rpipe->pipe_map.kva + rpipe->pipe_map.pos;
    485 			error = uiomove(va, size, uio);
    486 			if (error)
    487 				break;
    488 			nread += size;
    489 			rpipe->pipe_map.pos += size;
    490 			rpipe->pipe_map.cnt -= size;
    491 			if (rpipe->pipe_map.cnt == 0) {
    492 				mutex_enter(&rpipe->pipe_lock);
    493 				rpipe->pipe_state &= ~PIPE_DIRECTR;
    494 				cv_broadcast(&rpipe->pipe_cv);
    495 				mutex_exit(&rpipe->pipe_lock);
    496 			}
    497 			continue;
    498 		}
    499 #endif
    500 		/*
    501 		 * Break if some data was read.
    502 		 */
    503 		if (nread > 0) {
    504 			mutex_exit(&rpipe->pipe_lock);
    505 			break;
    506 		}
    507 
    508 		/*
    509 		 * detect EOF condition
    510 		 * read returns 0 on EOF, no need to set error
    511 		 */
    512 		if (rpipe->pipe_state & PIPE_EOF) {
    513 			mutex_exit(&rpipe->pipe_lock);
    514 			break;
    515 		}
    516 
    517 		/*
    518 		 * don't block on non-blocking I/O
    519 		 */
    520 		if (fp->f_flag & FNONBLOCK) {
    521 			mutex_exit(&rpipe->pipe_lock);
    522 			error = EAGAIN;
    523 			break;
    524 		}
    525 
    526 		/*
    527 		 * Unlock the pipe buffer for our remaining processing.
    528 		 * We will either break out with an error or we will
    529 		 * sleep and relock to loop.
    530 		 */
    531 		pipeunlock(rpipe);
    532 
    533 		/*
    534 		 * Re-check to see if more direct writes are pending.
    535 		 */
    536 		if ((rpipe->pipe_state & PIPE_DIRECTR) != 0)
    537 			goto again;
    538 
    539 		/*
    540 		 * We want to read more, wake up select/poll.
    541 		 */
    542 		pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_IN);
    543 
    544 		/*
    545 		 * If the "write-side" is blocked, wake it up now.
    546 		 */
    547 		if (rpipe->pipe_state & PIPE_WANTW) {
    548 			rpipe->pipe_state &= ~PIPE_WANTW;
    549 			cv_broadcast(&rpipe->pipe_cv);
    550 		}
    551 
    552 		/* Now wait until the pipe is filled */
    553 		rpipe->pipe_state |= PIPE_WANTR;
    554 		error = cv_wait_sig(&rpipe->pipe_cv, &rpipe->pipe_lock);
    555 		if (error != 0)
    556 			goto unlocked_error;
    557 		goto again;
    558 	}
    559 
    560 	if (error == 0)
    561 		getmicrotime(&rpipe->pipe_atime);
    562 
    563 	mutex_enter(&rpipe->pipe_lock);
    564 	pipeunlock(rpipe);
    565 
    566 unlocked_error:
    567 	--rpipe->pipe_busy;
    568 
    569 	/*
    570 	 * PIPE_WANTCLOSE processing only makes sense if pipe_busy is 0.
    571 	 */
    572 	if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANTCLOSE)) {
    573 		rpipe->pipe_state &= ~(PIPE_WANTCLOSE|PIPE_WANTW);
    574 		cv_broadcast(&rpipe->pipe_cv);
    575 	} else if (bp->cnt < MINPIPESIZE) {
    576 		/*
    577 		 * Handle write blocking hysteresis.
    578 		 */
    579 		if (rpipe->pipe_state & PIPE_WANTW) {
    580 			rpipe->pipe_state &= ~PIPE_WANTW;
    581 			cv_broadcast(&rpipe->pipe_cv);
    582 		}
    583 	}
    584 
    585 	/*
    586 	 * If anything was read off the buffer, signal to the writer it's
    587 	 * possible to write more data. Also send signal if we are here for the
    588 	 * first time after last write.
    589 	 */
    590 	if ((bp->size - bp->cnt) >= PIPE_BUF
    591 	    && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
    592 		pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
    593 		rpipe->pipe_state &= ~PIPE_SIGNALR;
    594 	}
    595 
    596 	mutex_exit(&rpipe->pipe_lock);
    597 	return (error);
    598 }
    599 
    600 #ifndef PIPE_NODIRECT
    601 /*
    602  * Allocate structure for loan transfer.
    603  */
    604 static int
    605 pipe_loan_alloc(struct pipe *wpipe, int npages)
    606 {
    607 	vsize_t len;
    608 
    609 	len = (vsize_t)npages << PAGE_SHIFT;
    610 	wpipe->pipe_map.kva = uvm_km_alloc(kernel_map, len, 0,
    611 	    UVM_KMF_VAONLY | UVM_KMF_WAITVA);
    612 	if (wpipe->pipe_map.kva == 0)
    613 		return (ENOMEM);
    614 
    615 	amountpipekva += len;
    616 	wpipe->pipe_map.npages = npages;
    617 	wpipe->pipe_map.pgs = malloc(npages * sizeof(struct vm_page *), M_PIPE,
    618 	    M_WAITOK);
    619 	return (0);
    620 }
    621 
    622 /*
    623  * Free resources allocated for loan transfer.
