sys_pipe.c revision 1.85 1 /* $NetBSD: sys_pipe.c,v 1.85 2007/07/09 21:10:56 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2003, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1996 John S. Dyson
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice immediately at the beginning of the file, without modification,
48 * this list of conditions, and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. Absolutely no warranty of function or purpose is made by the author
53 * John S. Dyson.
54 * 4. Modifications may be freely made to this file if the above conditions
55 * are met.
56 *
57 * $FreeBSD: src/sys/kern/sys_pipe.c,v 1.95 2002/03/09 22:06:31 alfred Exp $
58 */
59
60 /*
61 * This file contains a high-performance replacement for the socket-based
62 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support
63 * all features of sockets, but does do everything that pipes normally
64 * do.
65 *
66 * Adaption for NetBSD UVM, including uvm_loan() based direct write, was
67 * written by Jaromir Dolecek.
68 */
69
70 /*
71 * This code has two modes of operation, a small write mode and a large
72 * write mode. The small write mode acts like conventional pipes with
73 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
74 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
75 * and PIPE_SIZE in size it is mapped read-only into the kernel address space
76 * using the UVM page loan facility from where the receiving process can copy
77 * the data directly from the pages in the sending process.
78 *
79 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
80 * happen for small transfers so that the system will not spend all of
81 * its time context switching. PIPE_SIZE is constrained by the
82 * amount of kernel virtual memory.
83 */
84
85 #include <sys/cdefs.h>
86 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.85 2007/07/09 21:10:56 ad Exp $");
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/proc.h>
91 #include <sys/fcntl.h>
92 #include <sys/file.h>
93 #include <sys/filedesc.h>
94 #include <sys/filio.h>
95 #include <sys/kernel.h>
96 #include <sys/ttycom.h>
97 #include <sys/stat.h>
98 #include <sys/malloc.h>
99 #include <sys/poll.h>
100 #include <sys/signalvar.h>
101 #include <sys/vnode.h>
102 #include <sys/uio.h>
103 #include <sys/lock.h>
104 #include <sys/select.h>
105 #include <sys/mount.h>
106 #include <sys/syscallargs.h>
107 #include <uvm/uvm.h>
108 #include <sys/sysctl.h>
109 #include <sys/kauth.h>
110
111 #include <sys/pipe.h>
112
113 /*
114 * Use this define if you want to disable *fancy* VM things. Expect an
115 * approx 30% decrease in transfer rate.
116 */
117 /* #define PIPE_NODIRECT */
118
119 /*
120 * interfaces to the outside world
121 */
122 static int pipe_read(struct file *fp, off_t *offset, struct uio *uio,
123 kauth_cred_t cred, int flags);
124 static int pipe_write(struct file *fp, off_t *offset, struct uio *uio,
125 kauth_cred_t cred, int flags);
126 static int pipe_close(struct file *fp, struct lwp *l);
127 static int pipe_poll(struct file *fp, int events, struct lwp *l);
128 static int pipe_kqfilter(struct file *fp, struct knote *kn);
129 static int pipe_stat(struct file *fp, struct stat *sb, struct lwp *l);
130 static int pipe_ioctl(struct file *fp, u_long cmd, void *data,
131 struct lwp *l);
132
133 static const struct fileops pipeops = {
134 pipe_read, pipe_write, pipe_ioctl, fnullop_fcntl, pipe_poll,
135 pipe_stat, pipe_close, pipe_kqfilter
136 };
137
138 /*
139 * Default pipe buffer size(s), this can be kind-of large now because pipe
140 * space is pageable. The pipe code will try to maintain locality of
141 * reference for performance reasons, so small amounts of outstanding I/O
142 * will not wipe the cache.
143 */
144 #define MINPIPESIZE (PIPE_SIZE/3)
145 #define MAXPIPESIZE (2*PIPE_SIZE/3)
146
147 /*
148 * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
149 * is there so that on large systems, we don't exhaust it.
150 */
151 #define MAXPIPEKVA (8*1024*1024)
152 static int maxpipekva = MAXPIPEKVA;
153
154 /*
155 * Limit for direct transfers, we cannot, of course limit
156 * the amount of kva for pipes in general though.
157 */
158 #define LIMITPIPEKVA (16*1024*1024)
159 static int limitpipekva = LIMITPIPEKVA;
160
161 /*
162 * Limit the number of "big" pipes
163 */
164 #define LIMITBIGPIPES 32
165 static int maxbigpipes = LIMITBIGPIPES;
166 static int nbigpipe = 0;
167
168 /*
169 * Amount of KVA consumed by pipe buffers.
170 */
171 static int amountpipekva = 0;
172
173 MALLOC_DEFINE(M_PIPE, "pipe", "Pipe structures");
174
175 static void pipeclose(struct file *fp, struct pipe *pipe);
176 static void pipe_free_kmem(struct pipe *pipe);
177 static int pipe_create(struct pipe **pipep, int allockva);
178 static int pipelock(struct pipe *pipe, int catch);
179 static inline void pipeunlock(struct pipe *pipe);
180 static void pipeselwakeup(struct pipe *pipe, struct pipe *sigp, int code);
181 #ifndef PIPE_NODIRECT
182 static int pipe_direct_write(struct file *fp, struct pipe *wpipe,
183 struct uio *uio);
184 #endif
185 static int pipespace(struct pipe *pipe, int size);
186
187 #ifndef PIPE_NODIRECT
188 static int pipe_loan_alloc(struct pipe *, int);
189 static void pipe_loan_free(struct pipe *);
190 #endif /* PIPE_NODIRECT */
191
192 static POOL_INIT(pipe_pool, sizeof(struct pipe), 0, 0, 0, "pipepl",
193 &pool_allocator_nointr, IPL_NONE);
194
195 static krwlock_t pipe_peer_lock;
196
197 void
198 pipe_init(void)
199 {
200
201 rw_init(&pipe_peer_lock);
202 }
203
204 /*
205 * The pipe system call for the DTYPE_PIPE type of pipes
206 */
207
208 /* ARGSUSED */
209 int
210 sys_pipe(struct lwp *l, void *v, register_t *retval)
211 {
212 struct file *rf, *wf;
213 struct pipe *rpipe, *wpipe;
214 int fd, error;
215
216 rpipe = wpipe = NULL;
217 if (pipe_create(&rpipe, 1) || pipe_create(&wpipe, 0)) {
218 pipeclose(NULL, rpipe);
219 pipeclose(NULL, wpipe);
220 return (ENFILE);
221 }
222
223 /*
224 * Note: the file structure returned from falloc() is marked
225 * as 'larval' initially. Unless we mark it as 'mature' by
226 * FILE_SET_MATURE(), any attempt to do anything with it would
227 * return EBADF, including e.g. dup(2) or close(2). This avoids
228 * file descriptor races if we block in the second falloc().
