sys_pipe.c revision 1.87.2.2 1 /* $NetBSD: sys_pipe.c,v 1.87.2.2 2007/12/15 01:42:43 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2003, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1996 John S. Dyson
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice immediately at the beginning of the file, without modification,
48 * this list of conditions, and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. Absolutely no warranty of function or purpose is made by the author
53 * John S. Dyson.
54 * 4. Modifications may be freely made to this file if the above conditions
55 * are met.
56 *
57 * $FreeBSD: src/sys/kern/sys_pipe.c,v 1.95 2002/03/09 22:06:31 alfred Exp $
58 */
59
60 /*
61 * This file contains a high-performance replacement for the socket-based
62 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support
63 * all features of sockets, but does do everything that pipes normally
64 * do.
65 *
66 * Adaption for NetBSD UVM, including uvm_loan() based direct write, was
67 * written by Jaromir Dolecek.
68 */
69
70 /*
71 * This code has two modes of operation, a small write mode and a large
72 * write mode. The small write mode acts like conventional pipes with
73 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
74 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
75 * and PIPE_SIZE in size it is mapped read-only into the kernel address space
76 * using the UVM page loan facility from where the receiving process can copy
77 * the data directly from the pages in the sending process.
78 *
79 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
80 * happen for small transfers so that the system will not spend all of
81 * its time context switching. PIPE_SIZE is constrained by the
82 * amount of kernel virtual memory.
83 */
84
85 #include <sys/cdefs.h>
86 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.87.2.2 2007/12/15 01:42:43 ad Exp $");
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/proc.h>
91 #include <sys/fcntl.h>
92 #include <sys/file.h>
93 #include <sys/filedesc.h>
94 #include <sys/filio.h>
95 #include <sys/kernel.h>
96 #include <sys/ttycom.h>
97 #include <sys/stat.h>
98 #include <sys/malloc.h>
99 #include <sys/poll.h>
100 #include <sys/signalvar.h>
101 #include <sys/vnode.h>
102 #include <sys/uio.h>
103 #include <sys/lock.h>
104 #include <sys/select.h>
105 #include <sys/mount.h>
106 #include <sys/syscallargs.h>
107 #include <uvm/uvm.h>
108 #include <sys/sysctl.h>
109 #include <sys/kauth.h>
110
111 #include <sys/pipe.h>
112
113 /*
114 * Use this define if you want to disable *fancy* VM things. Expect an
115 * approx 30% decrease in transfer rate.
116 */
117 /* #define PIPE_NODIRECT */
118
119 /*
120 * interfaces to the outside world
121 */
122 static int pipe_read(struct file *fp, off_t *offset, struct uio *uio,
123 kauth_cred_t cred, int flags);
124 static int pipe_write(struct file *fp, off_t *offset, struct uio *uio,
125 kauth_cred_t cred, int flags);
126 static int pipe_close(struct file *fp, struct lwp *l);
127 static int pipe_poll(struct file *fp, int events, struct lwp *l);
128 static int pipe_kqfilter(struct file *fp, struct knote *kn);
129 static int pipe_stat(struct file *fp, struct stat *sb, struct lwp *l);
130 static int pipe_ioctl(struct file *fp, u_long cmd, void *data,
131 struct lwp *l);
132
133 static const struct fileops pipeops = {
134 pipe_read, pipe_write, pipe_ioctl, fnullop_fcntl, pipe_poll,
135 pipe_stat, pipe_close, pipe_kqfilter
136 };
137
138 /*
139 * Single mutex shared between both ends of the pipe.
140 */
141
142 struct pipe_mutex {
143 kmutex_t pm_mutex;
144 u_int pm_refcnt;
145 };
146
147 /*
148 * Default pipe buffer size(s), this can be kind-of large now because pipe
149 * space is pageable. The pipe code will try to maintain locality of
150 * reference for performance reasons, so small amounts of outstanding I/O
151 * will not wipe the cache.
152 */
153 #define MINPIPESIZE (PIPE_SIZE/3)
154 #define MAXPIPESIZE (2*PIPE_SIZE/3)
155
156 /*
157 * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
158 * is there so that on large systems, we don't exhaust it.
159 */
160 #define MAXPIPEKVA (8*1024*1024)
161 static int maxpipekva = MAXPIPEKVA;
162
163 /*
164 * Limit for direct transfers, we cannot, of course limit
165 * the amount of kva for pipes in general though.
166 */
167 #define LIMITPIPEKVA (16*1024*1024)
168 static int limitpipekva = LIMITPIPEKVA;
169
170 /*
171 * Limit the number of "big" pipes
172 */
173 #define LIMITBIGPIPES 32
174 static int maxbigpipes = LIMITBIGPIPES;
175 static int nbigpipe = 0;
176
177 /*
178 * Amount of KVA consumed by pipe buffers.