    624  */
    625 static void
    626 pipe_loan_free(struct pipe *wpipe)
    627 {
    628 	vsize_t len;
    629 
    630 	len = (vsize_t)wpipe->pipe_map.npages << PAGE_SHIFT;
    631 	uvm_km_free(kernel_map, wpipe->pipe_map.kva, len, UVM_KMF_VAONLY);
    632 	wpipe->pipe_map.kva = 0;
    633 	amountpipekva -= len;
    634 	free(wpipe->pipe_map.pgs, M_PIPE);
    635 	wpipe->pipe_map.pgs = NULL;
    636 }
    637 
    638 /*
    639  * NetBSD direct write, using uvm_loan() mechanism.
    640  * This implements the pipe buffer write mechanism.  Note that only
    641  * a direct write OR a normal pipe write can be pending at any given time.
    642  * If there are any characters in the pipe buffer, the direct write will
    643  * be deferred until the receiving process grabs all of the bytes from
    644  * the pipe buffer.  Then the direct mapping write is set-up.
    645  *
    646  * Called with the long-term pipe lock held.
    647  */
    648 static int
    649 pipe_direct_write(struct file *fp, struct pipe *wpipe, struct uio *uio)
    650 {
    651 	int error, npages, j;
    652 	struct vm_page **pgs;
    653 	vaddr_t bbase, kva, base, bend;
    654 	vsize_t blen, bcnt;
    655 	voff_t bpos;
    656 
    657 	KASSERT(wpipe->pipe_map.cnt == 0);
    658 
    659 	/*
    660 	 * Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers
    661 	 * not aligned to PAGE_SIZE.
    662 	 */
    663 	bbase = (vaddr_t)uio->uio_iov->iov_base;
    664 	base = trunc_page(bbase);
    665 	bend = round_page(bbase + uio->uio_iov->iov_len);
    666 	blen = bend - base;
    667 	bpos = bbase - base;
    668 
    669 	if (blen > PIPE_DIRECT_CHUNK) {
    670 		blen = PIPE_DIRECT_CHUNK;
    671 		bend = base + blen;
    672 		bcnt = PIPE_DIRECT_CHUNK - bpos;
    673 	} else {
    674 		bcnt = uio->uio_iov->iov_len;
    675 	}
    676 	npages = blen >> PAGE_SHIFT;
    677 
    678 	/*
    679 	 * Free the old kva if we need more pages than we have
    680 	 * allocated.
    681 	 */
    682 	if (wpipe->pipe_map.kva != 0 && npages > wpipe->pipe_map.npages)
    683 		pipe_loan_free(wpipe);
    684 
    685 	/* Allocate new kva. */
    686 	if (wpipe->pipe_map.kva == 0) {
    687 		error = pipe_loan_alloc(wpipe, npages);
    688 		if (error)
    689 			return (error);
    690 	}
    691 
    692 	/* Loan the write buffer memory from writer process */
    693 	pgs = wpipe->pipe_map.pgs;
    694 	error = uvm_loan(&uio->uio_vmspace->vm_map, base, blen,
    695 			 pgs, UVM_LOAN_TOPAGE);
    696 	if (error) {
    697 		pipe_loan_free(wpipe);
    698 		return (ENOMEM); /* so that caller fallback to ordinary write */
    699 	}
    700 
    701 	/* Enter the loaned pages to kva */
    702 	kva = wpipe->pipe_map.kva;
    703 	for (j = 0; j < npages; j++, kva += PAGE_SIZE) {
    704 		pmap_kenter_pa(kva, VM_PAGE_TO_PHYS(pgs[j]), VM_PROT_READ);
    705 	}
    706 	pmap_update(pmap_kernel());
    707 
    708 	/* Now we can put the pipe in direct write mode */
    709 	wpipe->pipe_map.pos = bpos;
    710 	wpipe->pipe_map.cnt = bcnt;
    711 
    712 	/*
    713 	 * But before we can let someone do a direct read, we
    714 	 * have to wait until the pipe is drained.  Release the
    715 	 * pipe lock while we wait.
    716 	 */
    717 	mutex_enter(&wpipe->pipe_lock);
    718 	wpipe->pipe_state |= PIPE_DIRECTW;
    719 	pipeunlock(wpipe);
    720 
    721 	while (error == 0 && wpipe->pipe_buffer.cnt > 0) {
    722 		if (wpipe->pipe_state & PIPE_WANTR) {
    723 			wpipe->pipe_state &= ~PIPE_WANTR;
    724 			cv_broadcast(&wpipe->pipe_cv);
    725 		}
    726 
    727 		wpipe->pipe_state |= PIPE_WANTW;
    728 		error = cv_wait_sig(&wpipe->pipe_cv, &wpipe->pipe_lock);
    729 		if (error == 0 && wpipe->pipe_state & PIPE_EOF)
    730 			error = EPIPE;
    731 	}
    732 
    733 	/* Pipe is drained; next read will off the direct buffer */
    734 	wpipe->pipe_state |= PIPE_DIRECTR;
    735 
    736 	/* Wait until the reader is done */
    737 	while (error == 0 && (wpipe->pipe_state & PIPE_DIRECTR)) {
    738 		if (wpipe->pipe_state & PIPE_WANTR) {
    739 			wpipe->pipe_state &= ~PIPE_WANTR;
    740 			cv_broadcast(&wpipe->pipe_cv);
    741 		}
    742 		pipeselwakeup(wpipe, wpipe, POLL_IN);
    743 		error = cv_wait_sig(&wpipe->pipe_cv, &wpipe->pipe_lock);
    744 		if (error == 0 && wpipe->pipe_state & PIPE_EOF)
    745 			error = EPIPE;
    746 	}
    747 
    748 	/* Take pipe out of direct write mode */
    749 	wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTR);
    750 
    751 	/* Acquire the pipe lock and cleanup */
    752 	(void)pipelock(wpipe, 0);
    753 
    754 	if (pgs != NULL) {
    755 		pmap_kremove(wpipe->pipe_map.kva, blen);
    756 		uvm_unloan(pgs, npages, UVM_LOAN_TOPAGE);
    757 	}
    758 	if (error || amountpipekva > maxpipekva)
    759 		pipe_loan_free(wpipe);
    760 
    761 	if (error) {
    762 		pipeselwakeup(wpipe, wpipe, POLL_ERR);
    763 
    764 		/*
    765 		 * If nothing was read from what we offered, return error
    766 		 * straight on. Otherwise update uio resid first. Caller
    767 		 * will deal with the error condition, returning short
    768 		 * write, error, or restarting the write(2) as appropriate.
