sys_pipe.c revision 1.86 1 /* $NetBSD: sys_pipe.c,v 1.86 2007/09/25 13:53:31 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2003, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1996 John S. Dyson
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice immediately at the beginning of the file, without modification,
48 * this list of conditions, and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. Absolutely no warranty of function or purpose is made by the author
53 * John S. Dyson.
54 * 4. Modifications may be freely made to this file if the above conditions
55 * are met.
56 *
57 * $FreeBSD: src/sys/kern/sys_pipe.c,v 1.95 2002/03/09 22:06:31 alfred Exp $
58 */
59
60 /*
61 * This file contains a high-performance replacement for the socket-based
62 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support
63 * all features of sockets, but does do everything that pipes normally
64 * do.
65 *
66 * Adaption for NetBSD UVM, including uvm_loan() based direct write, was
67 * written by Jaromir Dolecek.
68 */
69
70 /*
71 * This code has two modes of operation, a small write mode and a large
72 * write mode. The small write mode acts like conventional pipes with
73 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
74 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
75 * and PIPE_SIZE in size it is mapped read-only into the kernel address space
76 * using the UVM page loan facility from where the receiving process can copy
77 * the data directly from the pages in the sending process.
78 *
79 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
80 * happen for small transfers so that the system will not spend all of
81 * its time context switching. PIPE_SIZE is constrained by the
82 * amount of kernel virtual memory.
83 */
84
85 #include <sys/cdefs.h>
86 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.86 2007/09/25 13:53:31 ad Exp $");
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/proc.h>
91 #include <sys/fcntl.h>
92 #include <sys/file.h>
93 #include <sys/filedesc.h>
94 #include <sys/filio.h>
95 #include <sys/kernel.h>
96 #include <sys/ttycom.h>
97 #include <sys/stat.h>
98 #include <sys/malloc.h>
99 #include <sys/poll.h>
100 #include <sys/signalvar.h>
101 #include <sys/vnode.h>
102 #include <sys/uio.h>
103 #include <sys/lock.h>
104 #include <sys/select.h>
105 #include <sys/mount.h>
106 #include <sys/syscallargs.h>
107 #include <uvm/uvm.h>
108 #include <sys/sysctl.h>
109 #include <sys/kauth.h>
110
111 #include <sys/pipe.h>
112
113 /*
114 * Use this define if you want to disable *fancy* VM things. Expect an
115 * approx 30% decrease in transfer rate.
116 */
117 /* #define PIPE_NODIRECT */
118
119 /*
120 * interfaces to the outside world
121 */
122 static int pipe_read(struct file *fp, off_t *offset, struct uio *uio,
123 kauth_cred_t cred, int flags);
124 static int pipe_write(struct file *fp, off_t *offset, struct uio *uio,
125 kauth_cred_t cred, int flags);
126 static int pipe_close(struct file *fp, struct lwp *l);
127 static int pipe_poll(struct file *fp, int events, struct lwp *l);
128 static int pipe_kqfilter(struct file *fp, struct knote *kn);
129 static int pipe_stat(struct file *fp, struct stat *sb, struct lwp *l);
130 static int pipe_ioctl(struct file *fp, u_long cmd, void *data,
131 struct lwp *l);
132
133 static const struct fileops pipeops = {
134 pipe_read, pipe_write, pipe_ioctl, fnullop_fcntl, pipe_poll,
135 pipe_stat, pipe_close, pipe_kqfilter
136 };
137
138 /*
139 * Default pipe buffer size(s), this can be kind-of large now because pipe
140 * space is pageable. The pipe code will try to maintain locality of
141 * reference for performance reasons, so small amounts of outstanding I/O
142 * will not wipe the cache.
143 */
144 #define MINPIPESIZE (PIPE_SIZE/3)
145 #define MAXPIPESIZE (2*PIPE_SIZE/3)
146
147 /*
148 * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
149 * is there so that on large systems, we don't exhaust it.
150 */
151 #define MAXPIPEKVA (8*1024*1024)
152 static int maxpipekva = MAXPIPEKVA;
153
154 /*
155 * Limit for direct transfers, we cannot, of course limit
156 * the amount of kva for pipes in general though.
157 */
158 #define LIMITPIPEKVA (16*1024*1024)
159 static int limitpipekva = LIMITPIPEKVA;
160
161 /*
162 * Limit the number of "big" pipes
163 */
164 #define LIMITBIGPIPES 32
165 static int maxbigpipes = LIMITBIGPIPES;
166 static int nbigpipe = 0;
167
168 /*
169 * Amount of KVA consumed by pipe buffers.
170 */
171 static int amountpipekva = 0;
172
173 MALLOC_DEFINE(M_PIPE, "pipe", "Pipe structures");
174
175 static void pipeclose(struct file *fp, struct pipe *pipe);
176 static void pipe_free_kmem(struct pipe *pipe);
177 static int pipe_create(struct pipe **pipep, int allockva);
178 static int pipelock(struct pipe *pipe, int catch);
179 static inline void pipeunlock(struct pipe *pipe);
180 static void pipeselwakeup(struct pipe *pipe, struct pipe *sigp, int code);
181 #ifndef PIPE_NODIRECT
182 static int pipe_direct_write(struct file *fp, struct pipe *wpipe,
183 struct uio *uio);
184 #endif
185 static int pipespace(struct pipe *pipe, int size);
186
187 #ifndef PIPE_NODIRECT
188 static int pipe_loan_alloc(struct pipe *, int);
189 static void pipe_loan_free(struct pipe *);
190 #endif /* PIPE_NODIRECT */
191
192 static POOL_INIT(pipe_pool, sizeof(struct pipe), 0, 0, 0, "pipepl",
193 &pool_allocator_nointr, IPL_NONE);
194
195 static krwlock_t pipe_peer_lock;
196
197 void
198 pipe_init(void)
199 {
200
201 rw_init(&pipe_peer_lock);
202 }
203
204 /*
205 * The pipe system call for the DTYPE_PIPE type of pipes
206 */
207
208 /* ARGSUSED */
209 int
210 sys_pipe(struct lwp *l, void *v, register_t *retval)
211 {
212 struct file *rf, *wf;
213 struct pipe *rpipe, *wpipe;
214 int fd, error;
215
216 rpipe = wpipe = NULL;
217 if (pipe_create(&rpipe, 1) || pipe_create(&wpipe, 0)) {
218 pipeclose(NULL, rpipe);
219 pipeclose(NULL, wpipe);
220 return (ENFILE);
221 }
222
223 /*
224 * Note: the file structure returned from falloc() is marked
225 * as 'larval' initially. Unless we mark it as 'mature' by
226 * FILE_SET_MATURE(), any attempt to do anything with it would
227 * return EBADF, including e.g. dup(2) or close(2). This avoids
228 * file descriptor races if we block in the second falloc().