229 */
230
231 error = falloc(l, &rf, &fd);
232 if (error)
233 goto free2;
234 retval[0] = fd;
235 rf->f_flag = FREAD;
236 rf->f_type = DTYPE_PIPE;
237 rf->f_data = (void *)rpipe;
238 rf->f_ops = &pipeops;
239
240 error = falloc(l, &wf, &fd);
241 if (error)
242 goto free3;
243 retval[1] = fd;
244 wf->f_flag = FWRITE;
245 wf->f_type = DTYPE_PIPE;
246 wf->f_data = (void *)wpipe;
247 wf->f_ops = &pipeops;
248
249 rpipe->pipe_peer = wpipe;
250 wpipe->pipe_peer = rpipe;
251
252 FILE_SET_MATURE(rf);
253 FILE_SET_MATURE(wf);
254 FILE_UNUSE(rf, l);
255 FILE_UNUSE(wf, l);
256 return (0);
257 free3:
258 FILE_UNUSE(rf, l);
259 ffree(rf);
260 fdremove(l->l_proc->p_fd, retval[0]);
261 free2:
262 pipeclose(NULL, wpipe);
263 pipeclose(NULL, rpipe);
264
265 return (error);
266 }
267
268 /*
269 * Allocate kva for pipe circular buffer, the space is pageable
270 * This routine will 'realloc' the size of a pipe safely, if it fails
271 * it will retain the old buffer.
272 * If it fails it will return ENOMEM.
273 */
274 static int
275 pipespace(struct pipe *pipe, int size)
276 {
277 void *buffer;
278 /*
279 * Allocate pageable virtual address space. Physical memory is
280 * allocated on demand.
281 */
282 buffer = (void *) uvm_km_alloc(kernel_map, round_page(size), 0,
283 UVM_KMF_PAGEABLE);
284 if (buffer == NULL)
285 return (ENOMEM);
286
287 /* free old resources if we're resizing */
288 pipe_free_kmem(pipe);
289 pipe->pipe_buffer.buffer = buffer;
290 pipe->pipe_buffer.size = size;
291 pipe->pipe_buffer.in = 0;
292 pipe->pipe_buffer.out = 0;
293 pipe->pipe_buffer.cnt = 0;
294 amountpipekva += pipe->pipe_buffer.size;
295 return (0);
296 }
297
298 /*
299 * Initialize and allocate VM and memory for pipe.
300 */
301 static int
302 pipe_create(struct pipe **pipep, int allockva)
303 {
304 struct pipe *pipe;
305 int error;
306
307 pipe = *pipep = pool_get(&pipe_pool, PR_WAITOK);
308
309 /* Initialize */
310 memset(pipe, 0, sizeof(struct pipe));
311 pipe->pipe_state = PIPE_SIGNALR;
312
313 getmicrotime(&pipe->pipe_ctime);
314 pipe->pipe_atime = pipe->pipe_ctime;
315 pipe->pipe_mtime = pipe->pipe_ctime;
316 mutex_init(&pipe->pipe_lock, MUTEX_DEFAULT, IPL_NONE);
317 cv_init(&pipe->pipe_cv, "pipe");
318 cv_init(&pipe->pipe_lkcv, "pipelk");
319
320 if (allockva && (error = pipespace(pipe, PIPE_SIZE)))
321 return (error);
322
323 return (0);
324 }
325
326
327 /*
328 * Lock a pipe for I/O, blocking other access
329 * Called with pipe spin lock held.
330 * Return with pipe spin lock released on success.
331 */
332 static int
333 pipelock(struct pipe *pipe, int catch)
334 {
335 int error;
336
337 KASSERT(mutex_owned(&pipe->pipe_lock));
338
339 while (pipe->pipe_state & PIPE_LOCKFL) {
340 pipe->pipe_state |= PIPE_LWANT;
341 if (catch) {
342 error = cv_wait_sig(&pipe->pipe_lkcv,
343 &pipe->pipe_lock);
344 if (error != 0)
345 return error;
346 } else
347 cv_wait(&pipe->pipe_lkcv, &pipe->pipe_lock);
348 }
349
350 pipe->pipe_state |= PIPE_LOCKFL;
351 mutex_exit(&pipe->pipe_lock);
352
353 return 0;
354 }
355
356 /*
357 * unlock a pipe I/O lock
358 */
359 static inline void
360 pipeunlock(struct pipe *pipe)
361 {
362
363 KASSERT(pipe->pipe_state & PIPE_LOCKFL);
364
365 pipe->pipe_state &= ~PIPE_LOCKFL;
366 if (pipe->pipe_state & PIPE_LWANT) {
367 pipe->pipe_state &= ~PIPE_LWANT;
368 cv_broadcast(&pipe->pipe_lkcv);
369 }
370 }
371
372 /*
373 * Select/poll wakup. This also sends SIGIO to peer connected to
374 * 'sigpipe' side of pipe.
375 */
376 static void
377 pipeselwakeup(struct pipe *selp, struct pipe *sigp, int code)
378 {
379 int band;
380
381 selnotify(&selp->pipe_sel, NOTE_SUBMIT);
382
383 if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0)
384 return;
385
386 switch (code) {
387 case POLL_IN:
388 band = POLLIN|POLLRDNORM;
389 break;
390 case POLL_OUT:
391 band = POLLOUT|POLLWRNORM;
392 break;
393 case POLL_HUP:
394 band = POLLHUP;
395 break;
396 #if POLL_HUP != POLL_ERR
397 case POLL_ERR:
398 band = POLLERR;
399 break;
400 #endif
401 default:
402 band = 0;
403 #ifdef DIAGNOSTIC
404 printf("bad siginfo code %d in pipe notification.\n", code);
405 #endif
406 break;
407 }
408
409 fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp);
410 }
411
412 /* ARGSUSED */
413 static int
414 pipe_read(struct file *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
415 int flags)
416 {
417 struct pipe *rpipe = (struct pipe *) fp->f_data;
418 struct pipebuf *bp = &rpipe->pipe_buffer;
419 int error;
420 size_t nread = 0;
421 size_t size;
422 size_t ocnt;
423
424 mutex_enter(&rpipe->pipe_lock);
425 ++rpipe->pipe_busy;
426 ocnt = bp->cnt;
427
428 again:
429 error = pipelock(rpipe, 1);
430 if (error)
431 goto unlocked_error;
432
433 while (uio->uio_resid) {
434 /*
435 * normal pipe buffer receive
436 */
437 if (bp->cnt > 0) {
438 size = bp->size - bp->out;
439 if (size > bp->cnt)
440 size = bp->cnt;
441 if (size > uio->uio_resid)
442 size = uio->uio_resid;
443
444 error = uiomove((char *)bp->buffer + bp->out, size, uio);
445 if (error)
446 break;
447
448 bp->out += size;
449 if (bp->out >= bp->size)
450 bp->out = 0;
451
452 bp->cnt -= size;
453
454 /*
455 * If there is no more to read in the pipe, reset
456 * its pointers to the beginning. This improves
457 * cache hit stats.