    769 		 */
    770 		if (wpipe->pipe_map.cnt == bcnt) {
    771 			wpipe->pipe_map.cnt = 0;
    772 			cv_broadcast(&wpipe->pipe_cv);
    773 			return (error);
    774 		}
    775 
    776 		bcnt -= wpipe->pipe_map.cnt;
    777 	}
    778 
    779 	uio->uio_resid -= bcnt;
    780 	/* uio_offset not updated, not set/used for write(2) */
    781 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt;
    782 	uio->uio_iov->iov_len -= bcnt;
    783 	if (uio->uio_iov->iov_len == 0) {
    784 		uio->uio_iov++;
    785 		uio->uio_iovcnt--;
    786 	}
    787 
    788 	wpipe->pipe_map.cnt = 0;
    789 	return (error);
    790 }
    791 #endif /* !PIPE_NODIRECT */
    792 
    793 static int
    794 pipe_write(struct file *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
    795     int flags)
    796 {
    797 	struct pipe *wpipe, *rpipe;
    798 	struct pipebuf *bp;
    799 	int error;
    800 
    801 	/* We want to write to our peer */
    802 	rpipe = (struct pipe *) fp->f_data;
    803 
    804 retry:
    805 	error = 0;
    806 	mutex_enter(&rpipe->pipe_lock);
    807 	wpipe = rpipe->pipe_peer;
    808 
    809 	/*
    810 	 * Detect loss of pipe read side, issue SIGPIPE if lost.
    811 	 */
    812 	if (wpipe == NULL)
    813 		error = EPIPE;
    814 	else if (mutex_tryenter(&wpipe->pipe_lock) == 0) {
    815 		/* Deal with race for peer */
    816 		mutex_exit(&rpipe->pipe_lock);
    817 		/* XXX Might be about to deadlock w/kernel_lock. */
    818 		yield();
    819 		goto retry;
    820 	} else if ((wpipe->pipe_state & PIPE_EOF) != 0) {
    821 		mutex_exit(&wpipe->pipe_lock);
    822 		error = EPIPE;
    823 	}
    824 
    825 	mutex_exit(&rpipe->pipe_lock);
    826 	if (error != 0)
    827 		return (error);
    828 
    829 	++wpipe->pipe_busy;
    830 
    831 	/* Aquire the long-term pipe lock */
    832 	if ((error = pipelock(wpipe,1)) != 0) {
    833 		--wpipe->pipe_busy;
    834 		if (wpipe->pipe_busy == 0
    835 		    && (wpipe->pipe_state & PIPE_WANTCLOSE)) {
    836 			wpipe->pipe_state &= ~(PIPE_WANTCLOSE | PIPE_WANTR);
    837 			cv_broadcast(&wpipe->pipe_cv);
    838 		}
    839 		mutex_exit(&wpipe->pipe_lock);
    840 		return (error);
    841 	}
    842 
    843 	bp = &wpipe->pipe_buffer;
    844 
    845 	/*
    846 	 * If it is advantageous to resize the pipe buffer, do so.
    847 	 */
    848 	if ((uio->uio_resid > PIPE_SIZE) &&
    849 	    (nbigpipe < maxbigpipes) &&
    850 #ifndef PIPE_NODIRECT
    851 	    (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
    852 #endif
    853 	    (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) {
    854 
    855 		if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
    856 			nbigpipe++;
    857 	}
    858 
    859 	while (uio->uio_resid) {
    860 		size_t space;
    861 
    862 #ifndef PIPE_NODIRECT
    863 		/*
    864 		 * Pipe buffered writes cannot be coincidental with
    865 		 * direct writes.  Also, only one direct write can be
    866 		 * in progress at any one time.  We wait until the currently
    867 		 * executing direct write is completed before continuing.
    868 		 *
    869 		 * We break out if a signal occurs or the reader goes away.
    870 		 */
    871 		while (error == 0 && wpipe->pipe_state & PIPE_DIRECTW) {
    872 			mutex_enter(&wpipe->pipe_lock);
    873 			if (wpipe->pipe_state & PIPE_WANTR) {
    874 				wpipe->pipe_state &= ~PIPE_WANTR;
    875 				cv_broadcast(&wpipe->pipe_cv);
    876 			}
    877 			pipeunlock(wpipe);
    878 			error = cv_wait_sig(&wpipe->pipe_cv,
    879 			    &wpipe->pipe_lock);
    880 
    881 			(void)pipelock(wpipe, 0);
    882 			if (wpipe->pipe_state & PIPE_EOF)
    883 				error = EPIPE;
    884 		}
    885 		if (error)
    886 			break;
    887 
    888 		/*
    889 		 * If the transfer is large, we can gain performance if
    890 		 * we do process-to-process copies directly.