229 */
230
231 error = falloc(l, &rf, &fd);
232 if (error)
233 goto free2;
234 retval[0] = fd;
235 rf->f_flag = FREAD;
236 rf->f_type = DTYPE_PIPE;
237 rf->f_data = (void *)rpipe;
238 rf->f_ops = &pipeops;
239
240 error = falloc(l, &wf, &fd);
241 if (error)
242 goto free3;
243 retval[1] = fd;
244 wf->f_flag = FWRITE;
245 wf->f_type = DTYPE_PIPE;
246 wf->f_data = (void *)wpipe;
247 wf->f_ops = &pipeops;
248
249 rpipe->pipe_peer = wpipe;
250 wpipe->pipe_peer = rpipe;
251
252 FILE_SET_MATURE(rf);
253 FILE_SET_MATURE(wf);
254 FILE_UNUSE(rf, l);
255 FILE_UNUSE(wf, l);
256 return (0);
257 free3:
258 FILE_UNUSE(rf, l);
259 ffree(rf);
260 fdremove(l->l_proc->p_fd, retval[0]);
261 free2:
262 pipeclose(NULL, wpipe);
263 pipeclose(NULL, rpipe);
264
265 return (error);
266 }
267
268 /*
269 * Allocate kva for pipe circular buffer, the space is pageable
270 * This routine will 'realloc' the size of a pipe safely, if it fails
271 * it will retain the old buffer.
272 * If it fails it will return ENOMEM.
273 */
274 static int
275 pipespace(struct pipe *pipe, int size)
276 {
277 void *buffer;
278 /*
279 * Allocate pageable virtual address space. Physical memory is
280 * allocated on demand.
281 */
282 buffer = (void *) uvm_km_alloc(kernel_map, round_page(size), 0,
283 UVM_KMF_PAGEABLE);
284 if (buffer == NULL)
285 return (ENOMEM);
286
287 /* free old resources if we're resizing */
288 pipe_free_kmem(pipe);
289 pipe->pipe_buffer.buffer = buffer;
290 pipe->pipe_buffer.size = size;
291 pipe->pipe_buffer.in = 0;
292 pipe->pipe_buffer.out = 0;
293 pipe->pipe_buffer.cnt = 0;
294 amountpipekva += pipe->pipe_buffer.size;
295 return (0);
296 }
297
298 /*
299 * Initialize and allocate VM and memory for pipe.
300 */
301 static int
302 pipe_create(struct pipe **pipep, int allockva)
303 {
304 struct pipe *pipe;
305 int error;
306
307 pipe = *pipep = pool_get(&pipe_pool, PR_WAITOK);
308
309 /* Initialize */
310 memset(pipe, 0, sizeof(struct pipe));
311 pipe->pipe_state = PIPE_SIGNALR;
312
313 getmicrotime(&pipe->pipe_ctime);
314 pipe->pipe_atime = pipe->pipe_ctime;
315 pipe->pipe_mtime = pipe->pipe_ctime;
316 mutex_init(&pipe->pipe_lock, MUTEX_DEFAULT, IPL_NONE);
317 cv_init(&pipe->pipe_cv, "pipe");
318 cv_init(&pipe->pipe_lkcv, "pipelk");
319 selinit(&pipe->pipe_sel);
320
321 if (allockva && (error = pipespace(pipe, PIPE_SIZE)))
322 return (error);
323
324 return (0);
325 }
326
327
328 /*
329 * Lock a pipe for I/O, blocking other access
330 * Called with pipe spin lock held.
331 * Return with pipe spin lock released on success.
332 */
333 static int
334 pipelock(struct pipe *pipe, int catch)
335 {
336 int error;
337
338 KASSERT(mutex_owned(&pipe->pipe_lock));
339
340 while (pipe->pipe_state & PIPE_LOCKFL) {
341 pipe->pipe_state |= PIPE_LWANT;
342 if (catch) {
343 error = cv_wait_sig(&pipe->pipe_lkcv,
344 &pipe->pipe_lock);
345 if (error != 0)
346 return error;
347 } else
348 cv_wait(&pipe->pipe_lkcv, &pipe->pipe_lock);
349 }
350
351 pipe->pipe_state |= PIPE_LOCKFL;
352 mutex_exit(&pipe->pipe_lock);
353
354 return 0;
355 }
356
357 /*
358 * unlock a pipe I/O lock
359 */
360 static inline void
361 pipeunlock(struct pipe *pipe)
362 {
363
364 KASSERT(pipe->pipe_state & PIPE_LOCKFL);
365
366 pipe->pipe_state &= ~PIPE_LOCKFL;
367 if (pipe->pipe_state & PIPE_LWANT) {
368 pipe->pipe_state &= ~PIPE_LWANT;
369 cv_broadcast(&pipe->pipe_lkcv);
370 }
371 }
372
373 /*
374 * Select/poll wakup. This also sends SIGIO to peer connected to
375 * 'sigpipe' side of pipe.
376 */
377 static void
378 pipeselwakeup(struct pipe *selp, struct pipe *sigp, int code)
379 {
380 int band;
381
382 selnotify(&selp->pipe_sel, NOTE_SUBMIT);
383
384 if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0)
385 return;
386
387 switch (code) {
388 case POLL_IN:
389 band = POLLIN|POLLRDNORM;
390 break;
391 case POLL_OUT:
392 band = POLLOUT|POLLWRNORM;
393 break;
394 case POLL_HUP:
395 band = POLLHUP;
396 break;
397 #if POLL_HUP != POLL_ERR
398 case POLL_ERR:
399 band = POLLERR;
400 break;
401 #endif
402 default:
403 band = 0;
404 #ifdef DIAGNOSTIC
405 printf("bad siginfo code %d in pipe notification.\n", code);
406 #endif
407 break;
408 }
409
410 fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp);
411 }
412
413 /* ARGSUSED */
414 static int
415 pipe_read(struct file *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
416 int flags)
417 {
418 struct pipe *rpipe = (struct pipe *) fp->f_data;
419 struct pipebuf *bp = &rpipe->pipe_buffer;
420 int error;
421 size_t nread = 0;
422 size_t size;
423 size_t ocnt;
424
425 mutex_enter(&rpipe->pipe_lock);
426 ++rpipe->pipe_busy;
427 ocnt = bp->cnt;
428
429 again:
430 error = pipelock(rpipe, 1);
431 if (error)
432 goto unlocked_error;
433
434 while (uio->uio_resid) {
435 /*
436 * normal pipe buffer receive
437 */
438 if (bp->cnt > 0) {
439 size = bp->size - bp->out;
440 if (size > bp->cnt)
441 size = bp->cnt;
442 if (size > uio->uio_resid)
443 size = uio->uio_resid;
444
445 error = uiomove((char *)bp->buffer + bp->out, size, uio);
446 if (error)
447 break;
448
449 bp->out += size;
450 if (bp->out >= bp->size)
451 bp->out = 0;
452
453 bp->cnt -= size;
454
455 /*
456 * If there is no more to read in the pipe, reset
457 * its pointers to the beginning. This improves
458 * cache hit stats.