179 */
180 static int amountpipekva = 0;
181
182 MALLOC_DEFINE(M_PIPE, "pipe", "Pipe structures");
183
184 static void pipeclose(struct file *fp, struct pipe *pipe);
185 static void pipe_free_kmem(struct pipe *pipe);
186 static int pipe_create(struct pipe **pipep, int allockva, struct pipe_mutex *);
187 static int pipelock(struct pipe *pipe, int catch);
188 static inline void pipeunlock(struct pipe *pipe);
189 static void pipeselwakeup(struct pipe *pipe, struct pipe *sigp, int code);
190 #ifndef PIPE_NODIRECT
191 static int pipe_direct_write(struct file *fp, struct pipe *wpipe,
192 struct uio *uio);
193 #endif
194 static int pipespace(struct pipe *pipe, int size);
195
196 #ifndef PIPE_NODIRECT
197 static int pipe_loan_alloc(struct pipe *, int);
198 static void pipe_loan_free(struct pipe *);
199 #endif /* PIPE_NODIRECT */
200
201 static int pipe_mutex_ctor(void *, void *, int);
202 static void pipe_mutex_dtor(void *, void *);
203
204 static pool_cache_t pipe_cache;
205 static pool_cache_t pipe_mutex_cache;
206
207 void
208 pipe_init(void)
209 {
210 size_t size;
211
212 pipe_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "pipepl",
213 NULL, IPL_NONE, NULL, NULL, NULL);
214 KASSERT(pipe_cache != NULL);
215
216 size = (sizeof(struct pipe_mutex) + (CACHE_LINE_SIZE - 1)) &
217 (CACHE_LINE_SIZE - 1);
218 pipe_mutex_cache = pool_cache_init(size, CACHE_LINE_SIZE,
219 0, 0, "pipemtxpl", NULL, IPL_NONE, pipe_mutex_ctor,
220 pipe_mutex_dtor, NULL);
221 KASSERT(pipe_cache != NULL);
222 }
223
224 static int
225 pipe_mutex_ctor(void *arg, void *obj, int flag)
226 {
227 struct pipe_mutex *pm = obj;
228
229 mutex_init(&pm->pm_mutex, MUTEX_DEFAULT, IPL_NONE);
230 pm->pm_refcnt = 0;
231
232 return 0;
233 }
234
235 static void
236 pipe_mutex_dtor(void *arg, void *obj)
237 {
238 struct pipe_mutex *pm = obj;
239
240 KASSERT(pm->pm_refcnt == 0);
241
242 mutex_destroy(&pm->pm_mutex);
243 }
244
245 /*
246 * The pipe system call for the DTYPE_PIPE type of pipes
247 */
248
249 /* ARGSUSED */
250 int
251 sys_pipe(struct lwp *l, void *v, register_t *retval)
252 {
253 struct file *rf, *wf;
254 struct pipe *rpipe, *wpipe;
255 struct pipe_mutex *mutex;
256 int fd, error;
257
258 rpipe = wpipe = NULL;
259 mutex = pool_cache_get(pipe_mutex_cache, PR_WAITOK);
260 if (mutex == NULL)
261 return (ENOMEM);
262 if (pipe_create(&rpipe, 1, mutex) || pipe_create(&wpipe, 0, mutex)) {
263 pipeclose(NULL, rpipe);
264 pipeclose(NULL, wpipe);
265 return (ENFILE);
266 }
267
268 /*
269 * Note: the file structure returned from falloc() is marked
270 * as 'larval' initially. Unless we mark it as 'mature' by
271 * FILE_SET_MATURE(), any attempt to do anything with it would
272 * return EBADF, including e.g. dup(2) or close(2). This avoids
273 * file descriptor races if we block in the second falloc().
274 */
275
276 error = falloc(l, &rf, &fd);
277 if (error)
278 goto free2;
279 retval[0] = fd;
280 rf->f_flag = FREAD;
281 rf->f_type = DTYPE_PIPE;
282 rf->f_data = (void *)rpipe;
283 rf->f_ops = &pipeops;
284
285 error = falloc(l, &wf, &fd);
286 if (error)
287 goto free3;
288 retval[1] = fd;
289 wf->f_flag = FWRITE;
290 wf->f_type = DTYPE_PIPE;
291 wf->f_data = (void *)wpipe;
292 wf->f_ops = &pipeops;
293
294 rpipe->pipe_peer = wpipe;
295 wpipe->pipe_peer = rpipe;
296
297 FILE_SET_MATURE(rf);
298 FILE_SET_MATURE(wf);
299 FILE_UNUSE(rf, l);
300 FILE_UNUSE(wf, l);
301 return (0);
302 free3:
303 FILE_UNUSE(rf, l);
304 ffree(rf);
305 fdremove(l->l_proc->p_fd, retval[0]);
306 free2:
307 pipeclose(NULL, wpipe);
308 pipeclose(NULL, rpipe);
309
310 return (error);
311 }
312
313 /*
314 * Allocate kva for pipe circular buffer, the space is pageable
315 * This routine will 'realloc' the size of a pipe safely, if it fails
316 * it will retain the old buffer.
317 * If it fails it will return ENOMEM.
318 */
319 static int
320 pipespace(struct pipe *pipe, int size)
321 {
322 void *buffer;
323 /*
324 * Allocate pageable virtual address space. Physical memory is
325 * allocated on demand.
326 */
327 buffer = (void *) uvm_km_alloc(kernel_map, round_page(size), 0,
328 UVM_KMF_PAGEABLE);
329 if (buffer == NULL)
330 return (ENOMEM);
331
332 /* free old resources if we're resizing */
333 pipe_free_kmem(pipe);
334 pipe->pipe_buffer.buffer = buffer;
335 pipe->pipe_buffer.size = size;
336 pipe->pipe_buffer.in = 0;
337 pipe->pipe_buffer.out = 0;
338 pipe->pipe_buffer.cnt = 0;
339 amountpipekva += pipe->pipe_buffer.size;
340 return (0);
341 }
342
343 /*
344 * Initialize and allocate VM and memory for pipe.
345 */
346 static int
347 pipe_create(struct pipe **pipep, int allockva, struct pipe_mutex *mutex)
348 {
349 struct pipe *pipe;
350 int error;
351
352 pipe = *pipep = pool_cache_get(pipe_cache, PR_WAITOK);
353 mutex->pm_refcnt++;
354
355 /* Initialize */
356 memset(pipe, 0, sizeof(struct pipe));
357 pipe->pipe_state = PIPE_SIGNALR;
358
359 getmicrotime(&pipe->pipe_ctime);
360 pipe->pipe_atime = pipe->pipe_ctime;
361 pipe->pipe_mtime = pipe->pipe_ctime;
362 pipe->pipe_lock = &mutex->pm_mutex;
363 cv_init(&pipe->pipe_cv, "pipe");
364 cv_init(&pipe->pipe_lkcv, "pipelk");
365 selinit(&pipe->pipe_sel);
366
367 if (allockva && (error = pipespace(pipe, PIPE_SIZE)))
368 return (error);
369
370 return (0);
371 }
372
373
374 /*
375 * Lock a pipe for I/O, blocking other access
376 * Called with pipe spin lock held.
377 * Return with pipe spin lock released on success.
378 */
379 static int
380 pipelock(struct pipe *pipe, int catch)
381 {
382 int error;
383
384 KASSERT(mutex_owned(pipe->pipe_lock));
385
386 while (pipe->pipe_state & PIPE_LOCKFL) {
387 pipe->pipe_state |= PIPE_LWANT;
388 if (catch) {
389 error = cv_wait_sig(&pipe->pipe_lkcv, pipe->pipe_lock);
390 if (error != 0)
391 return error;
392 } else
393 cv_wait(&pipe->pipe_lkcv, pipe->pipe_lock);
394 }
395
396 pipe->pipe_state |= PIPE_LOCKFL;
397 mutex_exit(pipe->pipe_lock);
398
399 return 0;
400 }
401
402 /*
403 * unlock a pipe I/O lock
404 */
405 static inline void
406 pipeunlock(struct pipe *pipe)
407 {
408
409 KASSERT(pipe->pipe_state & PIPE_LOCKFL);
410
411 pipe->pipe_state &= ~PIPE_LOCKFL;
412 if (pipe->pipe_state & PIPE_LWANT) {
413 pipe->pipe_state &= ~PIPE_LWANT;
414 cv_broadcast(&pipe->pipe_lkcv);
415 }
416 }
417
418 /*
419 * Select/poll wakup. This also sends SIGIO to peer connected to
420 * 'sigpipe' side of pipe.