    891 		 * If the write is non-blocking, we don't use the
    892 		 * direct write mechanism.
    893 		 *
    894 		 * The direct write mechanism will detect the reader going
    895 		 * away on us.
    896 		 */
    897 		if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
    898 		    (fp->f_flag & FNONBLOCK) == 0 &&
    899 		    (wpipe->pipe_map.kva || (amountpipekva < limitpipekva))) {
    900 			error = pipe_direct_write(fp, wpipe, uio);
    901 
    902 			/*
    903 			 * Break out if error occurred, unless it's ENOMEM.
    904 			 * ENOMEM means we failed to allocate some resources
    905 			 * for direct write, so we just fallback to ordinary
    906 			 * write. If the direct write was successful,
    907 			 * process rest of data via ordinary write.
    908 			 */
    909 			if (error == 0)
    910 				continue;
    911 
    912 			if (error != ENOMEM)
    913 				break;
    914 		}
    915 #endif /* PIPE_NODIRECT */
    916 
    917 		space = bp->size - bp->cnt;
    918 
    919 		/* Writes of size <= PIPE_BUF must be atomic. */
    920 		if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
    921 			space = 0;
    922 
    923 		if (space > 0) {
    924 			int size;	/* Transfer size */
    925 			int segsize;	/* first segment to transfer */
    926 
    927 			/*
    928 			 * Transfer size is minimum of uio transfer
    929 			 * and free space in pipe buffer.
    930 			 */
    931 			if (space > uio->uio_resid)
    932 				size = uio->uio_resid;
    933 			else
    934 				size = space;
    935 			/*
    936 			 * First segment to transfer is minimum of
    937 			 * transfer size and contiguous space in
    938 			 * pipe buffer.  If first segment to transfer
    939 			 * is less than the transfer size, we've got
    940 			 * a wraparound in the buffer.
    941 			 */
    942 			segsize = bp->size - bp->in;
    943 			if (segsize > size)
    944 				segsize = size;
    945 
    946 			/* Transfer first segment */
    947 			error = uiomove((char *)bp->buffer + bp->in, segsize,
    948 			    uio);
    949 
    950 			if (error == 0 && segsize < size) {
    951 				/*
    952 				 * Transfer remaining part now, to
    953 				 * support atomic writes.  Wraparound
    954 				 * happened.
    955 				 */
    956 #ifdef DEBUG
    957 				if (bp->in + segsize != bp->size)
    958 					panic("Expected pipe buffer wraparound disappeared");
    959 #endif
    960 
    961 				error = uiomove(bp->buffer,
    962 				    size - segsize, uio);
    963 			}
    964 			if (error)
    965 				break;
    966 
    967 			bp->in += size;
    968 			if (bp->in >= bp->size) {
    969 #ifdef DEBUG
    970 				if (bp->in != size - segsize + bp->size)
    971 					panic("Expected wraparound bad");
    972 #endif
    973 				bp->in = size - segsize;
    974 			}
    975 
    976 			bp->cnt += size;
    977 #ifdef DEBUG
    978 			if (bp->cnt > bp->size)
    979 				panic("Pipe buffer overflow");
    980 #endif
    981 		} else {
    982 			/*
    983 			 * If the "read-side" has been blocked, wake it up now.
    984 			 */
    985 			mutex_enter(&wpipe->pipe_lock);
    986 			if (wpipe->pipe_state & PIPE_WANTR) {
    987 				wpipe->pipe_state &= ~PIPE_WANTR;
    988 				cv_broadcast(&wpipe->pipe_cv);
    989 			}
    990 			mutex_exit(&wpipe->pipe_lock);
    991 
    992 			/*
    993 			 * don't block on non-blocking I/O
    994 			 */
    995 			if (fp->f_flag & FNONBLOCK) {
    996 				error = EAGAIN;
    997 				break;
    998 			}
    999 
   1000 			/*
   1001 			 * We have no more space and have something to offer,
   1002 			 * wake up select/poll.
   1003 			 */
   1004 			if (bp->cnt)
   1005 				pipeselwakeup(wpipe, wpipe, POLL_OUT);
   1006 
   1007 			mutex_enter(&wpipe->pipe_lock);
   1008 			pipeunlock(wpipe);
   1009 			wpipe->pipe_state |= PIPE_WANTW;
   1010 			error = cv_wait_sig(&wpipe->pipe_cv,
   1011 			    &wpipe->pipe_lock);
   1012 			(void)pipelock(wpipe, 0);
   1013 			if (error != 0)
   1014 				break;
   1015 			/*
   1016 			 * If read side wants to go away, we just issue a signal
   1017 			 * to ourselves.
   1018 			 */
   1019 			if (wpipe->pipe_state & PIPE_EOF) {
   1020 				error = EPIPE;
   1021 				break;
   1022 			}
   1023 		}
   1024 	}
   1025 
   1026 	mutex_enter(&wpipe->pipe_lock);
   1027 	--wpipe->pipe_busy;
   1028 	if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANTCLOSE)) {
   1029 		wpipe->pipe_state &= ~(PIPE_WANTCLOSE | PIPE_WANTR);
   1030 		cv_broadcast(&wpipe->pipe_cv);
   1031 	} else if (bp->cnt > 0) {
   1032 		/*
   1033 		 * If we have put any characters in the buffer, we wake up
   1034 		 * the reader.