458 */
459 if (bp->cnt == 0) {
460 bp->in = 0;
461 bp->out = 0;
462 }
463 nread += size;
464 continue;
465 }
466
467 /* Lock to see up-to-date value of pipe_status. */
468 mutex_enter(&rpipe->pipe_lock);
469
470 #ifndef PIPE_NODIRECT
471 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) {
472 /*
473 * Direct copy, bypassing a kernel buffer.
474 */
475 void * va;
476
477 KASSERT(rpipe->pipe_state & PIPE_DIRECTW);
478 mutex_exit(&rpipe->pipe_lock);
479
480 size = rpipe->pipe_map.cnt;
481 if (size > uio->uio_resid)
482 size = uio->uio_resid;
483
484 va = (char *)rpipe->pipe_map.kva + rpipe->pipe_map.pos;
485 error = uiomove(va, size, uio);
486 if (error)
487 break;
488 nread += size;
489 rpipe->pipe_map.pos += size;
490 rpipe->pipe_map.cnt -= size;
491 if (rpipe->pipe_map.cnt == 0) {
492 mutex_enter(&rpipe->pipe_lock);
493 rpipe->pipe_state &= ~PIPE_DIRECTR;
494 cv_broadcast(&rpipe->pipe_cv);
495 mutex_exit(&rpipe->pipe_lock);
496 }
497 continue;
498 }
499 #endif
500 /*
501 * Break if some data was read.
502 */
503 if (nread > 0) {
504 mutex_exit(&rpipe->pipe_lock);
505 break;
506 }
507
508 /*
509 * detect EOF condition
510 * read returns 0 on EOF, no need to set error
511 */
512 if (rpipe->pipe_state & PIPE_EOF) {
513 mutex_exit(&rpipe->pipe_lock);
514 break;
515 }
516
517 /*
518 * don't block on non-blocking I/O
519 */
520 if (fp->f_flag & FNONBLOCK) {
521 mutex_exit(&rpipe->pipe_lock);
522 error = EAGAIN;
523 break;
524 }
525
526 /*
527 * Unlock the pipe buffer for our remaining processing.
528 * We will either break out with an error or we will
529 * sleep and relock to loop.
530 */
531 pipeunlock(rpipe);
532
533 /*
534 * Re-check to see if more direct writes are pending.
535 */
536 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0)
537 goto again;
538
539 /*
540 * We want to read more, wake up select/poll.
541 */
542 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_IN);
543
544 /*
545 * If the "write-side" is blocked, wake it up now.
546 */
547 if (rpipe->pipe_state & PIPE_WANTW) {
548 rpipe->pipe_state &= ~PIPE_WANTW;
549 cv_broadcast(&rpipe->pipe_cv);
550 }
551
552 /* Now wait until the pipe is filled */
553 rpipe->pipe_state |= PIPE_WANTR;
554 error = cv_wait_sig(&rpipe->pipe_cv, &rpipe->pipe_lock);
555 if (error != 0)
556 goto unlocked_error;
557 goto again;
558 }
559
560 if (error == 0)
561 getmicrotime(&rpipe->pipe_atime);
562
563 mutex_enter(&rpipe->pipe_lock);
564 pipeunlock(rpipe);
565
566 unlocked_error:
567 --rpipe->pipe_busy;
568
569 /*
570 * PIPE_WANTCLOSE processing only makes sense if pipe_busy is 0.
571 */
572 if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANTCLOSE)) {
573 rpipe->pipe_state &= ~(PIPE_WANTCLOSE|PIPE_WANTW);
574 cv_broadcast(&rpipe->pipe_cv);
575 } else if (bp->cnt < MINPIPESIZE) {
576 /*
577 * Handle write blocking hysteresis.
578 */
579 if (rpipe->pipe_state & PIPE_WANTW) {
580 rpipe->pipe_state &= ~PIPE_WANTW;
581 cv_broadcast(&rpipe->pipe_cv);
582 }
583 }
584
585 /*
586 * If anything was read off the buffer, signal to the writer it's
587 * possible to write more data. Also send signal if we are here for the
588 * first time after last write.
589 */
590 if ((bp->size - bp->cnt) >= PIPE_BUF
591 && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
592 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
593 rpipe->pipe_state &= ~PIPE_SIGNALR;
594 }
595
596 mutex_exit(&rpipe->pipe_lock);
597 return (error);
598 }
599
600 #ifndef PIPE_NODIRECT
601 /*
602 * Allocate structure for loan transfer.
603 */
604 static int
605 pipe_loan_alloc(struct pipe *wpipe, int npages)
606 {
607 vsize_t len;
608
609 len = (vsize_t)npages << PAGE_SHIFT;
610 wpipe->pipe_map.kva = uvm_km_alloc(kernel_map, len, 0,
611 UVM_KMF_VAONLY | UVM_KMF_WAITVA);
612 if (wpipe->pipe_map.kva == 0)
613 return (ENOMEM);
614
615 amountpipekva += len;
616 wpipe->pipe_map.npages = npages;
617 wpipe->pipe_map.pgs = malloc(npages * sizeof(struct vm_page *), M_PIPE,
618 M_WAITOK);
619 return (0);
620 }
621
622 /*
623 * Free resources allocated for loan transfer.
624 */
625 static void
626 pipe_loan_free(struct pipe *wpipe)
627 {
628 vsize_t len;
629
630 len = (vsize_t)wpipe->pipe_map.npages << PAGE_SHIFT;
631 uvm_km_free(kernel_map, wpipe->pipe_map.kva, len, UVM_KMF_VAONLY);
632 wpipe->pipe_map.kva = 0;
633 amountpipekva -= len;
634 free(wpipe->pipe_map.pgs, M_PIPE);
635 wpipe->pipe_map.pgs = NULL;
636 }
637
638 /*
639 * NetBSD direct write, using uvm_loan() mechanism.
640 * This implements the pipe buffer write mechanism. Note that only
641 * a direct write OR a normal pipe write can be pending at any given time.