459 */
460 if (bp->cnt == 0) {
461 bp->in = 0;
462 bp->out = 0;
463 }
464 nread += size;
465 continue;
466 }
467
468 /* Lock to see up-to-date value of pipe_status. */
469 mutex_enter(&rpipe->pipe_lock);
470
471 #ifndef PIPE_NODIRECT
472 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) {
473 /*
474 * Direct copy, bypassing a kernel buffer.
475 */
476 void * va;
477
478 KASSERT(rpipe->pipe_state & PIPE_DIRECTW);
479 mutex_exit(&rpipe->pipe_lock);
480
481 size = rpipe->pipe_map.cnt;
482 if (size > uio->uio_resid)
483 size = uio->uio_resid;
484
485 va = (char *)rpipe->pipe_map.kva + rpipe->pipe_map.pos;
486 error = uiomove(va, size, uio);
487 if (error)
488 break;
489 nread += size;
490 rpipe->pipe_map.pos += size;
491 rpipe->pipe_map.cnt -= size;
492 if (rpipe->pipe_map.cnt == 0) {
493 mutex_enter(&rpipe->pipe_lock);
494 rpipe->pipe_state &= ~PIPE_DIRECTR;
495 cv_broadcast(&rpipe->pipe_cv);
496 mutex_exit(&rpipe->pipe_lock);
497 }
498 continue;
499 }
500 #endif
501 /*
502 * Break if some data was read.
503 */
504 if (nread > 0) {
505 mutex_exit(&rpipe->pipe_lock);
506 break;
507 }
508
509 /*
510 * detect EOF condition
511 * read returns 0 on EOF, no need to set error
512 */
513 if (rpipe->pipe_state & PIPE_EOF) {
514 mutex_exit(&rpipe->pipe_lock);
515 break;
516 }
517
518 /*
519 * don't block on non-blocking I/O
520 */
521 if (fp->f_flag & FNONBLOCK) {
522 mutex_exit(&rpipe->pipe_lock);
523 error = EAGAIN;
524 break;
525 }
526
527 /*
528 * Unlock the pipe buffer for our remaining processing.
529 * We will either break out with an error or we will
530 * sleep and relock to loop.
531 */
532 pipeunlock(rpipe);
533
534 /*
535 * Re-check to see if more direct writes are pending.
536 */
537 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0)
538 goto again;
539
540 /*
541 * We want to read more, wake up select/poll.
542 */
543 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_IN);
544
545 /*
546 * If the "write-side" is blocked, wake it up now.
547 */
548 if (rpipe->pipe_state & PIPE_WANTW) {
549 rpipe->pipe_state &= ~PIPE_WANTW;
550 cv_broadcast(&rpipe->pipe_cv);
551 }
552
553 /* Now wait until the pipe is filled */
554 rpipe->pipe_state |= PIPE_WANTR;
555 error = cv_wait_sig(&rpipe->pipe_cv, &rpipe->pipe_lock);
556 if (error != 0)
557 goto unlocked_error;
558 goto again;
559 }
560
561 if (error == 0)
562 getmicrotime(&rpipe->pipe_atime);
563
564 mutex_enter(&rpipe->pipe_lock);
565 pipeunlock(rpipe);
566
567 unlocked_error:
568 --rpipe->pipe_busy;
569
570 /*
571 * PIPE_WANTCLOSE processing only makes sense if pipe_busy is 0.
572 */
573 if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANTCLOSE)) {
574 rpipe->pipe_state &= ~(PIPE_WANTCLOSE|PIPE_WANTW);
575 cv_broadcast(&rpipe->pipe_cv);
576 } else if (bp->cnt < MINPIPESIZE) {
577 /*
578 * Handle write blocking hysteresis.
579 */
580 if (rpipe->pipe_state & PIPE_WANTW) {
581 rpipe->pipe_state &= ~PIPE_WANTW;
582 cv_broadcast(&rpipe->pipe_cv);
583 }
584 }
585
586 /*
587 * If anything was read off the buffer, signal to the writer it's
588 * possible to write more data. Also send signal if we are here for the
589 * first time after last write.
590 */
591 if ((bp->size - bp->cnt) >= PIPE_BUF
592 && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
593 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
594 rpipe->pipe_state &= ~PIPE_SIGNALR;
595 }
596
597 mutex_exit(&rpipe->pipe_lock);
598 return (error);
599 }
600
601 #ifndef PIPE_NODIRECT
602 /*
603 * Allocate structure for loan transfer.
604 */
605 static int
606 pipe_loan_alloc(struct pipe *wpipe, int npages)
607 {
608 vsize_t len;
609
610 len = (vsize_t)npages << PAGE_SHIFT;
611 wpipe->pipe_map.kva = uvm_km_alloc(kernel_map, len, 0,
612 UVM_KMF_VAONLY | UVM_KMF_WAITVA);
613 if (wpipe->pipe_map.kva == 0)
614 return (ENOMEM);
615
616 amountpipekva += len;
617 wpipe->pipe_map.npages = npages;
618 wpipe->pipe_map.pgs = malloc(npages * sizeof(struct vm_page *), M_PIPE,
619 M_WAITOK);
620 return (0);
621 }
622
623 /*
624 * Free resources allocated for loan transfer.
625 */
626 static void
627 pipe_loan_free(struct pipe *wpipe)
628 {
629 vsize_t len;
630
631 len = (vsize_t)wpipe->pipe_map.npages << PAGE_SHIFT;
632 uvm_km_free(kernel_map, wpipe->pipe_map.kva, len, UVM_KMF_VAONLY);
633 wpipe->pipe_map.kva = 0;
634 amountpipekva -= len;
635 free(wpipe->pipe_map.pgs, M_PIPE);
636 wpipe->pipe_map.pgs = NULL;
637 }
638
639 /*
640 * NetBSD direct write, using uvm_loan() mechanism.
641 * This implements the pipe buffer write mechanism. Note that only
642 * a direct write OR a normal pipe write can be pending at any given time.