   1035 		 */
   1036 		if (wpipe->pipe_state & PIPE_WANTR) {
   1037 			wpipe->pipe_state &= ~PIPE_WANTR;
   1038 			cv_broadcast(&wpipe->pipe_cv);
   1039 		}
   1040 	}
   1041 
   1042 	/*
   1043 	 * Don't return EPIPE if I/O was successful
   1044 	 */
   1045 	if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0)
   1046 		error = 0;
   1047 
   1048 	if (error == 0)
   1049 		getmicrotime(&wpipe->pipe_mtime);
   1050 
   1051 	/*
   1052 	 * We have something to offer, wake up select/poll.
   1053 	 * wpipe->pipe_map.cnt is always 0 in this point (direct write
   1054 	 * is only done synchronously), so check only wpipe->pipe_buffer.cnt
   1055 	 */
   1056 	if (bp->cnt)
   1057 		pipeselwakeup(wpipe, wpipe, POLL_OUT);
   1058 
   1059 	/*
   1060 	 * Arrange for next read(2) to do a signal.
   1061 	 */
   1062 	wpipe->pipe_state |= PIPE_SIGNALR;
   1063 
   1064 	pipeunlock(wpipe);
   1065 	mutex_exit(&wpipe->pipe_lock);
   1066 	return (error);
   1067 }
   1068 
   1069 /*
   1070  * we implement a very minimal set of ioctls for compatibility with sockets.
   1071  */
   1072 int
   1073 pipe_ioctl(struct file *fp, u_long cmd, void *data, struct lwp *l)
   1074 {
   1075 	struct pipe *pipe = (struct pipe *)fp->f_data;
   1076 	struct proc *p = l->l_proc;
   1077 
   1078 	switch (cmd) {
   1079 
   1080 	case FIONBIO:
   1081 		return (0);
   1082 
   1083 	case FIOASYNC:
   1084 		mutex_enter(&pipe->pipe_lock);
   1085 		if (*(int *)data) {
   1086 			pipe->pipe_state |= PIPE_ASYNC;
   1087 		} else {
   1088 			pipe->pipe_state &= ~PIPE_ASYNC;
   1089 		}
   1090 		mutex_exit(&pipe->pipe_lock);
   1091 		return (0);
   1092 
   1093 	case FIONREAD:
   1094 		mutex_enter(&pipe->pipe_lock);
   1095 #ifndef PIPE_NODIRECT
   1096 		if (pipe->pipe_state & PIPE_DIRECTW)
   1097 			*(int *)data = pipe->pipe_map.cnt;
   1098 		else
   1099 #endif
   1100 			*(int *)data = pipe->pipe_buffer.cnt;
   1101 		mutex_exit(&pipe->pipe_lock);
   1102 		return (0);
   1103 
   1104 	case FIONWRITE:
   1105 		/* Look at other side */
   1106 		rw_enter(&pipe_peer_lock, RW_READER);
   1107 		pipe = pipe->pipe_peer;
   1108 		mutex_enter(&pipe->pipe_lock);
   1109 #ifndef PIPE_NODIRECT
   1110 		if (pipe->pipe_state & PIPE_DIRECTW)
   1111 			*(int *)data = pipe->pipe_map.cnt;
   1112 		else
   1113 #endif
   1114 			*(int *)data = pipe->pipe_buffer.cnt;
   1115 		mutex_exit(&pipe->pipe_lock);
   1116 		rw_exit(&pipe_peer_lock);
   1117 		return (0);
   1118 
   1119 	case FIONSPACE:
   1120 		/* Look at other side */
   1121 		rw_enter(&pipe_peer_lock, RW_READER);
   1122 		pipe = pipe->pipe_peer;
   1123 		mutex_enter(&pipe->pipe_lock);
   1124 #ifndef PIPE_NODIRECT
   1125 		/*
   1126 		 * If we're in direct-mode, we don't really have a
   1127 		 * send queue, and any other write will block. Thus
   1128 		 * zero seems like the best answer.
   1129 		 */
   1130 		if (pipe->pipe_state & PIPE_DIRECTW)
   1131 			*(int *)data = 0;
   1132 		else
   1133 #endif
   1134 			*(int *)data = pipe->pipe_buffer.size -
   1135 			    pipe->pipe_buffer.cnt;
   1136 		mutex_exit(&pipe->pipe_lock);
   1137 		rw_exit(&pipe_peer_lock);
   1138 		return (0);
   1139 
   1140 	case TIOCSPGRP:
   1141 	case FIOSETOWN:
   1142 		return fsetown(p, &pipe->pipe_pgid, cmd, data);
   1143 
   1144 	case TIOCGPGRP:
   1145 	case FIOGETOWN:
   1146 		return fgetown(p, pipe->pipe_pgid, cmd, data);
   1147 
   1148 	}
   1149 	return (EPASSTHROUGH);
   1150 }
   1151 
   1152 int
   1153 pipe_poll(struct file *fp, int events, struct lwp *l)
   1154 {
   1155 	struct pipe *rpipe = (struct pipe *)fp->f_data;
   1156 	struct pipe *wpipe;
   1157 	int eof = 0;
   1158 	int revents = 0;
   1159 
   1160 retry:
   1161 	mutex_enter(&rpipe->pipe_lock);
   1162 	wpipe = rpipe->pipe_peer;
   1163 	if (wpipe != NULL && mutex_tryenter(&wpipe->pipe_lock) == 0) {
   1164 		/* Deal with race for peer */
   1165 		mutex_exit(&rpipe->pipe_lock);
   1166 		/* XXX Might be about to deadlock w/kernel_lock. */