642 * If there are any characters in the pipe buffer, the direct write will
643 * be deferred until the receiving process grabs all of the bytes from
644 * the pipe buffer. Then the direct mapping write is set-up.
645 *
646 * Called with the long-term pipe lock held.
647 */
648 static int
649 pipe_direct_write(struct file *fp, struct pipe *wpipe, struct uio *uio)
650 {
651 int error, npages, j;
652 struct vm_page **pgs;
653 vaddr_t bbase, kva, base, bend;
654 vsize_t blen, bcnt;
655 voff_t bpos;
656
657 KASSERT(wpipe->pipe_map.cnt == 0);
658
659 /*
660 * Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers
661 * not aligned to PAGE_SIZE.
662 */
663 bbase = (vaddr_t)uio->uio_iov->iov_base;
664 base = trunc_page(bbase);
665 bend = round_page(bbase + uio->uio_iov->iov_len);
666 blen = bend - base;
667 bpos = bbase - base;
668
669 if (blen > PIPE_DIRECT_CHUNK) {
670 blen = PIPE_DIRECT_CHUNK;
671 bend = base + blen;
672 bcnt = PIPE_DIRECT_CHUNK - bpos;
673 } else {
674 bcnt = uio->uio_iov->iov_len;
675 }
676 npages = blen >> PAGE_SHIFT;
677
678 /*
679 * Free the old kva if we need more pages than we have
680 * allocated.
681 */
682 if (wpipe->pipe_map.kva != 0 && npages > wpipe->pipe_map.npages)
683 pipe_loan_free(wpipe);
684
685 /* Allocate new kva. */
686 if (wpipe->pipe_map.kva == 0) {
687 error = pipe_loan_alloc(wpipe, npages);
688 if (error)
689 return (error);
690 }
691
692 /* Loan the write buffer memory from writer process */
693 pgs = wpipe->pipe_map.pgs;
694 error = uvm_loan(&uio->uio_vmspace->vm_map, base, blen,
695 pgs, UVM_LOAN_TOPAGE);
696 if (error) {
697 pipe_loan_free(wpipe);
698 return (ENOMEM); /* so that caller fallback to ordinary write */
699 }
700
701 /* Enter the loaned pages to kva */
702 kva = wpipe->pipe_map.kva;
703 for (j = 0; j < npages; j++, kva += PAGE_SIZE) {
704 pmap_kenter_pa(kva, VM_PAGE_TO_PHYS(pgs[j]), VM_PROT_READ);
705 }
706 pmap_update(pmap_kernel());
707
708 /* Now we can put the pipe in direct write mode */
709 wpipe->pipe_map.pos = bpos;
710 wpipe->pipe_map.cnt = bcnt;
711
712 /*
713 * But before we can let someone do a direct read, we
714 * have to wait until the pipe is drained. Release the
715 * pipe lock while we wait.
716 */
717 mutex_enter(&wpipe->pipe_lock);
718 wpipe->pipe_state |= PIPE_DIRECTW;
719 pipeunlock(wpipe);
720
721 while (error == 0 && wpipe->pipe_buffer.cnt > 0) {
722 if (wpipe->pipe_state & PIPE_WANTR) {
723 wpipe->pipe_state &= ~PIPE_WANTR;
724 cv_broadcast(&wpipe->pipe_cv);
725 }
726
727 wpipe->pipe_state |= PIPE_WANTW;
728 error = cv_wait_sig(&wpipe->pipe_cv, &wpipe->pipe_lock);
729 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
730 error = EPIPE;
731 }
732
733 /* Pipe is drained; next read will off the direct buffer */
734 wpipe->pipe_state |= PIPE_DIRECTR;
735
736 /* Wait until the reader is done */
737 while (error == 0 && (wpipe->pipe_state & PIPE_DIRECTR)) {
738 if (wpipe->pipe_state & PIPE_WANTR) {
739 wpipe->pipe_state &= ~PIPE_WANTR;
740 cv_broadcast(&wpipe->pipe_cv);
741 }
742 pipeselwakeup(wpipe, wpipe, POLL_IN);
743 error = cv_wait_sig(&wpipe->pipe_cv, &wpipe->pipe_lock);
744 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
745 error = EPIPE;
746 }
747
748 /* Take pipe out of direct write mode */
749 wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTR);
750
751 /* Acquire the pipe lock and cleanup */
752 (void)pipelock(wpipe, 0);
753
754 if (pgs != NULL) {
755 pmap_kremove(wpipe->pipe_map.kva, blen);
756 uvm_unloan(pgs, npages, UVM_LOAN_TOPAGE);
757 }
758 if (error || amountpipekva > maxpipekva)
759 pipe_loan_free(wpipe);
760
761 if (error) {
762 pipeselwakeup(wpipe, wpipe, POLL_ERR);
763
764 /*
765 * If nothing was read from what we offered, return error
766 * straight on. Otherwise update uio resid first. Caller
767 * will deal with the error condition, returning short
768 * write, error, or restarting the write(2) as appropriate.
769 */
770 if (wpipe->pipe_map.cnt == bcnt) {
771 wpipe->pipe_map.cnt = 0;
772 cv_broadcast(&wpipe->pipe_cv);
773 return (error);
774 }
775
776 bcnt -= wpipe->pipe_map.cnt;
777 }
778
779 uio->uio_resid -= bcnt;
780 /* uio_offset not updated, not set/used for write(2) */
781 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt;
782 uio->uio_iov->iov_len -= bcnt;
783 if (uio->uio_iov->iov_len == 0) {
784 uio->uio_iov++;
785 uio->uio_iovcnt--;
786 }
787
788 wpipe->pipe_map.cnt = 0;
789 return (error);
790 }
791 #endif /* !PIPE_NODIRECT */
792
793 static int
794 pipe_write(struct file *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
795 int flags)
796 {
797 struct pipe *wpipe, *rpipe;
798 struct pipebuf *bp;
799 int error;
800
801 /* We want to write to our peer */
802 rpipe = (struct pipe *) fp->f_data;
803
804 retry:
805 error = 0;
806 mutex_enter(&rpipe->pipe_lock);
807 wpipe = rpipe->pipe_peer;
808
809 /*
810 * Detect loss of pipe read side, issue SIGPIPE if lost.