643 * If there are any characters in the pipe buffer, the direct write will
644 * be deferred until the receiving process grabs all of the bytes from
645 * the pipe buffer. Then the direct mapping write is set-up.
646 *
647 * Called with the long-term pipe lock held.
648 */
649 static int
650 pipe_direct_write(struct file *fp, struct pipe *wpipe, struct uio *uio)
651 {
652 int error, npages, j;
653 struct vm_page **pgs;
654 vaddr_t bbase, kva, base, bend;
655 vsize_t blen, bcnt;
656 voff_t bpos;
657
658 KASSERT(wpipe->pipe_map.cnt == 0);
659
660 /*
661 * Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers
662 * not aligned to PAGE_SIZE.
663 */
664 bbase = (vaddr_t)uio->uio_iov->iov_base;
665 base = trunc_page(bbase);
666 bend = round_page(bbase + uio->uio_iov->iov_len);
667 blen = bend - base;
668 bpos = bbase - base;
669
670 if (blen > PIPE_DIRECT_CHUNK) {
671 blen = PIPE_DIRECT_CHUNK;
672 bend = base + blen;
673 bcnt = PIPE_DIRECT_CHUNK - bpos;
674 } else {
675 bcnt = uio->uio_iov->iov_len;
676 }
677 npages = blen >> PAGE_SHIFT;
678
679 /*
680 * Free the old kva if we need more pages than we have
681 * allocated.
682 */
683 if (wpipe->pipe_map.kva != 0 && npages > wpipe->pipe_map.npages)
684 pipe_loan_free(wpipe);
685
686 /* Allocate new kva. */
687 if (wpipe->pipe_map.kva == 0) {
688 error = pipe_loan_alloc(wpipe, npages);
689 if (error)
690 return (error);
691 }
692
693 /* Loan the write buffer memory from writer process */
694 pgs = wpipe->pipe_map.pgs;
695 error = uvm_loan(&uio->uio_vmspace->vm_map, base, blen,
696 pgs, UVM_LOAN_TOPAGE);
697 if (error) {
698 pipe_loan_free(wpipe);
699 return (ENOMEM); /* so that caller fallback to ordinary write */
700 }
701
702 /* Enter the loaned pages to kva */
703 kva = wpipe->pipe_map.kva;
704 for (j = 0; j < npages; j++, kva += PAGE_SIZE) {
705 pmap_kenter_pa(kva, VM_PAGE_TO_PHYS(pgs[j]), VM_PROT_READ);
706 }
707 pmap_update(pmap_kernel());
708
709 /* Now we can put the pipe in direct write mode */
710 wpipe->pipe_map.pos = bpos;
711 wpipe->pipe_map.cnt = bcnt;
712
713 /*
714 * But before we can let someone do a direct read, we
715 * have to wait until the pipe is drained. Release the
716 * pipe lock while we wait.
717 */
718 mutex_enter(&wpipe->pipe_lock);
719 wpipe->pipe_state |= PIPE_DIRECTW;
720 pipeunlock(wpipe);
721
722 while (error == 0 && wpipe->pipe_buffer.cnt > 0) {
723 if (wpipe->pipe_state & PIPE_WANTR) {
724 wpipe->pipe_state &= ~PIPE_WANTR;
725 cv_broadcast(&wpipe->pipe_cv);
726 }
727
728 wpipe->pipe_state |= PIPE_WANTW;
729 error = cv_wait_sig(&wpipe->pipe_cv, &wpipe->pipe_lock);
730 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
731 error = EPIPE;
732 }
733
734 /* Pipe is drained; next read will off the direct buffer */
735 wpipe->pipe_state |= PIPE_DIRECTR;
736
737 /* Wait until the reader is done */
738 while (error == 0 && (wpipe->pipe_state & PIPE_DIRECTR)) {
739 if (wpipe->pipe_state & PIPE_WANTR) {
740 wpipe->pipe_state &= ~PIPE_WANTR;
741 cv_broadcast(&wpipe->pipe_cv);
742 }
743 pipeselwakeup(wpipe, wpipe, POLL_IN);
744 error = cv_wait_sig(&wpipe->pipe_cv, &wpipe->pipe_lock);
745 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
746 error = EPIPE;
747 }
748
749 /* Take pipe out of direct write mode */
750 wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTR);
751
752 /* Acquire the pipe lock and cleanup */
753 (void)pipelock(wpipe, 0);
754
755 if (pgs != NULL) {
756 pmap_kremove(wpipe->pipe_map.kva, blen);
757 uvm_unloan(pgs, npages, UVM_LOAN_TOPAGE);
758 }
759 if (error || amountpipekva > maxpipekva)
760 pipe_loan_free(wpipe);
761
762 if (error) {
763 pipeselwakeup(wpipe, wpipe, POLL_ERR);
764
765 /*
766 * If nothing was read from what we offered, return error
767 * straight on. Otherwise update uio resid first. Caller
768 * will deal with the error condition, returning short
769 * write, error, or restarting the write(2) as appropriate.
770 */
771 if (wpipe->pipe_map.cnt == bcnt) {
772 wpipe->pipe_map.cnt = 0;
773 cv_broadcast(&wpipe->pipe_cv);
774 return (error);
775 }
776
777 bcnt -= wpipe->pipe_map.cnt;
778 }
779
780 uio->uio_resid -= bcnt;
781 /* uio_offset not updated, not set/used for write(2) */
782 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt;
783 uio->uio_iov->iov_len -= bcnt;
784 if (uio->uio_iov->iov_len == 0) {
785 uio->uio_iov++;
786 uio->uio_iovcnt--;
787 }
788
789 wpipe->pipe_map.cnt = 0;
790 return (error);
791 }
792 #endif /* !PIPE_NODIRECT */
793
794 static int
795 pipe_write(struct file *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
796 int flags)
797 {
798 struct pipe *wpipe, *rpipe;
799 struct pipebuf *bp;
800 int error;
801
802 /* We want to write to our peer */
803 rpipe = (struct pipe *) fp->f_data;
804
805 retry:
806 error = 0;
807 mutex_enter(&rpipe->pipe_lock);
808 wpipe = rpipe->pipe_peer;
809
810 /*
811 * Detect loss of pipe read side, issue SIGPIPE if lost.