   1167 		yield();
   1168 		goto retry;
   1169 	}
   1170 
   1171 	if (events & (POLLIN | POLLRDNORM))
   1172 		if ((rpipe->pipe_buffer.cnt > 0) ||
   1173 #ifndef PIPE_NODIRECT
   1174 		    (rpipe->pipe_state & PIPE_DIRECTR) ||
   1175 #endif
   1176 		    (rpipe->pipe_state & PIPE_EOF))
   1177 			revents |= events & (POLLIN | POLLRDNORM);
   1178 
   1179 	eof |= (rpipe->pipe_state & PIPE_EOF);
   1180 	mutex_exit(&rpipe->pipe_lock);
   1181 
   1182 	if (wpipe == NULL)
   1183 		revents |= events & (POLLOUT | POLLWRNORM);
   1184 	else {
   1185 		if (events & (POLLOUT | POLLWRNORM))
   1186 			if ((wpipe->pipe_state & PIPE_EOF) || (
   1187 #ifndef PIPE_NODIRECT
   1188 			     (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
   1189 #endif
   1190 			     (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
   1191 				revents |= events & (POLLOUT | POLLWRNORM);
   1192 
   1193 		eof |= (wpipe->pipe_state & PIPE_EOF);
   1194 		mutex_exit(&wpipe->pipe_lock);
   1195 	}
   1196 
   1197 	if (wpipe == NULL || eof)
   1198 		revents |= POLLHUP;
   1199 
   1200 	if (revents == 0) {
   1201 		if (events & (POLLIN | POLLRDNORM))
   1202 			selrecord(l, &rpipe->pipe_sel);
   1203 
   1204 		if (events & (POLLOUT | POLLWRNORM))
   1205 			selrecord(l, &wpipe->pipe_sel);
   1206 	}
   1207 
   1208 	return (revents);
   1209 }
   1210 
   1211 static int
   1212 pipe_stat(struct file *fp, struct stat *ub, struct lwp *l)
   1213 {
   1214 	struct pipe *pipe = (struct pipe *)fp->f_data;
   1215 
   1216 	rw_enter(&pipe_peer_lock, RW_READER);
   1217 
   1218 	memset((void *)ub, 0, sizeof(*ub));
   1219 	ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
   1220 	ub->st_blksize = pipe->pipe_buffer.size;
   1221 	if (ub->st_blksize == 0 && pipe->pipe_peer)
   1222 		ub->st_blksize = pipe->pipe_peer->pipe_buffer.size;
   1223 	ub->st_size = pipe->pipe_buffer.cnt;
   1224 	ub->st_blocks = (ub->st_size) ? 1 : 0;
   1225 	TIMEVAL_TO_TIMESPEC(&pipe->pipe_atime, &ub->st_atimespec);
   1226 	TIMEVAL_TO_TIMESPEC(&pipe->pipe_mtime, &ub->st_mtimespec);
   1227 	TIMEVAL_TO_TIMESPEC(&pipe->pipe_ctime, &ub->st_ctimespec);
   1228 	ub->st_uid = kauth_cred_geteuid(fp->f_cred);
   1229 	ub->st_gid = kauth_cred_getegid(fp->f_cred);
   1230 
   1231 	rw_exit(&pipe_peer_lock);
   1232 
   1233 	/*
   1234 	 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
   1235 	 * XXX (st_dev, st_ino) should be unique.
   1236 	 */
   1237 	return (0);
   1238 }
   1239 
   1240 /* ARGSUSED */
   1241 static int
   1242 pipe_close(struct file *fp, struct lwp *l)
   1243 {
   1244 	struct pipe *pipe = (struct pipe *)fp->f_data;
   1245 
   1246 	fp->f_data = NULL;
   1247 	pipeclose(fp, pipe);
   1248 	return (0);
   1249 }
   1250 
   1251 static void
   1252 pipe_free_kmem(struct pipe *pipe)
   1253 {
   1254 
   1255 	if (pipe->pipe_buffer.buffer != NULL) {
   1256 		if (pipe->pipe_buffer.size > PIPE_SIZE)
   1257 			--nbigpipe;
   1258 		amountpipekva -= pipe->pipe_buffer.size;
   1259 		uvm_km_free(kernel_map,
   1260 			(vaddr_t)pipe->pipe_buffer.buffer,
   1261 			pipe->pipe_buffer.size, UVM_KMF_PAGEABLE);
   1262 		pipe->pipe_buffer.buffer = NULL;
   1263 	}
   1264 #ifndef PIPE_NODIRECT
   1265 	if (pipe->pipe_map.kva != 0) {
   1266 		pipe_loan_free(pipe);
   1267 		pipe->pipe_map.cnt = 0;
   1268 		pipe->pipe_map.kva = 0;
   1269 		pipe->pipe_map.pos = 0;
   1270 		pipe->pipe_map.npages = 0;
   1271 	}
   1272 #endif /* !PIPE_NODIRECT */
   1273 }
   1274 
   1275 /*
   1276  * shutdown the pipe
   1277  */
   1278 static void
   1279 pipeclose(struct file *fp, struct pipe *pipe)
   1280 {
   1281 	struct pipe *ppipe;
   1282 
   1283 	if (pipe == NULL)
   1284 		return;
   1285 
   1286  retry:
   1287 	rw_enter(&pipe_peer_lock, RW_WRITER);
   1288 	mutex_enter(&pipe->pipe_lock);
   1289 
   1290 	pipeselwakeup(pipe, pipe, POLL_HUP);
   1291 
   1292 	/*
   1293 	 * If the other side is blocked, wake it up saying that
   1294 	 * we want to close it down.