421 */
422 static void
423 pipeselwakeup(struct pipe *selp, struct pipe *sigp, int code)
424 {
425 int band;
426
427 selnotify(&selp->pipe_sel, NOTE_SUBMIT);
428
429 if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0)
430 return;
431
432 switch (code) {
433 case POLL_IN:
434 band = POLLIN|POLLRDNORM;
435 break;
436 case POLL_OUT:
437 band = POLLOUT|POLLWRNORM;
438 break;
439 case POLL_HUP:
440 band = POLLHUP;
441 break;
442 #if POLL_HUP != POLL_ERR
443 case POLL_ERR:
444 band = POLLERR;
445 break;
446 #endif
447 default:
448 band = 0;
449 #ifdef DIAGNOSTIC
450 printf("bad siginfo code %d in pipe notification.\n", code);
451 #endif
452 break;
453 }
454
455 fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp);
456 }
457
458 /* ARGSUSED */
459 static int
460 pipe_read(struct file *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
461 int flags)
462 {
463 struct pipe *rpipe = (struct pipe *) fp->f_data;
464 struct pipebuf *bp = &rpipe->pipe_buffer;
465 int error;
466 size_t nread = 0;
467 size_t size;
468 size_t ocnt;
469
470 mutex_enter(rpipe->pipe_lock);
471 ++rpipe->pipe_busy;
472 ocnt = bp->cnt;
473
474 again:
475 error = pipelock(rpipe, 1);
476 if (error)
477 goto unlocked_error;
478
479 while (uio->uio_resid) {
480 /*
481 * normal pipe buffer receive
482 */
483 if (bp->cnt > 0) {
484 size = bp->size - bp->out;
485 if (size > bp->cnt)
486 size = bp->cnt;
487 if (size > uio->uio_resid)
488 size = uio->uio_resid;
489
490 error = uiomove((char *)bp->buffer + bp->out, size, uio);
491 if (error)
492 break;
493
494 bp->out += size;
495 if (bp->out >= bp->size)
496 bp->out = 0;
497
498 bp->cnt -= size;
499
500 /*
501 * If there is no more to read in the pipe, reset
502 * its pointers to the beginning. This improves
503 * cache hit stats.
504 */
505 if (bp->cnt == 0) {
506 bp->in = 0;
507 bp->out = 0;
508 }
509 nread += size;
510 continue;
511 }
512
513 /* Lock to see up-to-date value of pipe_status. */
514 mutex_enter(rpipe->pipe_lock);
515
516 #ifndef PIPE_NODIRECT
517 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) {
518 /*
519 * Direct copy, bypassing a kernel buffer.
520 */
521 void * va;
522
523 KASSERT(rpipe->pipe_state & PIPE_DIRECTW);
524 mutex_exit(rpipe->pipe_lock);
525
526 size = rpipe->pipe_map.cnt;
527 if (size > uio->uio_resid)
528 size = uio->uio_resid;
529
530 va = (char *)rpipe->pipe_map.kva + rpipe->pipe_map.pos;
531 error = uiomove(va, size, uio);
532 if (error)
533 break;
534 nread += size;
535 rpipe->pipe_map.pos += size;
536 rpipe->pipe_map.cnt -= size;
537 if (rpipe->pipe_map.cnt == 0) {
538 mutex_enter(rpipe->pipe_lock);
539 rpipe->pipe_state &= ~PIPE_DIRECTR;
540 cv_broadcast(&rpipe->pipe_cv);
541 mutex_exit(rpipe->pipe_lock);
542 }
543 continue;
544 }
545 #endif
546 /*
547 * Break if some data was read.
548 */
549 if (nread > 0) {
550 mutex_exit(rpipe->pipe_lock);
551 break;
552 }
553
554 /*
555 * detect EOF condition
556 * read returns 0 on EOF, no need to set error
557 */
558 if (rpipe->pipe_state & PIPE_EOF) {
559 mutex_exit(rpipe->pipe_lock);
560 break;
561 }
562
563 /*
564 * don't block on non-blocking I/O
565 */
566 if (fp->f_flag & FNONBLOCK) {
567 mutex_exit(rpipe->pipe_lock);
568 error = EAGAIN;
569 break;
570 }
571
572 /*
573 * Unlock the pipe buffer for our remaining processing.
574 * We will either break out with an error or we will
575 * sleep and relock to loop.
576 */
577 pipeunlock(rpipe);
578
579 /*
580 * Re-check to see if more direct writes are pending.
581 */
582 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0)
583 goto again;
584
585 /*
586 * We want to read more, wake up select/poll.
587 */
588 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_IN);
589
590 /*
591 * If the "write-side" is blocked, wake it up now.
592 */
593 if (rpipe->pipe_state & PIPE_WANTW) {
594 rpipe->pipe_state &= ~PIPE_WANTW;
595 cv_broadcast(&rpipe->pipe_cv);
596 }
597
598 /* Now wait until the pipe is filled */
599 rpipe->pipe_state |= PIPE_WANTR;
600 error = cv_wait_sig(&rpipe->pipe_cv, rpipe->pipe_lock);
601 if (error != 0)
602 goto unlocked_error;
603 goto again;
604 }
605
606 if (error == 0)
607 getmicrotime(&rpipe->pipe_atime);
608
609 mutex_enter(rpipe->pipe_lock);
610 pipeunlock(rpipe);
611
612 unlocked_error:
613 --rpipe->pipe_busy;
614
615 /*
616 * PIPE_WANTCLOSE processing only makes sense if pipe_busy is 0.
617 */
618 if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANTCLOSE)) {
619 rpipe->pipe_state &= ~(PIPE_WANTCLOSE|PIPE_WANTW);
620 cv_broadcast(&rpipe->pipe_cv);
621 } else if (bp->cnt < MINPIPESIZE) {
622 /*
623 * Handle write blocking hysteresis.