812 */
813 if (wpipe == NULL)
814 error = EPIPE;
815 else if (mutex_tryenter(&wpipe->pipe_lock) == 0) {
816 /* Deal with race for peer */
817 mutex_exit(&rpipe->pipe_lock);
818 /* XXX Might be about to deadlock w/kernel_lock. */
819 yield();
820 goto retry;
821 } else if ((wpipe->pipe_state & PIPE_EOF) != 0) {
822 mutex_exit(&wpipe->pipe_lock);
823 error = EPIPE;
824 }
825
826 mutex_exit(&rpipe->pipe_lock);
827 if (error != 0)
828 return (error);
829
830 ++wpipe->pipe_busy;
831
832 /* Aquire the long-term pipe lock */
833 if ((error = pipelock(wpipe,1)) != 0) {
834 --wpipe->pipe_busy;
835 if (wpipe->pipe_busy == 0
836 && (wpipe->pipe_state & PIPE_WANTCLOSE)) {
837 wpipe->pipe_state &= ~(PIPE_WANTCLOSE | PIPE_WANTR);
838 cv_broadcast(&wpipe->pipe_cv);
839 }
840 mutex_exit(&wpipe->pipe_lock);
841 return (error);
842 }
843
844 bp = &wpipe->pipe_buffer;
845
846 /*
847 * If it is advantageous to resize the pipe buffer, do so.
848 */
849 if ((uio->uio_resid > PIPE_SIZE) &&
850 (nbigpipe < maxbigpipes) &&
851 #ifndef PIPE_NODIRECT
852 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
853 #endif
854 (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) {
855
856 if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
857 nbigpipe++;
858 }
859
860 while (uio->uio_resid) {
861 size_t space;
862
863 #ifndef PIPE_NODIRECT
864 /*
865 * Pipe buffered writes cannot be coincidental with
866 * direct writes. Also, only one direct write can be
867 * in progress at any one time. We wait until the currently
868 * executing direct write is completed before continuing.
869 *
870 * We break out if a signal occurs or the reader goes away.
871 */
872 while (error == 0 && wpipe->pipe_state & PIPE_DIRECTW) {
873 mutex_enter(&wpipe->pipe_lock);
874 if (wpipe->pipe_state & PIPE_WANTR) {
875 wpipe->pipe_state &= ~PIPE_WANTR;
876 cv_broadcast(&wpipe->pipe_cv);
877 }
878 pipeunlock(wpipe);
879 error = cv_wait_sig(&wpipe->pipe_cv,
880 &wpipe->pipe_lock);
881
882 (void)pipelock(wpipe, 0);
883 if (wpipe->pipe_state & PIPE_EOF)
884 error = EPIPE;
885 }
886 if (error)
887 break;
888
889 /*
890 * If the transfer is large, we can gain performance if
891 * we do process-to-process copies directly.
892 * If the write is non-blocking, we don't use the
893 * direct write mechanism.
894 *
895 * The direct write mechanism will detect the reader going
896 * away on us.
897 */
898 if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
899 (fp->f_flag & FNONBLOCK) == 0 &&
900 (wpipe->pipe_map.kva || (amountpipekva < limitpipekva))) {
901 error = pipe_direct_write(fp, wpipe, uio);
902
903 /*
904 * Break out if error occurred, unless it's ENOMEM.
905 * ENOMEM means we failed to allocate some resources
906 * for direct write, so we just fallback to ordinary
907 * write. If the direct write was successful,
908 * process rest of data via ordinary write.
909 */
910 if (error == 0)
911 continue;
912
913 if (error != ENOMEM)
914 break;
915 }
916 #endif /* PIPE_NODIRECT */
917
918 space = bp->size - bp->cnt;
919
920 /* Writes of size <= PIPE_BUF must be atomic. */
921 if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
922 space = 0;
923
924 if (space > 0) {
925 int size; /* Transfer size */
926 int segsize; /* first segment to transfer */
927
928 /*
929 * Transfer size is minimum of uio transfer
930 * and free space in pipe buffer.
931 */
932 if (space > uio->uio_resid)
933 size = uio->uio_resid;
934 else
935 size = space;
936 /*
937 * First segment to transfer is minimum of
938 * transfer size and contiguous space in
939 * pipe buffer. If first segment to transfer
940 * is less than the transfer size, we've got
941 * a wraparound in the buffer.
942 */
943 segsize = bp->size - bp->in;
944 if (segsize > size)
945 segsize = size;
946
947 /* Transfer first segment */
948 error = uiomove((char *)bp->buffer + bp->in, segsize,
949 uio);
950
951 if (error == 0 && segsize < size) {
952 /*
953 * Transfer remaining part now, to
954 * support atomic writes. Wraparound
955 * happened.
956 */
957 #ifdef DEBUG
958 if (bp->in + segsize != bp->size)
959 panic("Expected pipe buffer wraparound disappeared");
960 #endif
961
962 error = uiomove(bp->buffer,
963 size - segsize, uio);
964 }
965 if (error)
966 break;
967
968 bp->in += size;
969 if (bp->in >= bp->size) {
970 #ifdef DEBUG
971 if (bp->in != size - segsize + bp->size)
972 panic("Expected wraparound bad");
973 #endif
974 bp->in = size - segsize;
975 }
976
977 bp->cnt += size;
978 #ifdef DEBUG
979 if (bp->cnt > bp->size)
980 panic("Pipe buffer overflow");
981 #endif
982 } else {
983 /*
984 * If the "read-side" has been blocked, wake it up now.
985 */
986 mutex_enter(&wpipe->pipe_lock);
987 if (wpipe->pipe_state & PIPE_WANTR) {
988 wpipe->pipe_state &= ~PIPE_WANTR;
989 cv_broadcast(&wpipe->pipe_cv);
990 }
991 mutex_exit(&wpipe->pipe_lock);
992
993 /*
994 * don't block on non-blocking I/O
995 */
996 if (fp->f_flag & FNONBLOCK) {
997 error = EAGAIN;
998 break;
999 }
1000
1001 /*
1002 * We have no more space and have something to offer,
1003 * wake up select/poll.
1004 */
1005 if (bp->cnt)
1006 pipeselwakeup(wpipe, wpipe, POLL_OUT);
1007
1008 mutex_enter(&wpipe->pipe_lock);
1009 pipeunlock(wpipe);
1010 wpipe->pipe_state |= PIPE_WANTW;
1011 error = cv_wait_sig(&wpipe->pipe_cv,
1012 &wpipe->pipe_lock);
1013 (void)pipelock(wpipe, 0);
1014 if (error != 0)
1015 break;
1016 /*
1017 * If read side wants to go away, we just issue a signal
1018 * to ourselves.
1019 */
1020 if (wpipe->pipe_state & PIPE_EOF) {
1021 error = EPIPE;
1022 break;
1023 }
1024 }
1025 }
1026
1027 mutex_enter(&wpipe->pipe_lock);
1028 --wpipe->pipe_busy;
1029 if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANTCLOSE)) {
1030 wpipe->pipe_state &= ~(PIPE_WANTCLOSE | PIPE_WANTR);
1031 cv_broadcast(&wpipe->pipe_cv);
1032 } else if (bp->cnt > 0) {
1033 /*
1034 * If we have put any characters in the buffer, we wake up
1035 * the reader.