811 */
812 if (wpipe == NULL)
813 error = EPIPE;
814 else if (mutex_tryenter(&wpipe->pipe_lock) == 0) {
815 /* Deal with race for peer */
816 mutex_exit(&rpipe->pipe_lock);
817 /* XXX Might be about to deadlock w/kernel_lock. */
818 yield();
819 goto retry;
820 } else if ((wpipe->pipe_state & PIPE_EOF) != 0) {
821 mutex_exit(&wpipe->pipe_lock);
822 error = EPIPE;
823 }
824
825 mutex_exit(&rpipe->pipe_lock);
826 if (error != 0)
827 return (error);
828
829 ++wpipe->pipe_busy;
830
831 /* Aquire the long-term pipe lock */
832 if ((error = pipelock(wpipe,1)) != 0) {
833 --wpipe->pipe_busy;
834 if (wpipe->pipe_busy == 0
835 && (wpipe->pipe_state & PIPE_WANTCLOSE)) {
836 wpipe->pipe_state &= ~(PIPE_WANTCLOSE | PIPE_WANTR);
837 cv_broadcast(&wpipe->pipe_cv);
838 }
839 mutex_exit(&wpipe->pipe_lock);
840 return (error);
841 }
842
843 bp = &wpipe->pipe_buffer;
844
845 /*
846 * If it is advantageous to resize the pipe buffer, do so.
847 */
848 if ((uio->uio_resid > PIPE_SIZE) &&
849 (nbigpipe < maxbigpipes) &&
850 #ifndef PIPE_NODIRECT
851 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
852 #endif
853 (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) {
854
855 if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
856 nbigpipe++;
857 }
858
859 while (uio->uio_resid) {
860 size_t space;
861
862 #ifndef PIPE_NODIRECT
863 /*
864 * Pipe buffered writes cannot be coincidental with
865 * direct writes. Also, only one direct write can be
866 * in progress at any one time. We wait until the currently
867 * executing direct write is completed before continuing.
868 *
869 * We break out if a signal occurs or the reader goes away.
870 */
871 while (error == 0 && wpipe->pipe_state & PIPE_DIRECTW) {
872 mutex_enter(&wpipe->pipe_lock);
873 if (wpipe->pipe_state & PIPE_WANTR) {
874 wpipe->pipe_state &= ~PIPE_WANTR;
875 cv_broadcast(&wpipe->pipe_cv);
876 }
877 pipeunlock(wpipe);
878 error = cv_wait_sig(&wpipe->pipe_cv,
879 &wpipe->pipe_lock);
880
881 (void)pipelock(wpipe, 0);
882 if (wpipe->pipe_state & PIPE_EOF)
883 error = EPIPE;
884 }
885 if (error)
886 break;
887
888 /*
889 * If the transfer is large, we can gain performance if
890 * we do process-to-process copies directly.
891 * If the write is non-blocking, we don't use the
892 * direct write mechanism.
893 *
894 * The direct write mechanism will detect the reader going
895 * away on us.
896 */
897 if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
898 (fp->f_flag & FNONBLOCK) == 0 &&
899 (wpipe->pipe_map.kva || (amountpipekva < limitpipekva))) {
900 error = pipe_direct_write(fp, wpipe, uio);
901
902 /*
903 * Break out if error occurred, unless it's ENOMEM.
904 * ENOMEM means we failed to allocate some resources
905 * for direct write, so we just fallback to ordinary
906 * write. If the direct write was successful,
907 * process rest of data via ordinary write.
908 */
909 if (error == 0)
910 continue;
911
912 if (error != ENOMEM)
913 break;
914 }
915 #endif /* PIPE_NODIRECT */
916
917 space = bp->size - bp->cnt;
918
919 /* Writes of size <= PIPE_BUF must be atomic. */
920 if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
921 space = 0;
922
923 if (space > 0) {
924 int size; /* Transfer size */
925 int segsize; /* first segment to transfer */
926
927 /*
928 * Transfer size is minimum of uio transfer
929 * and free space in pipe buffer.
930 */
931 if (space > uio->uio_resid)
932 size = uio->uio_resid;
933 else
934 size = space;
935 /*
936 * First segment to transfer is minimum of
937 * transfer size and contiguous space in
938 * pipe buffer. If first segment to transfer
939 * is less than the transfer size, we've got
940 * a wraparound in the buffer.
941 */
942 segsize = bp->size - bp->in;
943 if (segsize > size)
944 segsize = size;
945
946 /* Transfer first segment */
947 error = uiomove((char *)bp->buffer + bp->in, segsize,
948 uio);
949
950 if (error == 0 && segsize < size) {
951 /*
952 * Transfer remaining part now, to
953 * support atomic writes. Wraparound
954 * happened.
955 */
956 #ifdef DEBUG
957 if (bp->in + segsize != bp->size)
958 panic("Expected pipe buffer wraparound disappeared");
959 #endif
960
961 error = uiomove(bp->buffer,
962 size - segsize, uio);
963 }
964 if (error)
965 break;
966
967 bp->in += size;
968 if (bp->in >= bp->size) {
969 #ifdef DEBUG
970 if (bp->in != size - segsize + bp->size)
971 panic("Expected wraparound bad");
972 #endif
973 bp->in = size - segsize;
974 }
975
976 bp->cnt += size;
977 #ifdef DEBUG
978 if (bp->cnt > bp->size)
979 panic("Pipe buffer overflow");
980 #endif
981 } else {
982 /*
983 * If the "read-side" has been blocked, wake it up now.
984 */
985 mutex_enter(&wpipe->pipe_lock);
986 if (wpipe->pipe_state & PIPE_WANTR) {
987 wpipe->pipe_state &= ~PIPE_WANTR;
988 cv_broadcast(&wpipe->pipe_cv);
989 }
990 mutex_exit(&wpipe->pipe_lock);
991
992 /*
993 * don't block on non-blocking I/O
994 */
995 if (fp->f_flag & FNONBLOCK) {
996 error = EAGAIN;
997 break;
998 }
999
1000 /*
1001 * We have no more space and have something to offer,
1002 * wake up select/poll.
1003 */
1004 if (bp->cnt)
1005 pipeselwakeup(wpipe, wpipe, POLL_OUT);
1006
1007 mutex_enter(&wpipe->pipe_lock);
1008 pipeunlock(wpipe);
1009 wpipe->pipe_state |= PIPE_WANTW;
1010 error = cv_wait_sig(&wpipe->pipe_cv,
1011 &wpipe->pipe_lock);
1012 (void)pipelock(wpipe, 0);
1013 if (error != 0)
1014 break;
1015 /*
1016 * If read side wants to go away, we just issue a signal
1017 * to ourselves.
1018 */
1019 if (wpipe->pipe_state & PIPE_EOF) {
1020 error = EPIPE;
1021 break;
1022 }
1023 }
1024 }
1025
1026 mutex_enter(&wpipe->pipe_lock);
1027 --wpipe->pipe_busy;
1028 if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANTCLOSE)) {
1029 wpipe->pipe_state &= ~(PIPE_WANTCLOSE | PIPE_WANTR);
1030 cv_broadcast(&wpipe->pipe_cv);
1031 } else if (bp->cnt > 0) {
1032 /*
1033 * If we have put any characters in the buffer, we wake up
1034 * the reader.