624 */
625 if (rpipe->pipe_state & PIPE_WANTW) {
626 rpipe->pipe_state &= ~PIPE_WANTW;
627 cv_broadcast(&rpipe->pipe_cv);
628 }
629 }
630
631 /*
632 * If anything was read off the buffer, signal to the writer it's
633 * possible to write more data. Also send signal if we are here for the
634 * first time after last write.
635 */
636 if ((bp->size - bp->cnt) >= PIPE_BUF
637 && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
638 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
639 rpipe->pipe_state &= ~PIPE_SIGNALR;
640 }
641
642 mutex_exit(rpipe->pipe_lock);
643 return (error);
644 }
645
646 #ifndef PIPE_NODIRECT
647 /*
648 * Allocate structure for loan transfer.
649 */
650 static int
651 pipe_loan_alloc(struct pipe *wpipe, int npages)
652 {
653 vsize_t len;
654
655 len = (vsize_t)npages << PAGE_SHIFT;
656 wpipe->pipe_map.kva = uvm_km_alloc(kernel_map, len, 0,
657 UVM_KMF_VAONLY | UVM_KMF_WAITVA);
658 if (wpipe->pipe_map.kva == 0)
659 return (ENOMEM);
660
661 amountpipekva += len;
662 wpipe->pipe_map.npages = npages;
663 wpipe->pipe_map.pgs = malloc(npages * sizeof(struct vm_page *), M_PIPE,
664 M_WAITOK);
665 return (0);
666 }
667
668 /*
669 * Free resources allocated for loan transfer.
670 */
671 static void
672 pipe_loan_free(struct pipe *wpipe)
673 {
674 vsize_t len;
675
676 len = (vsize_t)wpipe->pipe_map.npages << PAGE_SHIFT;
677 uvm_km_free(kernel_map, wpipe->pipe_map.kva, len, UVM_KMF_VAONLY);
678 wpipe->pipe_map.kva = 0;
679 amountpipekva -= len;
680 free(wpipe->pipe_map.pgs, M_PIPE);
681 wpipe->pipe_map.pgs = NULL;
682 }
683
684 /*
685 * NetBSD direct write, using uvm_loan() mechanism.
686 * This implements the pipe buffer write mechanism. Note that only
687 * a direct write OR a normal pipe write can be pending at any given time.
688 * If there are any characters in the pipe buffer, the direct write will
689 * be deferred until the receiving process grabs all of the bytes from
690 * the pipe buffer. Then the direct mapping write is set-up.
691 *
692 * Called with the long-term pipe lock held.
693 */
694 static int
695 pipe_direct_write(struct file *fp, struct pipe *wpipe, struct uio *uio)
696 {
697 int error, npages, j;
698 struct vm_page **pgs;
699 vaddr_t bbase, kva, base, bend;
700 vsize_t blen, bcnt;
701 voff_t bpos;
702
703 KASSERT(wpipe->pipe_map.cnt == 0);
704
705 /*
706 * Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers
707 * not aligned to PAGE_SIZE.
708 */
709 bbase = (vaddr_t)uio->uio_iov->iov_base;
710 base = trunc_page(bbase);
711 bend = round_page(bbase + uio->uio_iov->iov_len);
712 blen = bend - base;
713 bpos = bbase - base;
714
715 if (blen > PIPE_DIRECT_CHUNK) {
716 blen = PIPE_DIRECT_CHUNK;
717 bend = base + blen;
718 bcnt = PIPE_DIRECT_CHUNK - bpos;
719 } else {
720 bcnt = uio->uio_iov->iov_len;
721 }
722 npages = blen >> PAGE_SHIFT;
723
724 /*
725 * Free the old kva if we need more pages than we have
726 * allocated.
727 */
728 if (wpipe->pipe_map.kva != 0 && npages > wpipe->pipe_map.npages)
729 pipe_loan_free(wpipe);
730
731 /* Allocate new kva. */
732 if (wpipe->pipe_map.kva == 0) {
733 error = pipe_loan_alloc(wpipe, npages);
734 if (error)
735 return (error);
736 }
737
738 /* Loan the write buffer memory from writer process */
739 pgs = wpipe->pipe_map.pgs;
740 error = uvm_loan(&uio->uio_vmspace->vm_map, base, blen,
741 pgs, UVM_LOAN_TOPAGE);
742 if (error) {
743 pipe_loan_free(wpipe);
744 return (ENOMEM); /* so that caller fallback to ordinary write */
745 }
746
747 /* Enter the loaned pages to kva */
748 kva = wpipe->pipe_map.kva;
749 for (j = 0; j < npages; j++, kva += PAGE_SIZE) {
750 pmap_kenter_pa(kva, VM_PAGE_TO_PHYS(pgs[j]), VM_PROT_READ);
751 }
752 pmap_update(pmap_kernel());
753
754 /* Now we can put the pipe in direct write mode */
755 wpipe->pipe_map.pos = bpos;
756 wpipe->pipe_map.cnt = bcnt;
757
758 /*
759 * But before we can let someone do a direct read, we
760 * have to wait until the pipe is drained. Release the
761 * pipe lock while we wait.
762 */
763 mutex_enter(wpipe->pipe_lock);
764 wpipe->pipe_state |= PIPE_DIRECTW;
765 pipeunlock(wpipe);
766
767 while (error == 0 && wpipe->pipe_buffer.cnt > 0) {
768 if (wpipe->pipe_state & PIPE_WANTR) {
769 wpipe->pipe_state &= ~PIPE_WANTR;
770 cv_broadcast(&wpipe->pipe_cv);
771 }
772
773 wpipe->pipe_state |= PIPE_WANTW;
774 error = cv_wait_sig(&wpipe->pipe_cv, wpipe->pipe_lock);
775 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
776 error = EPIPE;
777 }
778
779 /* Pipe is drained; next read will off the direct buffer */
780 wpipe->pipe_state |= PIPE_DIRECTR;
781
782 /* Wait until the reader is done */
783 while (error == 0 && (wpipe->pipe_state & PIPE_DIRECTR)) {
784 if (wpipe->pipe_state & PIPE_WANTR) {
785 wpipe->pipe_state &= ~PIPE_WANTR;
786 cv_broadcast(&wpipe->pipe_cv);
787 }
788 pipeselwakeup(wpipe, wpipe, POLL_IN);
789 error = cv_wait_sig(&wpipe->pipe_cv, wpipe->pipe_lock);
790 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
791 error = EPIPE;
792 }
793
794 /* Take pipe out of direct write mode */
795 wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTR);
796
797 /* Acquire the pipe lock and cleanup */
798 (void)pipelock(wpipe, 0);
799
800 if (pgs != NULL) {
801 pmap_kremove(wpipe->pipe_map.kva, blen);
802 uvm_unloan(pgs, npages, UVM_LOAN_TOPAGE);
803 }
804 if (error || amountpipekva > maxpipekva)
805 pipe_loan_free(wpipe);
806
807 if (error) {
808 pipeselwakeup(wpipe, wpipe, POLL_ERR);
809
810 /*
811 * If nothing was read from what we offered, return error
812 * straight on. Otherwise update uio resid first. Caller
813 * will deal with the error condition, returning short
814 * write, error, or restarting the write(2) as appropriate.