1036 */
1037 if (wpipe->pipe_state & PIPE_WANTR) {
1038 wpipe->pipe_state &= ~PIPE_WANTR;
1039 cv_broadcast(&wpipe->pipe_cv);
1040 }
1041 }
1042
1043 /*
1044 * Don't return EPIPE if I/O was successful
1045 */
1046 if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0)
1047 error = 0;
1048
1049 if (error == 0)
1050 getmicrotime(&wpipe->pipe_mtime);
1051
1052 /*
1053 * We have something to offer, wake up select/poll.
1054 * wpipe->pipe_map.cnt is always 0 in this point (direct write
1055 * is only done synchronously), so check only wpipe->pipe_buffer.cnt
1056 */
1057 if (bp->cnt)
1058 pipeselwakeup(wpipe, wpipe, POLL_OUT);
1059
1060 /*
1061 * Arrange for next read(2) to do a signal.
1062 */
1063 wpipe->pipe_state |= PIPE_SIGNALR;
1064
1065 pipeunlock(wpipe);
1066 mutex_exit(&wpipe->pipe_lock);
1067 return (error);
1068 }
1069
1070 /*
1071 * we implement a very minimal set of ioctls for compatibility with sockets.
1072 */
1073 int
1074 pipe_ioctl(struct file *fp, u_long cmd, void *data, struct lwp *l)
1075 {
1076 struct pipe *pipe = (struct pipe *)fp->f_data;
1077 struct proc *p = l->l_proc;
1078
1079 switch (cmd) {
1080
1081 case FIONBIO:
1082 return (0);
1083
1084 case FIOASYNC:
1085 mutex_enter(&pipe->pipe_lock);
1086 if (*(int *)data) {
1087 pipe->pipe_state |= PIPE_ASYNC;
1088 } else {
1089 pipe->pipe_state &= ~PIPE_ASYNC;
1090 }
1091 mutex_exit(&pipe->pipe_lock);
1092 return (0);
1093
1094 case FIONREAD:
1095 mutex_enter(&pipe->pipe_lock);
1096 #ifndef PIPE_NODIRECT
1097 if (pipe->pipe_state & PIPE_DIRECTW)
1098 *(int *)data = pipe->pipe_map.cnt;
1099 else
1100 #endif
1101 *(int *)data = pipe->pipe_buffer.cnt;
1102 mutex_exit(&pipe->pipe_lock);
1103 return (0);
1104
1105 case FIONWRITE:
1106 /* Look at other side */
1107 rw_enter(&pipe_peer_lock, RW_READER);
1108 pipe = pipe->pipe_peer;
1109 mutex_enter(&pipe->pipe_lock);
1110 #ifndef PIPE_NODIRECT
1111 if (pipe->pipe_state & PIPE_DIRECTW)
1112 *(int *)data = pipe->pipe_map.cnt;
1113 else
1114 #endif
1115 *(int *)data = pipe->pipe_buffer.cnt;
1116 mutex_exit(&pipe->pipe_lock);
1117 rw_exit(&pipe_peer_lock);
1118 return (0);
1119
1120 case FIONSPACE:
1121 /* Look at other side */
1122 rw_enter(&pipe_peer_lock, RW_READER);
1123 pipe = pipe->pipe_peer;
1124 mutex_enter(&pipe->pipe_lock);
1125 #ifndef PIPE_NODIRECT
1126 /*
1127 * If we're in direct-mode, we don't really have a
1128 * send queue, and any other write will block. Thus
1129 * zero seems like the best answer.
1130 */
1131 if (pipe->pipe_state & PIPE_DIRECTW)
1132 *(int *)data = 0;
1133 else
1134 #endif
1135 *(int *)data = pipe->pipe_buffer.size -
1136 pipe->pipe_buffer.cnt;
1137 mutex_exit(&pipe->pipe_lock);
1138 rw_exit(&pipe_peer_lock);
1139 return (0);
1140
1141 case TIOCSPGRP:
1142 case FIOSETOWN:
1143 return fsetown(p, &pipe->pipe_pgid, cmd, data);
1144
1145 case TIOCGPGRP:
1146 case FIOGETOWN:
1147 return fgetown(p, pipe->pipe_pgid, cmd, data);
1148
1149 }
1150 return (EPASSTHROUGH);
1151 }
1152
1153 int
1154 pipe_poll(struct file *fp, int events, struct lwp *l)
1155 {
1156 struct pipe *rpipe = (struct pipe *)fp->f_data;
1157 struct pipe *wpipe;
1158 int eof = 0;
1159 int revents = 0;
1160
1161 retry:
1162 mutex_enter(&rpipe->pipe_lock);
1163 wpipe = rpipe->pipe_peer;
1164 if (wpipe != NULL && mutex_tryenter(&wpipe->pipe_lock) == 0) {
1165 /* Deal with race for peer */
1166 mutex_exit(&rpipe->pipe_lock);
1167 /* XXX Might be about to deadlock w/kernel_lock. */
1168 yield();
1169 goto retry;
1170 }
1171
1172 if (events & (POLLIN | POLLRDNORM))
1173 if ((rpipe->pipe_buffer.cnt > 0) ||
1174 #ifndef PIPE_NODIRECT
1175 (rpipe->pipe_state & PIPE_DIRECTR) ||
1176 #endif
1177 (rpipe->pipe_state & PIPE_EOF))
1178 revents |= events & (POLLIN | POLLRDNORM);
1179
1180 eof |= (rpipe->pipe_state & PIPE_EOF);
1181 mutex_exit(&rpipe->pipe_lock);
1182
1183 if (wpipe == NULL)
1184 revents |= events & (POLLOUT | POLLWRNORM);
1185 else {
1186 if (events & (POLLOUT | POLLWRNORM))
1187 if ((wpipe->pipe_state & PIPE_EOF) || (
1188 #ifndef PIPE_NODIRECT
1189 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
1190 #endif
1191 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1192 revents |= events & (POLLOUT | POLLWRNORM);
1193
1194 eof |= (wpipe->pipe_state & PIPE_EOF);
1195 mutex_exit(&wpipe->pipe_lock);
1196 }
1197
1198 if (wpipe == NULL || eof)
1199 revents |= POLLHUP;
1200
1201 if (revents == 0) {
1202 if (events & (POLLIN | POLLRDNORM))
1203 selrecord(l, &rpipe->pipe_sel);
1204
1205 if (events & (POLLOUT | POLLWRNORM))
1206 selrecord(l, &wpipe->pipe_sel);
1207 }
1208
1209 return (revents);
1210 }
1211
1212 static int
1213 pipe_stat(struct file *fp, struct stat *ub, struct lwp *l)
1214 {
1215 struct pipe *pipe = (struct pipe *)fp->f_data;
1216
1217 rw_enter(&pipe_peer_lock, RW_READER);
1218
1219 memset((void *)ub, 0, sizeof(*ub));
1220 ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
1221 ub->st_blksize = pipe->pipe_buffer.size;
1222 if (ub->st_blksize == 0 && pipe->pipe_peer)
1223 ub->st_blksize = pipe->pipe_peer->pipe_buffer.size;
1224 ub->st_size = pipe->pipe_buffer.cnt;
1225 ub->st_blocks = (ub->st_size) ? 1 : 0;
1226 TIMEVAL_TO_TIMESPEC(&pipe->pipe_atime, &ub->st_atimespec);
1227 TIMEVAL_TO_TIMESPEC(&pipe->pipe_mtime, &ub->st_mtimespec);
1228 TIMEVAL_TO_TIMESPEC(&pipe->pipe_ctime, &ub->st_ctimespec);
1229 ub->st_uid = kauth_cred_geteuid(fp->f_cred);
1230 ub->st_gid = kauth_cred_getegid(fp->f_cred);
1231
1232 rw_exit(&pipe_peer_lock);
1233
1234 /*
1235 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1236 * XXX (st_dev, st_ino) should be unique.