1035 */
1036 if (wpipe->pipe_state & PIPE_WANTR) {
1037 wpipe->pipe_state &= ~PIPE_WANTR;
1038 cv_broadcast(&wpipe->pipe_cv);
1039 }
1040 }
1041
1042 /*
1043 * Don't return EPIPE if I/O was successful
1044 */
1045 if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0)
1046 error = 0;
1047
1048 if (error == 0)
1049 getmicrotime(&wpipe->pipe_mtime);
1050
1051 /*
1052 * We have something to offer, wake up select/poll.
1053 * wpipe->pipe_map.cnt is always 0 in this point (direct write
1054 * is only done synchronously), so check only wpipe->pipe_buffer.cnt
1055 */
1056 if (bp->cnt)
1057 pipeselwakeup(wpipe, wpipe, POLL_OUT);
1058
1059 /*
1060 * Arrange for next read(2) to do a signal.
1061 */
1062 wpipe->pipe_state |= PIPE_SIGNALR;
1063
1064 pipeunlock(wpipe);
1065 mutex_exit(&wpipe->pipe_lock);
1066 return (error);
1067 }
1068
1069 /*
1070 * we implement a very minimal set of ioctls for compatibility with sockets.
1071 */
1072 int
1073 pipe_ioctl(struct file *fp, u_long cmd, void *data, struct lwp *l)
1074 {
1075 struct pipe *pipe = (struct pipe *)fp->f_data;
1076 struct proc *p = l->l_proc;
1077
1078 switch (cmd) {
1079
1080 case FIONBIO:
1081 return (0);
1082
1083 case FIOASYNC:
1084 mutex_enter(&pipe->pipe_lock);
1085 if (*(int *)data) {
1086 pipe->pipe_state |= PIPE_ASYNC;
1087 } else {
1088 pipe->pipe_state &= ~PIPE_ASYNC;
1089 }
1090 mutex_exit(&pipe->pipe_lock);
1091 return (0);
1092
1093 case FIONREAD:
1094 mutex_enter(&pipe->pipe_lock);
1095 #ifndef PIPE_NODIRECT
1096 if (pipe->pipe_state & PIPE_DIRECTW)
1097 *(int *)data = pipe->pipe_map.cnt;
1098 else
1099 #endif
1100 *(int *)data = pipe->pipe_buffer.cnt;
1101 mutex_exit(&pipe->pipe_lock);
1102 return (0);
1103
1104 case FIONWRITE:
1105 /* Look at other side */
1106 rw_enter(&pipe_peer_lock, RW_READER);
1107 pipe = pipe->pipe_peer;
1108 mutex_enter(&pipe->pipe_lock);
1109 #ifndef PIPE_NODIRECT
1110 if (pipe->pipe_state & PIPE_DIRECTW)
1111 *(int *)data = pipe->pipe_map.cnt;
1112 else
1113 #endif
1114 *(int *)data = pipe->pipe_buffer.cnt;
1115 mutex_exit(&pipe->pipe_lock);
1116 rw_exit(&pipe_peer_lock);
1117 return (0);
1118
1119 case FIONSPACE:
1120 /* Look at other side */
1121 rw_enter(&pipe_peer_lock, RW_READER);
1122 pipe = pipe->pipe_peer;
1123 mutex_enter(&pipe->pipe_lock);
1124 #ifndef PIPE_NODIRECT
1125 /*
1126 * If we're in direct-mode, we don't really have a
1127 * send queue, and any other write will block. Thus
1128 * zero seems like the best answer.
1129 */
1130 if (pipe->pipe_state & PIPE_DIRECTW)
1131 *(int *)data = 0;
1132 else
1133 #endif
1134 *(int *)data = pipe->pipe_buffer.size -
1135 pipe->pipe_buffer.cnt;
1136 mutex_exit(&pipe->pipe_lock);
1137 rw_exit(&pipe_peer_lock);
1138 return (0);
1139
1140 case TIOCSPGRP:
1141 case FIOSETOWN:
1142 return fsetown(p, &pipe->pipe_pgid, cmd, data);
1143
1144 case TIOCGPGRP:
1145 case FIOGETOWN:
1146 return fgetown(p, pipe->pipe_pgid, cmd, data);
1147
1148 }
1149 return (EPASSTHROUGH);
1150 }
1151
1152 int
1153 pipe_poll(struct file *fp, int events, struct lwp *l)
1154 {
1155 struct pipe *rpipe = (struct pipe *)fp->f_data;
1156 struct pipe *wpipe;
1157 int eof = 0;
1158 int revents = 0;
1159
1160 retry:
1161 mutex_enter(&rpipe->pipe_lock);
1162 wpipe = rpipe->pipe_peer;
1163 if (wpipe != NULL && mutex_tryenter(&wpipe->pipe_lock) == 0) {
1164 /* Deal with race for peer */
1165 mutex_exit(&rpipe->pipe_lock);
1166 /* XXX Might be about to deadlock w/kernel_lock. */
1167 yield();
1168 goto retry;
1169 }
1170
1171 if (events & (POLLIN | POLLRDNORM))
1172 if ((rpipe->pipe_buffer.cnt > 0) ||
1173 #ifndef PIPE_NODIRECT
1174 (rpipe->pipe_state & PIPE_DIRECTR) ||
1175 #endif
1176 (rpipe->pipe_state & PIPE_EOF))
1177 revents |= events & (POLLIN | POLLRDNORM);
1178
1179 eof |= (rpipe->pipe_state & PIPE_EOF);
1180 mutex_exit(&rpipe->pipe_lock);
1181
1182 if (wpipe == NULL)
1183 revents |= events & (POLLOUT | POLLWRNORM);
1184 else {
1185 if (events & (POLLOUT | POLLWRNORM))
1186 if ((wpipe->pipe_state & PIPE_EOF) || (
1187 #ifndef PIPE_NODIRECT
1188 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
1189 #endif
1190 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1191 revents |= events & (POLLOUT | POLLWRNORM);
1192
1193 eof |= (wpipe->pipe_state & PIPE_EOF);
1194 mutex_exit(&wpipe->pipe_lock);
1195 }
1196
1197 if (wpipe == NULL || eof)
1198 revents |= POLLHUP;
1199
1200 if (revents == 0) {
1201 if (events & (POLLIN | POLLRDNORM))
1202 selrecord(l, &rpipe->pipe_sel);
1203
1204 if (events & (POLLOUT | POLLWRNORM))
1205 selrecord(l, &wpipe->pipe_sel);
1206 }
1207
1208 return (revents);
1209 }
1210
1211 static int
1212 pipe_stat(struct file *fp, struct stat *ub, struct lwp *l)
1213 {
1214 struct pipe *pipe = (struct pipe *)fp->f_data;
1215
1216 rw_enter(&pipe_peer_lock, RW_READER);
1217
1218 memset((void *)ub, 0, sizeof(*ub));
1219 ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
1220 ub->st_blksize = pipe->pipe_buffer.size;
1221 if (ub->st_blksize == 0 && pipe->pipe_peer)
1222 ub->st_blksize = pipe->pipe_peer->pipe_buffer.size;
1223 ub->st_size = pipe->pipe_buffer.cnt;
1224 ub->st_blocks = (ub->st_size) ? 1 : 0;
1225 TIMEVAL_TO_TIMESPEC(&pipe->pipe_atime, &ub->st_atimespec);
1226 TIMEVAL_TO_TIMESPEC(&pipe->pipe_mtime, &ub->st_mtimespec);
1227 TIMEVAL_TO_TIMESPEC(&pipe->pipe_ctime, &ub->st_ctimespec);
1228 ub->st_uid = kauth_cred_geteuid(fp->f_cred);
1229 ub->st_gid = kauth_cred_getegid(fp->f_cred);
1230
1231 rw_exit(&pipe_peer_lock);
1232
1233 /*
1234 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1235 * XXX (st_dev, st_ino) should be unique.