815 */
816 if (wpipe->pipe_map.cnt == bcnt) {
817 wpipe->pipe_map.cnt = 0;
818 cv_broadcast(&wpipe->pipe_cv);
819 return (error);
820 }
821
822 bcnt -= wpipe->pipe_map.cnt;
823 }
824
825 uio->uio_resid -= bcnt;
826 /* uio_offset not updated, not set/used for write(2) */
827 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt;
828 uio->uio_iov->iov_len -= bcnt;
829 if (uio->uio_iov->iov_len == 0) {
830 uio->uio_iov++;
831 uio->uio_iovcnt--;
832 }
833
834 wpipe->pipe_map.cnt = 0;
835 return (error);
836 }
837 #endif /* !PIPE_NODIRECT */
838
839 static int
840 pipe_write(struct file *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
841 int flags)
842 {
843 struct pipe *wpipe, *rpipe;
844 struct pipebuf *bp;
845 int error;
846
847 /* We want to write to our peer */
848 rpipe = (struct pipe *) fp->f_data;
849 error = 0;
850
851 mutex_enter(rpipe->pipe_lock);
852 wpipe = rpipe->pipe_peer;
853
854 /*
855 * Detect loss of pipe read side, issue SIGPIPE if lost.
856 */
857 if (wpipe == NULL) {
858 mutex_exit(rpipe->pipe_lock);
859 return EPIPE;
860 } else if ((wpipe->pipe_state & PIPE_EOF) != 0) {
861 mutex_exit(rpipe->pipe_lock);
862 return EPIPE;
863 }
864 ++wpipe->pipe_busy;
865
866 /* Aquire the long-term pipe lock */
867 if ((error = pipelock(wpipe,1)) != 0) {
868 --wpipe->pipe_busy;
869 if (wpipe->pipe_busy == 0
870 && (wpipe->pipe_state & PIPE_WANTCLOSE)) {
871 wpipe->pipe_state &= ~(PIPE_WANTCLOSE | PIPE_WANTR);
872 cv_broadcast(&wpipe->pipe_cv);
873 }
874 mutex_exit(rpipe->pipe_lock);
875 return (error);
876 }
877
878 bp = &wpipe->pipe_buffer;
879
880 /*
881 * If it is advantageous to resize the pipe buffer, do so.
882 */
883 if ((uio->uio_resid > PIPE_SIZE) &&
884 (nbigpipe < maxbigpipes) &&
885 #ifndef PIPE_NODIRECT
886 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
887 #endif
888 (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) {
889
890 if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
891 nbigpipe++;
892 }
893
894 while (uio->uio_resid) {
895 size_t space;
896
897 #ifndef PIPE_NODIRECT
898 /*
899 * Pipe buffered writes cannot be coincidental with
900 * direct writes. Also, only one direct write can be
901 * in progress at any one time. We wait until the currently
902 * executing direct write is completed before continuing.
903 *
904 * We break out if a signal occurs or the reader goes away.
905 */
906 while (error == 0 && wpipe->pipe_state & PIPE_DIRECTW) {
907 mutex_enter(wpipe->pipe_lock);
908 if (wpipe->pipe_state & PIPE_WANTR) {
909 wpipe->pipe_state &= ~PIPE_WANTR;
910 cv_broadcast(&wpipe->pipe_cv);
911 }
912 pipeunlock(wpipe);
913 error = cv_wait_sig(&wpipe->pipe_cv,
914 wpipe->pipe_lock);
915
916 (void)pipelock(wpipe, 0);
917 if (wpipe->pipe_state & PIPE_EOF)
918 error = EPIPE;
919 }
920 if (error)
921 break;
922
923 /*
924 * If the transfer is large, we can gain performance if
925 * we do process-to-process copies directly.
926 * If the write is non-blocking, we don't use the
927 * direct write mechanism.
928 *
929 * The direct write mechanism will detect the reader going
930 * away on us.
931 */
932 if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
933 (fp->f_flag & FNONBLOCK) == 0 &&
934 (wpipe->pipe_map.kva || (amountpipekva < limitpipekva))) {
935 error = pipe_direct_write(fp, wpipe, uio);
936
937 /*
938 * Break out if error occurred, unless it's ENOMEM.
939 * ENOMEM means we failed to allocate some resources
940 * for direct write, so we just fallback to ordinary
941 * write. If the direct write was successful,
942 * process rest of data via ordinary write.
943 */
944 if (error == 0)
945 continue;
946
947 if (error != ENOMEM)
948 break;
949 }
950 #endif /* PIPE_NODIRECT */
951
952 space = bp->size - bp->cnt;
953
954 /* Writes of size <= PIPE_BUF must be atomic. */
955 if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
956 space = 0;
957
958 if (space > 0) {
959 int size; /* Transfer size */
960 int segsize; /* first segment to transfer */
961
962 /*
963 * Transfer size is minimum of uio transfer
964 * and free space in pipe buffer.
965 */
966 if (space > uio->uio_resid)
967 size = uio->uio_resid;
968 else
969 size = space;
970 /*
971 * First segment to transfer is minimum of
972 * transfer size and contiguous space in
973 * pipe buffer. If first segment to transfer
974 * is less than the transfer size, we've got
975 * a wraparound in the buffer.
976 */
977 segsize = bp->size - bp->in;
978 if (segsize > size)
979 segsize = size;
980
981 /* Transfer first segment */
982 error = uiomove((char *)bp->buffer + bp->in, segsize,
983 uio);
984
985 if (error == 0 && segsize < size) {
986 /*
987 * Transfer remaining part now, to
988 * support atomic writes. Wraparound
989 * happened.