1237 */
1238 return (0);
1239 }
1240
1241 /* ARGSUSED */
1242 static int
1243 pipe_close(struct file *fp, struct lwp *l)
1244 {
1245 struct pipe *pipe = (struct pipe *)fp->f_data;
1246
1247 fp->f_data = NULL;
1248 pipeclose(fp, pipe);
1249 return (0);
1250 }
1251
1252 static void
1253 pipe_free_kmem(struct pipe *pipe)
1254 {
1255
1256 if (pipe->pipe_buffer.buffer != NULL) {
1257 if (pipe->pipe_buffer.size > PIPE_SIZE)
1258 --nbigpipe;
1259 amountpipekva -= pipe->pipe_buffer.size;
1260 uvm_km_free(kernel_map,
1261 (vaddr_t)pipe->pipe_buffer.buffer,
1262 pipe->pipe_buffer.size, UVM_KMF_PAGEABLE);
1263 pipe->pipe_buffer.buffer = NULL;
1264 }
1265 #ifndef PIPE_NODIRECT
1266 if (pipe->pipe_map.kva != 0) {
1267 pipe_loan_free(pipe);
1268 pipe->pipe_map.cnt = 0;
1269 pipe->pipe_map.kva = 0;
1270 pipe->pipe_map.pos = 0;
1271 pipe->pipe_map.npages = 0;
1272 }
1273 #endif /* !PIPE_NODIRECT */
1274 }
1275
1276 /*
1277 * shutdown the pipe
1278 */
1279 static void
1280 pipeclose(struct file *fp, struct pipe *pipe)
1281 {
1282 struct pipe *ppipe;
1283
1284 if (pipe == NULL)
1285 return;
1286
1287 retry:
1288 rw_enter(&pipe_peer_lock, RW_WRITER);
1289 mutex_enter(&pipe->pipe_lock);
1290
1291 pipeselwakeup(pipe, pipe, POLL_HUP);
1292
1293 /*
1294 * If the other side is blocked, wake it up saying that
1295 * we want to close it down.
1296 */
1297 pipe->pipe_state |= PIPE_EOF;
1298 if (pipe->pipe_busy) {
1299 rw_exit(&pipe_peer_lock);
1300 while (pipe->pipe_busy) {
1301 cv_broadcast(&pipe->pipe_cv);
1302 pipe->pipe_state |= PIPE_WANTCLOSE;
1303 cv_wait_sig(&pipe->pipe_cv, &pipe->pipe_lock);
1304 }
1305 if (!rw_tryenter(&pipe_peer_lock, RW_READER)) {
1306 mutex_exit(&pipe->pipe_lock);
1307 /* XXX Might be about to deadlock w/kernel_lock. */
1308 yield();
1309 goto retry;
1310 }
1311 }
1312
1313 /*
1314 * Disconnect from peer
1315 */
1316 if ((ppipe = pipe->pipe_peer) != NULL) {
1317 /* Deal with race for peer */
1318 if (mutex_tryenter(&ppipe->pipe_lock) == 0) {
1319 mutex_exit(&pipe->pipe_lock);
1320 rw_exit(&pipe_peer_lock);
1321 /* XXX Might be about to deadlock w/kernel_lock. */
1322 yield();
1323 goto retry;
1324 }
1325 pipeselwakeup(ppipe, ppipe, POLL_HUP);
1326
1327 ppipe->pipe_state |= PIPE_EOF;
1328 cv_broadcast(&ppipe->pipe_cv);
1329 ppipe->pipe_peer = NULL;
1330 mutex_exit(&ppipe->pipe_lock);
1331 }
1332
1333 KASSERT((pipe->pipe_state & PIPE_LOCKFL) == 0);
1334
1335 mutex_exit(&pipe->pipe_lock);
1336 rw_exit(&pipe_peer_lock);
1337
1338 /*
1339 * free resources
1340 */
1341 pipe_free_kmem(pipe);
1342 mutex_destroy(&pipe->pipe_lock);
1343 cv_destroy(&pipe->pipe_cv);
1344 cv_destroy(&pipe->pipe_lkcv);
1345 seldestroy(&pipe->pipe_sel);
1346 pool_put(&pipe_pool, pipe);
1347 }
1348
1349 static void
1350 filt_pipedetach(struct knote *kn)
1351 {
1352 struct pipe *pipe = (struct pipe *)kn->kn_fp->f_data;
1353
1354 rw_enter(&pipe_peer_lock, RW_READER);
1355
1356 switch(kn->kn_filter) {
1357 case EVFILT_WRITE:
1358 /* need the peer structure, not our own */
1359 pipe = pipe->pipe_peer;
1360
1361 /* if reader end already closed, just return */
1362 if (pipe == NULL) {
1363 rw_exit(&pipe_peer_lock);
1364 return;
1365 }
1366
1367 break;
1368 default:
1369 /* nothing to do */
1370 break;
1371 }
1372
1373 #ifdef DIAGNOSTIC
1374 if (kn->kn_hook != pipe)
1375 panic("filt_pipedetach: inconsistent knote");
1376 #endif
1377
1378 mutex_enter(&pipe->pipe_lock);
1379 SLIST_REMOVE(&pipe->pipe_sel.sel_klist, kn, knote, kn_selnext);
1380 mutex_exit(&pipe->pipe_lock);
1381 rw_exit(&pipe_peer_lock);
1382 }
1383
1384 /*ARGSUSED*/
1385 static int
1386 filt_piperead(struct knote *kn, long hint)
1387 {
1388 struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1389 struct pipe *wpipe;
1390
1391 if ((hint & NOTE_SUBMIT) == 0) {
1392 rw_enter(&pipe_peer_lock, RW_READER);
1393 mutex_enter(&rpipe->pipe_lock);
1394 }
1395 wpipe = rpipe->pipe_peer;
1396 kn->kn_data = rpipe->pipe_buffer.cnt;
1397
1398 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1399 kn->kn_data = rpipe->pipe_map.cnt;
1400
1401 if ((rpipe->pipe_state & PIPE_EOF) ||
1402 (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1403 kn->kn_flags |= EV_EOF;