   1295 	 */
   1296 	pipe->pipe_state |= PIPE_EOF;
   1297 	if (pipe->pipe_busy) {
   1298 		rw_exit(&pipe_peer_lock);
   1299 		while (pipe->pipe_busy) {
   1300 			cv_broadcast(&pipe->pipe_cv);
   1301 			pipe->pipe_state |= PIPE_WANTCLOSE;
   1302 			cv_wait_sig(&pipe->pipe_cv, &pipe->pipe_lock);
   1303 		}
   1304 		if (!rw_tryenter(&pipe_peer_lock, RW_READER)) {
   1305 			mutex_exit(&pipe->pipe_lock);
   1306 			/* XXX Might be about to deadlock w/kernel_lock. */
   1307 			yield();
   1308 			goto retry;
   1309 		}
   1310 	}
   1311 
   1312 	/*
   1313 	 * Disconnect from peer
   1314 	 */
   1315 	if ((ppipe = pipe->pipe_peer) != NULL) {
   1316 		/* Deal with race for peer */
   1317 		if (mutex_tryenter(&ppipe->pipe_lock) == 0) {
   1318 			mutex_exit(&pipe->pipe_lock);
   1319 			rw_exit(&pipe_peer_lock);
   1320 			/* XXX Might be about to deadlock w/kernel_lock. */
   1321 			yield();
   1322 			goto retry;
   1323 		}
   1324 		pipeselwakeup(ppipe, ppipe, POLL_HUP);
   1325 
   1326 		ppipe->pipe_state |= PIPE_EOF;
   1327 		cv_broadcast(&ppipe->pipe_cv);
   1328 		ppipe->pipe_peer = NULL;
   1329 		mutex_exit(&ppipe->pipe_lock);
   1330 	}
   1331 
   1332 	KASSERT((pipe->pipe_state & PIPE_LOCKFL) == 0);
   1333 
   1334 	mutex_exit(&pipe->pipe_lock);
   1335 	rw_exit(&pipe_peer_lock);
   1336 
   1337 	/*
   1338 	 * free resources
   1339 	 */
   1340 	pipe_free_kmem(pipe);
   1341 	mutex_destroy(&pipe->pipe_lock);
   1342 	cv_destroy(&pipe->pipe_cv);
   1343 	cv_destroy(&pipe->pipe_lkcv);
   1344 	pool_put(&pipe_pool, pipe);
   1345 }
   1346 
   1347 static void
   1348 filt_pipedetach(struct knote *kn)
   1349 {
   1350 	struct pipe *pipe = (struct pipe *)kn->kn_fp->f_data;
   1351 
   1352 	rw_enter(&pipe_peer_lock, RW_READER);
   1353 
   1354 	switch(kn->kn_filter) {
   1355 	case EVFILT_WRITE:
   1356 		/* need the peer structure, not our own */
   1357 		pipe = pipe->pipe_peer;
   1358 
   1359 		/* if reader end already closed, just return */
   1360 		if (pipe == NULL) {
   1361 			rw_exit(&pipe_peer_lock);
   1362 			return;
   1363 		}
   1364 
   1365 		break;
   1366 	default:
   1367 		/* nothing to do */
   1368 		break;
   1369 	}
   1370 
   1371 #ifdef DIAGNOSTIC
   1372 	if (kn->kn_hook != pipe)
   1373 		panic("filt_pipedetach: inconsistent knote");
   1374 #endif
   1375 
   1376 	mutex_enter(&pipe->pipe_lock);
   1377 	SLIST_REMOVE(&pipe->pipe_sel.sel_klist, kn, knote, kn_selnext);
   1378 	mutex_exit(&pipe->pipe_lock);
   1379 	rw_exit(&pipe_peer_lock);
   1380 }
   1381 
   1382 /*ARGSUSED*/
   1383 static int
   1384 filt_piperead(struct knote *kn, long hint)
   1385 {
   1386 	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
   1387 	struct pipe *wpipe;
   1388 
   1389 	if ((hint & NOTE_SUBMIT) == 0) {
   1390 		rw_enter(&pipe_peer_lock, RW_READER);
   1391 		mutex_enter(&rpipe->pipe_lock);
   1392 	}
   1393 	wpipe = rpipe->pipe_peer;
   1394 	kn->kn_data = rpipe->pipe_buffer.cnt;
   1395 
   1396 	if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
   1397 		kn->kn_data = rpipe->pipe_map.cnt;
   1398 
   1399 	if ((rpipe->pipe_state & PIPE_EOF) ||
   1400 	    (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
   1401 		kn->kn_flags |= EV_EOF;
   1402 		if ((hint & NOTE_SUBMIT) == 0) {
   1403 			mutex_exit(&rpipe->pipe_lock);
   1404 			rw_exit(&pipe_peer_lock);
   1405 		}
   1406 		return (1);
   1407 	}
   1408 
   1409 	if ((hint & NOTE_SUBMIT) == 0) {
   1410 		mutex_exit(&rpipe->pipe_lock);
   1411 		rw_exit(&pipe_peer_lock);
   1412 	}
   1413 	return (kn->kn_data > 0);
   1414 }
   1415 
   1416 /*ARGSUSED*/
   1417 static int
   1418 filt_pipewrite(struct knote *kn, long hint)
   1419 {
   1420 	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
   1421 	struct pipe *wpipe;
   1422 
   1423 	if ((hint & NOTE_SUBMIT) == 0) {
   1424 		rw_enter(&pipe_peer_lock, RW_READER);
   1425 		mutex_enter(&rpipe->pipe_lock);
   1426 	}
   1427 	wpipe = rpipe->pipe_peer;
   1428 
   1429 	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