990 */
991 #ifdef DEBUG
992 if (bp->in + segsize != bp->size)
993 panic("Expected pipe buffer wraparound disappeared");
994 #endif
995
996 error = uiomove(bp->buffer,
997 size - segsize, uio);
998 }
999 if (error)
1000 break;
1001
1002 bp->in += size;
1003 if (bp->in >= bp->size) {
1004 #ifdef DEBUG
1005 if (bp->in != size - segsize + bp->size)
1006 panic("Expected wraparound bad");
1007 #endif
1008 bp->in = size - segsize;
1009 }
1010
1011 bp->cnt += size;
1012 #ifdef DEBUG
1013 if (bp->cnt > bp->size)
1014 panic("Pipe buffer overflow");
1015 #endif
1016 } else {
1017 /*
1018 * If the "read-side" has been blocked, wake it up now.
1019 */
1020 mutex_enter(wpipe->pipe_lock);
1021 if (wpipe->pipe_state & PIPE_WANTR) {
1022 wpipe->pipe_state &= ~PIPE_WANTR;
1023 cv_broadcast(&wpipe->pipe_cv);
1024 }
1025 mutex_exit(wpipe->pipe_lock);
1026
1027 /*
1028 * don't block on non-blocking I/O
1029 */
1030 if (fp->f_flag & FNONBLOCK) {
1031 error = EAGAIN;
1032 break;
1033 }
1034
1035 /*
1036 * We have no more space and have something to offer,
1037 * wake up select/poll.
1038 */
1039 if (bp->cnt)
1040 pipeselwakeup(wpipe, wpipe, POLL_OUT);
1041
1042 mutex_enter(wpipe->pipe_lock);
1043 pipeunlock(wpipe);
1044 wpipe->pipe_state |= PIPE_WANTW;
1045 error = cv_wait_sig(&wpipe->pipe_cv, wpipe->pipe_lock);
1046 (void)pipelock(wpipe, 0);
1047 if (error != 0)
1048 break;
1049 /*
1050 * If read side wants to go away, we just issue a signal
1051 * to ourselves.
1052 */
1053 if (wpipe->pipe_state & PIPE_EOF) {
1054 error = EPIPE;
1055 break;
1056 }
1057 }
1058 }
1059
1060 mutex_enter(wpipe->pipe_lock);
1061 --wpipe->pipe_busy;
1062 if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANTCLOSE)) {
1063 wpipe->pipe_state &= ~(PIPE_WANTCLOSE | PIPE_WANTR);
1064 cv_broadcast(&wpipe->pipe_cv);
1065 } else if (bp->cnt > 0) {
1066 /*
1067 * If we have put any characters in the buffer, we wake up
1068 * the reader.
1069 */
1070 if (wpipe->pipe_state & PIPE_WANTR) {
1071 wpipe->pipe_state &= ~PIPE_WANTR;
1072 cv_broadcast(&wpipe->pipe_cv);
1073 }
1074 }
1075
1076 /*
1077 * Don't return EPIPE if I/O was successful
1078 */
1079 if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0)
1080 error = 0;
1081
1082 if (error == 0)
1083 getmicrotime(&wpipe->pipe_mtime);
1084
1085 /*
1086 * We have something to offer, wake up select/poll.
1087 * wpipe->pipe_map.cnt is always 0 in this point (direct write
1088 * is only done synchronously), so check only wpipe->pipe_buffer.cnt
1089 */
1090 if (bp->cnt)
1091 pipeselwakeup(wpipe, wpipe, POLL_OUT);
1092
1093 /*
1094 * Arrange for next read(2) to do a signal.
1095 */
1096 wpipe->pipe_state |= PIPE_SIGNALR;
1097
1098 pipeunlock(wpipe);
1099 mutex_exit(wpipe->pipe_lock);
1100 return (error);
1101 }
1102
1103 /*
1104 * we implement a very minimal set of ioctls for compatibility with sockets.
1105 */
1106 int
1107 pipe_ioctl(struct file *fp, u_long cmd, void *data, struct lwp *l)
1108 {
1109 struct pipe *pipe = (struct pipe *)fp->f_data;
1110 struct proc *p = l->l_proc;
1111
1112 switch (cmd) {
1113
1114 case FIONBIO:
1115 return (0);
1116
1117 case FIOASYNC:
1118 mutex_enter(pipe->pipe_lock);
1119 if (*(int *)data) {
1120 pipe->pipe_state |= PIPE_ASYNC;
1121 } else {
1122 pipe->pipe_state &= ~PIPE_ASYNC;
1123 }
1124 mutex_exit(pipe->pipe_lock);
1125 return (0);
1126
1127 case FIONREAD:
1128 mutex_enter(pipe->pipe_lock);
1129 #ifndef PIPE_NODIRECT
1130 if (pipe->pipe_state & PIPE_DIRECTW)
1131 *(int *)data = pipe->pipe_map.cnt;
1132 else
1133 #endif
1134 *(int *)data = pipe->pipe_buffer.cnt;
1135 mutex_exit(pipe->pipe_lock);
1136 return (0);
1137
1138 case FIONWRITE:
1139 /* Look at other side */
1140 pipe = pipe->pipe_peer;
1141 mutex_enter(pipe->pipe_lock);
1142 #ifndef PIPE_NODIRECT
1143 if (pipe->pipe_state & PIPE_DIRECTW)
1144 *(int *)data = pipe->pipe_map.cnt;
1145 else
1146 #endif
1147 *(int *)data = pipe->pipe_buffer.cnt;
1148 mutex_exit(pipe->pipe_lock);
1149 return (0);
1150
1151 case FIONSPACE:
1152 /* Look at other side */
1153 pipe = pipe->pipe_peer;
1154 mutex_enter(pipe->pipe_lock);
1155 #ifndef PIPE_NODIRECT
1156 /*
1157 * If we're in direct-mode, we don't really have a
1158 * send queue, and any other write will block. Thus
1159 * zero seems like the best answer.