1236 */
1237 return (0);
1238 }
1239
1240 /* ARGSUSED */
1241 static int
1242 pipe_close(struct file *fp, struct lwp *l)
1243 {
1244 struct pipe *pipe = (struct pipe *)fp->f_data;
1245
1246 fp->f_data = NULL;
1247 pipeclose(fp, pipe);
1248 return (0);
1249 }
1250
1251 static void
1252 pipe_free_kmem(struct pipe *pipe)
1253 {
1254
1255 if (pipe->pipe_buffer.buffer != NULL) {
1256 if (pipe->pipe_buffer.size > PIPE_SIZE)
1257 --nbigpipe;
1258 amountpipekva -= pipe->pipe_buffer.size;
1259 uvm_km_free(kernel_map,
1260 (vaddr_t)pipe->pipe_buffer.buffer,
1261 pipe->pipe_buffer.size, UVM_KMF_PAGEABLE);
1262 pipe->pipe_buffer.buffer = NULL;
1263 }
1264 #ifndef PIPE_NODIRECT
1265 if (pipe->pipe_map.kva != 0) {
1266 pipe_loan_free(pipe);
1267 pipe->pipe_map.cnt = 0;
1268 pipe->pipe_map.kva = 0;
1269 pipe->pipe_map.pos = 0;
1270 pipe->pipe_map.npages = 0;
1271 }
1272 #endif /* !PIPE_NODIRECT */
1273 }
1274
1275 /*
1276 * shutdown the pipe
1277 */
1278 static void
1279 pipeclose(struct file *fp, struct pipe *pipe)
1280 {
1281 struct pipe *ppipe;
1282
1283 if (pipe == NULL)
1284 return;
1285
1286 retry:
1287 rw_enter(&pipe_peer_lock, RW_WRITER);
1288 mutex_enter(&pipe->pipe_lock);
1289
1290 pipeselwakeup(pipe, pipe, POLL_HUP);
1291
1292 /*
1293 * If the other side is blocked, wake it up saying that
1294 * we want to close it down.
1295 */
1296 pipe->pipe_state |= PIPE_EOF;
1297 if (pipe->pipe_busy) {
1298 rw_exit(&pipe_peer_lock);
1299 while (pipe->pipe_busy) {
1300 cv_broadcast(&pipe->pipe_cv);
1301 pipe->pipe_state |= PIPE_WANTCLOSE;
1302 cv_wait_sig(&pipe->pipe_cv, &pipe->pipe_lock);
1303 }
1304 if (!rw_tryenter(&pipe_peer_lock, RW_READER)) {
1305 mutex_exit(&pipe->pipe_lock);
1306 /* XXX Might be about to deadlock w/kernel_lock. */
1307 yield();
1308 goto retry;
1309 }
1310 }
1311
1312 /*
1313 * Disconnect from peer
1314 */
1315 if ((ppipe = pipe->pipe_peer) != NULL) {
1316 /* Deal with race for peer */
1317 if (mutex_tryenter(&ppipe->pipe_lock) == 0) {
1318 mutex_exit(&pipe->pipe_lock);
1319 rw_exit(&pipe_peer_lock);
1320 /* XXX Might be about to deadlock w/kernel_lock. */
1321 yield();
1322 goto retry;
1323 }
1324 pipeselwakeup(ppipe, ppipe, POLL_HUP);
1325
1326 ppipe->pipe_state |= PIPE_EOF;
1327 cv_broadcast(&ppipe->pipe_cv);
1328 ppipe->pipe_peer = NULL;
1329 mutex_exit(&ppipe->pipe_lock);
1330 }
1331
1332 KASSERT((pipe->pipe_state & PIPE_LOCKFL) == 0);
1333
1334 mutex_exit(&pipe->pipe_lock);
1335 rw_exit(&pipe_peer_lock);
1336
1337 /*
1338 * free resources
1339 */
1340 pipe_free_kmem(pipe);
1341 mutex_destroy(&pipe->pipe_lock);
1342 cv_destroy(&pipe->pipe_cv);
1343 cv_destroy(&pipe->pipe_lkcv);
1344 pool_put(&pipe_pool, pipe);
1345 }
1346
1347 static void
1348 filt_pipedetach(struct knote *kn)
1349 {
1350 struct pipe *pipe = (struct pipe *)kn->kn_fp->f_data;
1351
1352 rw_enter(&pipe_peer_lock, RW_READER);
1353
1354 switch(kn->kn_filter) {
1355 case EVFILT_WRITE:
1356 /* need the peer structure, not our own */
1357 pipe = pipe->pipe_peer;
1358
1359 /* if reader end already closed, just return */
1360 if (pipe == NULL) {
1361 rw_exit(&pipe_peer_lock);
1362 return;
1363 }
1364
1365 break;
1366 default:
1367 /* nothing to do */
1368 break;
1369 }
1370
1371 #ifdef DIAGNOSTIC
1372 if (kn->kn_hook != pipe)
1373 panic("filt_pipedetach: inconsistent knote");
1374 #endif
1375
1376 mutex_enter(&pipe->pipe_lock);
1377 SLIST_REMOVE(&pipe->pipe_sel.sel_klist, kn, knote, kn_selnext);
1378 mutex_exit(&pipe->pipe_lock);
1379 rw_exit(&pipe_peer_lock);
1380 }
1381
1382 /*ARGSUSED*/
1383 static int
1384 filt_piperead(struct knote *kn, long hint)
1385 {
1386 struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1387 struct pipe *wpipe;
1388
1389 if ((hint & NOTE_SUBMIT) == 0) {
1390 rw_enter(&pipe_peer_lock, RW_READER);
1391 mutex_enter(&rpipe->pipe_lock);
1392 }
1393 wpipe = rpipe->pipe_peer;
1394 kn->kn_data = rpipe->pipe_buffer.cnt;
1395
1396 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1397 kn->kn_data = rpipe->pipe_map.cnt;
1398
1399 if ((rpipe->pipe_state & PIPE_EOF) ||
1400 (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1401 kn->kn_flags |= EV_EOF;