   1430 		kn->kn_data = 0;
   1431 		kn->kn_flags |= EV_EOF;
   1432 		if ((hint & NOTE_SUBMIT) == 0) {
   1433 			mutex_exit(&rpipe->pipe_lock);
   1434 			rw_exit(&pipe_peer_lock);
   1435 		}
   1436 		return (1);
   1437 	}
   1438 	kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
   1439 	if (wpipe->pipe_state & PIPE_DIRECTW)
   1440 		kn->kn_data = 0;
   1441 
   1442 	if ((hint & NOTE_SUBMIT) == 0) {
   1443 		mutex_exit(&rpipe->pipe_lock);
   1444 		rw_exit(&pipe_peer_lock);
   1445 	}
   1446 	return (kn->kn_data >= PIPE_BUF);
   1447 }
   1448 
   1449 static const struct filterops pipe_rfiltops =
   1450 	{ 1, NULL, filt_pipedetach, filt_piperead };
   1451 static const struct filterops pipe_wfiltops =
   1452 	{ 1, NULL, filt_pipedetach, filt_pipewrite };
   1453 
   1454 /*ARGSUSED*/
   1455 static int
   1456 pipe_kqfilter(struct file *fp, struct knote *kn)
   1457 {
   1458 	struct pipe *pipe;
   1459 
   1460 	rw_enter(&pipe_peer_lock, RW_READER);
   1461 	pipe = (struct pipe *)kn->kn_fp->f_data;
   1462 
   1463 	switch (kn->kn_filter) {
   1464 	case EVFILT_READ:
   1465 		kn->kn_fop = &pipe_rfiltops;
   1466 		break;
   1467 	case EVFILT_WRITE:
   1468 		kn->kn_fop = &pipe_wfiltops;
   1469 		pipe = pipe->pipe_peer;
   1470 		if (pipe == NULL) {
   1471 			/* other end of pipe has been closed */
   1472 			rw_exit(&pipe_peer_lock);
   1473 			return (EBADF);
   1474 		}
   1475 		break;
   1476 	default:
   1477 		rw_exit(&pipe_peer_lock);
   1478 		return (1);
   1479 	}
   1480 
   1481 	kn->kn_hook = pipe;
   1482 	mutex_enter(&pipe->pipe_lock);
   1483 	SLIST_INSERT_HEAD(&pipe->pipe_sel.sel_klist, kn, kn_selnext);
   1484 	mutex_exit(&pipe->pipe_lock);
   1485 	rw_exit(&pipe_peer_lock);
   1486 
   1487 	return (0);
   1488 }
   1489 
   1490 /*
   1491  * Handle pipe sysctls.
   1492  */
   1493 SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup")
   1494 {
   1495 
   1496 	sysctl_createv(clog, 0, NULL, NULL,
   1497 		       CTLFLAG_PERMANENT,
   1498 		       CTLTYPE_NODE, "kern", NULL,
   1499 		       NULL, 0, NULL, 0,
   1500 		       CTL_KERN, CTL_EOL);
   1501 	sysctl_createv(clog, 0, NULL, NULL,
   1502 		       CTLFLAG_PERMANENT,
   1503 		       CTLTYPE_NODE, "pipe",
   1504 		       SYSCTL_DESCR("Pipe settings"),
   1505 		       NULL, 0, NULL, 0,
   1506 		       CTL_KERN, KERN_PIPE, CTL_EOL);
   1507 
   1508 	sysctl_createv(clog, 0, NULL, NULL,
   1509 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1510 		       CTLTYPE_INT, "maxkvasz",
   1511 		       SYSCTL_DESCR("Maximum amount of kernel memory to be "
   1512 				    "used for pipes"),
   1513 		       NULL, 0, &maxpipekva, 0,
   1514 		       CTL_KERN, KERN_PIPE, KERN_PIPE_MAXKVASZ, CTL_EOL);
   1515 	sysctl_createv(clog, 0, NULL, NULL,
   1516 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1517 		       CTLTYPE_INT, "maxloankvasz",
   1518 		       SYSCTL_DESCR("Limit for direct transfers via page loan"),
   1519 		       NULL, 0, &limitpipekva, 0,
   1520 		       CTL_KERN, KERN_PIPE, KERN_PIPE_LIMITKVA, CTL_EOL);
   1521 	sysctl_createv(clog, 0, NULL, NULL,
   1522 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1523 		       CTLTYPE_INT, "maxbigpipes",
   1524 		       SYSCTL_DESCR("Maximum number of \"big\" pipes"),
   1525 		       NULL, 0, &maxbigpipes, 0,
   1526 		       CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL);
   1527 	sysctl_createv(clog, 0, NULL, NULL,
   1528 		       CTLFLAG_PERMANENT,
   1529 		       CTLTYPE_INT, "nbigpipes",
   1530 		       SYSCTL_DESCR("Number of \"big\" pipes"),
   1531 		       NULL, 0, &nbigpipe, 0,
   1532 		       CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL);
   1533 	sysctl_createv(clog, 0, NULL, NULL,
   1534 		       CTLFLAG_PERMANENT,
   1535 		       CTLTYPE_INT, "kvasize",
   1536 		       SYSCTL_DESCR("Amount of kernel memory consumed by pipe "
   1537 				    "buffers"),
   1538 		       NULL, 0, &amountpipekva, 0,
   1539 		       CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL);
   1540 }
   1541