1160 */
1161 if (pipe->pipe_state & PIPE_DIRECTW)
1162 *(int *)data = 0;
1163 else
1164 #endif
1165 *(int *)data = pipe->pipe_buffer.size -
1166 pipe->pipe_buffer.cnt;
1167 mutex_exit(pipe->pipe_lock);
1168 return (0);
1169
1170 case TIOCSPGRP:
1171 case FIOSETOWN:
1172 return fsetown(p, &pipe->pipe_pgid, cmd, data);
1173
1174 case TIOCGPGRP:
1175 case FIOGETOWN:
1176 return fgetown(p, pipe->pipe_pgid, cmd, data);
1177
1178 }
1179 return (EPASSTHROUGH);
1180 }
1181
1182 int
1183 pipe_poll(struct file *fp, int events, struct lwp *l)
1184 {
1185 struct pipe *rpipe = (struct pipe *)fp->f_data;
1186 struct pipe *wpipe;
1187 int eof = 0;
1188 int revents = 0;
1189
1190 mutex_enter(rpipe->pipe_lock);
1191 wpipe = rpipe->pipe_peer;
1192
1193 if (events & (POLLIN | POLLRDNORM))
1194 if ((rpipe->pipe_buffer.cnt > 0) ||
1195 #ifndef PIPE_NODIRECT
1196 (rpipe->pipe_state & PIPE_DIRECTR) ||
1197 #endif
1198 (rpipe->pipe_state & PIPE_EOF))
1199 revents |= events & (POLLIN | POLLRDNORM);
1200
1201 eof |= (rpipe->pipe_state & PIPE_EOF);
1202
1203 if (wpipe == NULL)
1204 revents |= events & (POLLOUT | POLLWRNORM);
1205 else {
1206 if (events & (POLLOUT | POLLWRNORM))
1207 if ((wpipe->pipe_state & PIPE_EOF) || (
1208 #ifndef PIPE_NODIRECT
1209 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
1210 #endif
1211 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1212 revents |= events & (POLLOUT | POLLWRNORM);
1213
1214 eof |= (wpipe->pipe_state & PIPE_EOF);
1215 }
1216
1217 if (wpipe == NULL || eof)
1218 revents |= POLLHUP;
1219
1220 if (revents == 0) {
1221 if (events & (POLLIN | POLLRDNORM))
1222 selrecord(l, &rpipe->pipe_sel);
1223
1224 if (events & (POLLOUT | POLLWRNORM))
1225 selrecord(l, &wpipe->pipe_sel);
1226 }
1227 mutex_exit(rpipe->pipe_lock);
1228
1229 return (revents);
1230 }
1231
1232 static int
1233 pipe_stat(struct file *fp, struct stat *ub, struct lwp *l)
1234 {
1235 struct pipe *pipe = (struct pipe *)fp->f_data;
1236
1237 memset((void *)ub, 0, sizeof(*ub));
1238 ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
1239 ub->st_blksize = pipe->pipe_buffer.size;
1240 if (ub->st_blksize == 0 && pipe->pipe_peer)
1241 ub->st_blksize = pipe->pipe_peer->pipe_buffer.size;
1242 ub->st_size = pipe->pipe_buffer.cnt;
1243 ub->st_blocks = (ub->st_size) ? 1 : 0;
1244 TIMEVAL_TO_TIMESPEC(&pipe->pipe_atime, &ub->st_atimespec);
1245 TIMEVAL_TO_TIMESPEC(&pipe->pipe_mtime, &ub->st_mtimespec);
1246 TIMEVAL_TO_TIMESPEC(&pipe->pipe_ctime, &ub->st_ctimespec);
1247 ub->st_uid = kauth_cred_geteuid(fp->f_cred);
1248 ub->st_gid = kauth_cred_getegid(fp->f_cred);
1249
1250 /*
1251 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1252 * XXX (st_dev, st_ino) should be unique.
1253 */
1254 return (0);
1255 }
1256
1257 /* ARGSUSED */
1258 static int
1259 pipe_close(struct file *fp, struct lwp *l)
1260 {
1261 struct pipe *pipe = (struct pipe *)fp->f_data;
1262
1263 fp->f_data = NULL;
1264 pipeclose(fp, pipe);
1265 return (0);
1266 }
1267
1268 static void
1269 pipe_free_kmem(struct pipe *pipe)
1270 {
1271
1272 if (pipe->pipe_buffer.buffer != NULL) {
1273 if (pipe->pipe_buffer.size > PIPE_SIZE)
1274 --nbigpipe;
1275 amountpipekva -= pipe->pipe_buffer.size;
1276 uvm_km_free(kernel_map,
1277 (vaddr_t)pipe->pipe_buffer.buffer,
1278 pipe->pipe_buffer.size, UVM_KMF_PAGEABLE);
1279 pipe->pipe_buffer.buffer = NULL;
1280 }
1281 #ifndef PIPE_NODIRECT
1282 if (pipe->pipe_map.kva != 0) {
1283 pipe_loan_free(pipe);
1284 pipe->pipe_map.cnt = 0;
1285 pipe->pipe_map.kva = 0;
1286 pipe->pipe_map.pos = 0;
1287 pipe->pipe_map.npages = 0;
1288 }
1289 #endif /* !PIPE_NODIRECT */
1290 }
1291
1292 /*
1293 * shutdown the pipe
1294 */
1295 static void
1296 pipeclose(struct file *fp, struct pipe *pipe)
1297 {
1298 struct pipe_mutex *mutex;
1299 struct pipe *ppipe;
1300 u_int refcnt;
1301
1302 if (pipe == NULL)
1303 return;
1304
1305 mutex_enter(pipe->pipe_lock);
1306 pipeselwakeup(pipe, pipe, POLL_HUP);
1307
1308 /*
1309 * If the other side is blocked, wake it up saying that
1310 * we want to close it down.