1404 if ((hint & NOTE_SUBMIT) == 0) {
1405 mutex_exit(&rpipe->pipe_lock);
1406 rw_exit(&pipe_peer_lock);
1407 }
1408 return (1);
1409 }
1410
1411 if ((hint & NOTE_SUBMIT) == 0) {
1412 mutex_exit(&rpipe->pipe_lock);
1413 rw_exit(&pipe_peer_lock);
1414 }
1415 return (kn->kn_data > 0);
1416 }
1417
1418 /*ARGSUSED*/
1419 static int
1420 filt_pipewrite(struct knote *kn, long hint)
1421 {
1422 struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1423 struct pipe *wpipe;
1424
1425 if ((hint & NOTE_SUBMIT) == 0) {
1426 rw_enter(&pipe_peer_lock, RW_READER);
1427 mutex_enter(&rpipe->pipe_lock);
1428 }
1429 wpipe = rpipe->pipe_peer;
1430
1431 if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1432 kn->kn_data = 0;
1433 kn->kn_flags |= EV_EOF;
1434 if ((hint & NOTE_SUBMIT) == 0) {
1435 mutex_exit(&rpipe->pipe_lock);
1436 rw_exit(&pipe_peer_lock);
1437 }
1438 return (1);
1439 }
1440 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1441 if (wpipe->pipe_state & PIPE_DIRECTW)
1442 kn->kn_data = 0;
1443
1444 if ((hint & NOTE_SUBMIT) == 0) {
1445 mutex_exit(&rpipe->pipe_lock);
1446 rw_exit(&pipe_peer_lock);
1447 }
1448 return (kn->kn_data >= PIPE_BUF);
1449 }
1450
1451 static const struct filterops pipe_rfiltops =
1452 { 1, NULL, filt_pipedetach, filt_piperead };
1453 static const struct filterops pipe_wfiltops =
1454 { 1, NULL, filt_pipedetach, filt_pipewrite };
1455
1456 /*ARGSUSED*/
1457 static int
1458 pipe_kqfilter(struct file *fp, struct knote *kn)
1459 {
1460 struct pipe *pipe;
1461
1462 rw_enter(&pipe_peer_lock, RW_READER);
1463 pipe = (struct pipe *)kn->kn_fp->f_data;
1464
1465 switch (kn->kn_filter) {
1466 case EVFILT_READ:
1467 kn->kn_fop = &pipe_rfiltops;
1468 break;
1469 case EVFILT_WRITE:
1470 kn->kn_fop = &pipe_wfiltops;
1471 pipe = pipe->pipe_peer;
1472 if (pipe == NULL) {
1473 /* other end of pipe has been closed */
1474 rw_exit(&pipe_peer_lock);
1475 return (EBADF);
1476 }
1477 break;
1478 default:
1479 rw_exit(&pipe_peer_lock);
1480 return (1);
1481 }
1482
1483 kn->kn_hook = pipe;
1484 mutex_enter(&pipe->pipe_lock);
1485 SLIST_INSERT_HEAD(&pipe->pipe_sel.sel_klist, kn, kn_selnext);
1486 mutex_exit(&pipe->pipe_lock);
1487 rw_exit(&pipe_peer_lock);
1488
1489 return (0);
1490 }
1491
1492 /*
1493 * Handle pipe sysctls.
1494 */
1495 SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup")
1496 {
1497
1498 sysctl_createv(clog, 0, NULL, NULL,
1499 CTLFLAG_PERMANENT,
1500 CTLTYPE_NODE, "kern", NULL,
1501 NULL, 0, NULL, 0,
1502 CTL_KERN, CTL_EOL);
1503 sysctl_createv(clog, 0, NULL, NULL,
1504 CTLFLAG_PERMANENT,
1505 CTLTYPE_NODE, "pipe",
1506 SYSCTL_DESCR("Pipe settings"),
1507 NULL, 0, NULL, 0,
1508 CTL_KERN, KERN_PIPE, CTL_EOL);
1509
1510 sysctl_createv(clog, 0, NULL, NULL,
1511 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1512 CTLTYPE_INT, "maxkvasz",
1513 SYSCTL_DESCR("Maximum amount of kernel memory to be "
1514 "used for pipes"),
1515 NULL, 0, &maxpipekva, 0,
1516 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXKVASZ, CTL_EOL);
1517 sysctl_createv(clog, 0, NULL, NULL,
1518 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1519 CTLTYPE_INT, "maxloankvasz",
1520 SYSCTL_DESCR("Limit for direct transfers via page loan"),
1521 NULL, 0, &limitpipekva, 0,
1522 CTL_KERN, KERN_PIPE, KERN_PIPE_LIMITKVA, CTL_EOL);
1523 sysctl_createv(clog, 0, NULL, NULL,
1524 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1525 CTLTYPE_INT, "maxbigpipes",
1526 SYSCTL_DESCR("Maximum number of \"big\" pipes"),
1527 NULL, 0, &maxbigpipes, 0,
1528 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL);
1529 sysctl_createv(clog, 0, NULL, NULL,
1530 CTLFLAG_PERMANENT,
1531 CTLTYPE_INT, "nbigpipes",
1532 SYSCTL_DESCR("Number of \"big\" pipes"),
1533 NULL, 0, &nbigpipe, 0,
1534 CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL);
1535 sysctl_createv(clog, 0, NULL, NULL,
1536 CTLFLAG_PERMANENT,
1537 CTLTYPE_INT, "kvasize",
1538 SYSCTL_DESCR("Amount of kernel memory consumed by pipe "
1539 "buffers"),
1540 NULL, 0, &amountpipekva, 0,
1541 CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL);
1542 }
1543