1402 if ((hint & NOTE_SUBMIT) == 0) {
1403 mutex_exit(&rpipe->pipe_lock);
1404 rw_exit(&pipe_peer_lock);
1405 }
1406 return (1);
1407 }
1408
1409 if ((hint & NOTE_SUBMIT) == 0) {
1410 mutex_exit(&rpipe->pipe_lock);
1411 rw_exit(&pipe_peer_lock);
1412 }
1413 return (kn->kn_data > 0);
1414 }
1415
1416 /*ARGSUSED*/
1417 static int
1418 filt_pipewrite(struct knote *kn, long hint)
1419 {
1420 struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1421 struct pipe *wpipe;
1422
1423 if ((hint & NOTE_SUBMIT) == 0) {
1424 rw_enter(&pipe_peer_lock, RW_READER);
1425 mutex_enter(&rpipe->pipe_lock);
1426 }
1427 wpipe = rpipe->pipe_peer;
1428
1429 if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1430 kn->kn_data = 0;
1431 kn->kn_flags |= EV_EOF;
1432 if ((hint & NOTE_SUBMIT) == 0) {
1433 mutex_exit(&rpipe->pipe_lock);
1434 rw_exit(&pipe_peer_lock);
1435 }
1436 return (1);
1437 }
1438 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1439 if (wpipe->pipe_state & PIPE_DIRECTW)
1440 kn->kn_data = 0;
1441
1442 if ((hint & NOTE_SUBMIT) == 0) {
1443 mutex_exit(&rpipe->pipe_lock);
1444 rw_exit(&pipe_peer_lock);
1445 }
1446 return (kn->kn_data >= PIPE_BUF);
1447 }
1448
1449 static const struct filterops pipe_rfiltops =
1450 { 1, NULL, filt_pipedetach, filt_piperead };
1451 static const struct filterops pipe_wfiltops =
1452 { 1, NULL, filt_pipedetach, filt_pipewrite };
1453
1454 /*ARGSUSED*/
1455 static int
1456 pipe_kqfilter(struct file *fp, struct knote *kn)
1457 {
1458 struct pipe *pipe;
1459
1460 rw_enter(&pipe_peer_lock, RW_READER);
1461 pipe = (struct pipe *)kn->kn_fp->f_data;
1462
1463 switch (kn->kn_filter) {
1464 case EVFILT_READ:
1465 kn->kn_fop = &pipe_rfiltops;
1466 break;
1467 case EVFILT_WRITE:
1468 kn->kn_fop = &pipe_wfiltops;
1469 pipe = pipe->pipe_peer;
1470 if (pipe == NULL) {
1471 /* other end of pipe has been closed */
1472 rw_exit(&pipe_peer_lock);
1473 return (EBADF);
1474 }
1475 break;
1476 default:
1477 rw_exit(&pipe_peer_lock);
1478 return (1);
1479 }
1480
1481 kn->kn_hook = pipe;
1482 mutex_enter(&pipe->pipe_lock);
1483 SLIST_INSERT_HEAD(&pipe->pipe_sel.sel_klist, kn, kn_selnext);
1484 mutex_exit(&pipe->pipe_lock);
1485 rw_exit(&pipe_peer_lock);
1486
1487 return (0);
1488 }
1489
1490 /*
1491 * Handle pipe sysctls.
1492 */
1493 SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup")
1494 {
1495
1496 sysctl_createv(clog, 0, NULL, NULL,
1497 CTLFLAG_PERMANENT,
1498 CTLTYPE_NODE, "kern", NULL,
1499 NULL, 0, NULL, 0,
1500 CTL_KERN, CTL_EOL);
1501 sysctl_createv(clog, 0, NULL, NULL,
1502 CTLFLAG_PERMANENT,
1503 CTLTYPE_NODE, "pipe",
1504 SYSCTL_DESCR("Pipe settings"),
1505 NULL, 0, NULL, 0,
1506 CTL_KERN, KERN_PIPE, CTL_EOL);
1507
1508 sysctl_createv(clog, 0, NULL, NULL,
1509 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1510 CTLTYPE_INT, "maxkvasz",
1511 SYSCTL_DESCR("Maximum amount of kernel memory to be "
1512 "used for pipes"),
1513 NULL, 0, &maxpipekva, 0,
1514 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXKVASZ, CTL_EOL);
1515 sysctl_createv(clog, 0, NULL, NULL,
1516 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1517 CTLTYPE_INT, "maxloankvasz",
1518 SYSCTL_DESCR("Limit for direct transfers via page loan"),
1519 NULL, 0, &limitpipekva, 0,
1520 CTL_KERN, KERN_PIPE, KERN_PIPE_LIMITKVA, CTL_EOL);
1521 sysctl_createv(clog, 0, NULL, NULL,
1522 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1523 CTLTYPE_INT, "maxbigpipes",
1524 SYSCTL_DESCR("Maximum number of \"big\" pipes"),
1525 NULL, 0, &maxbigpipes, 0,
1526 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL);
1527 sysctl_createv(clog, 0, NULL, NULL,
1528 CTLFLAG_PERMANENT,
1529 CTLTYPE_INT, "nbigpipes",
1530 SYSCTL_DESCR("Number of \"big\" pipes"),
1531 NULL, 0, &nbigpipe, 0,
1532 CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL);
1533 sysctl_createv(clog, 0, NULL, NULL,
1534 CTLFLAG_PERMANENT,
1535 CTLTYPE_INT, "kvasize",
1536 SYSCTL_DESCR("Amount of kernel memory consumed by pipe "
1537 "buffers"),
1538 NULL, 0, &amountpipekva, 0,
1539 CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL);
1540 }
1541