1311 */
1312 pipe->pipe_state |= PIPE_EOF;
1313 if (pipe->pipe_busy) {
1314 while (pipe->pipe_busy) {
1315 cv_broadcast(&pipe->pipe_cv);
1316 pipe->pipe_state |= PIPE_WANTCLOSE;
1317 cv_wait_sig(&pipe->pipe_cv, pipe->pipe_lock);
1318 }
1319 }
1320
1321 /*
1322 * Disconnect from peer
1323 */
1324 if ((ppipe = pipe->pipe_peer) != NULL) {
1325 pipeselwakeup(ppipe, ppipe, POLL_HUP);
1326 ppipe->pipe_state |= PIPE_EOF;
1327 cv_broadcast(&ppipe->pipe_cv);
1328 ppipe->pipe_peer = NULL;
1329 }
1330
1331 KASSERT((pipe->pipe_state & PIPE_LOCKFL) == 0);
1332
1333 mutex = (struct pipe_mutex *)pipe->pipe_lock;
1334 refcnt = --(mutex->pm_refcnt);
1335 KASSERT(refcnt == 0 || refcnt == 1);
1336 mutex_exit(pipe->pipe_lock);
1337
1338 /*
1339 * free resources
1340 */
1341 pipe_free_kmem(pipe);
1342 cv_destroy(&pipe->pipe_cv);
1343 cv_destroy(&pipe->pipe_lkcv);
1344 seldestroy(&pipe->pipe_sel);
1345 pool_cache_put(pipe_cache, pipe);
1346 if (refcnt == 0)
1347 pool_cache_put(pipe_mutex_cache, mutex);
1348 }
1349
1350 static void
1351 filt_pipedetach(struct knote *kn)
1352 {
1353 struct pipe *pipe = (struct pipe *)kn->kn_fp->f_data;
1354
1355 mutex_enter(pipe->pipe_lock);
1356
1357 switch(kn->kn_filter) {
1358 case EVFILT_WRITE:
1359 /* need the peer structure, not our own */
1360 pipe = pipe->pipe_peer;
1361
1362 /* if reader end already closed, just return */
1363 if (pipe == NULL) {
1364 mutex_exit(pipe->pipe_lock);
1365 return;
1366 }
1367
1368 break;
1369 default:
1370 /* nothing to do */
1371 break;
1372 }
1373
1374 #ifdef DIAGNOSTIC
1375 if (kn->kn_hook != pipe)
1376 panic("filt_pipedetach: inconsistent knote");
1377 #endif
1378
1379 SLIST_REMOVE(&pipe->pipe_sel.sel_klist, kn, knote, kn_selnext);
1380 mutex_exit(pipe->pipe_lock);
1381 }
1382
1383 /*ARGSUSED*/
1384 static int
1385 filt_piperead(struct knote *kn, long hint)
1386 {
1387 struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1388 struct pipe *wpipe;
1389
1390 if ((hint & NOTE_SUBMIT) == 0) {
1391 mutex_enter(rpipe->pipe_lock);
1392 }
1393 wpipe = rpipe->pipe_peer;
1394 kn->kn_data = rpipe->pipe_buffer.cnt;
1395
1396 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1397 kn->kn_data = rpipe->pipe_map.cnt;
1398
1399 if ((rpipe->pipe_state & PIPE_EOF) ||
1400 (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1401 kn->kn_flags |= EV_EOF;
1402 if ((hint & NOTE_SUBMIT) == 0) {
1403 mutex_exit(rpipe->pipe_lock);
1404 }
1405 return (1);
1406 }
1407
1408 if ((hint & NOTE_SUBMIT) == 0) {
1409 mutex_exit(rpipe->pipe_lock);
1410 }
1411 return (kn->kn_data > 0);
1412 }
1413
1414 /*ARGSUSED*/
1415 static int
1416 filt_pipewrite(struct knote *kn, long hint)
1417 {
1418 struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1419 struct pipe *wpipe;
1420
1421 if ((hint & NOTE_SUBMIT) == 0) {
1422 mutex_enter(rpipe->pipe_lock);
1423 }
1424 wpipe = rpipe->pipe_peer;
1425
1426 if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1427 kn->kn_data = 0;
1428 kn->kn_flags |= EV_EOF;
1429 if ((hint & NOTE_SUBMIT) == 0) {
1430 mutex_exit(rpipe->pipe_lock);
1431 }
1432 return (1);
1433 }
1434 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1435 if (wpipe->pipe_state & PIPE_DIRECTW)
1436 kn->kn_data = 0;
1437
1438 if ((hint & NOTE_SUBMIT) == 0) {
1439 mutex_exit(rpipe->pipe_lock);
1440 }
1441 return (kn->kn_data >= PIPE_BUF);
1442 }
1443
1444 static const struct filterops pipe_rfiltops =
1445 { 1, NULL, filt_pipedetach, filt_piperead };
1446 static const struct filterops pipe_wfiltops =
1447 { 1, NULL, filt_pipedetach, filt_pipewrite };
1448
1449 /*ARGSUSED*/
1450 static int
1451 pipe_kqfilter(struct file *fp, struct knote *kn)
1452 {
1453 struct pipe *pipe;
1454
1455 pipe = (struct pipe *)kn->kn_fp->f_data;
1456 mutex_enter(pipe->pipe_lock);
1457
1458 switch (kn->kn_filter) {
1459 case EVFILT_READ:
1460 kn->kn_fop = &pipe_rfiltops;
1461 break;
1462 case EVFILT_WRITE:
1463 kn->kn_fop = &pipe_wfiltops;
1464 pipe = pipe->pipe_peer;
1465 if (pipe == NULL) {
1466 /* other end of pipe has been closed */
1467 mutex_exit(pipe->pipe_lock);
1468 return (EBADF);
1469 }
1470 break;
1471 default:
1472 mutex_exit(pipe->pipe_lock);
1473 return (EINVAL);
1474 }
1475
1476 kn->kn_hook = pipe;
1477 SLIST_INSERT_HEAD(&pipe->pipe_sel.sel_klist, kn, kn_selnext);
1478 mutex_exit(pipe->pipe_lock);
1479
1480 return (0);
1481 }
1482
1483 /*
1484 * Handle pipe sysctls.
1485 */
1486 SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup")
1487 {
1488
1489 sysctl_createv(clog, 0, NULL, NULL,
1490 CTLFLAG_PERMANENT,
1491 CTLTYPE_NODE, "kern", NULL,
1492 NULL, 0, NULL, 0,
1493 CTL_KERN, CTL_EOL);
1494 sysctl_createv(clog, 0, NULL, NULL,
1495 CTLFLAG_PERMANENT,
1496 CTLTYPE_NODE, "pipe",
1497 SYSCTL_DESCR("Pipe settings"),
1498 NULL, 0, NULL, 0,
1499 CTL_KERN, KERN_PIPE, CTL_EOL);
1500
1501 sysctl_createv(clog, 0, NULL, NULL,
1502 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1503 CTLTYPE_INT, "maxkvasz",
1504 SYSCTL_DESCR("Maximum amount of kernel memory to be "
1505 "used for pipes"),
1506 NULL, 0, &maxpipekva, 0,
1507 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXKVASZ, CTL_EOL);
1508 sysctl_createv(clog, 0, NULL, NULL,
1509 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1510 CTLTYPE_INT, "maxloankvasz",
1511 SYSCTL_DESCR("Limit for direct transfers via page loan"),
1512 NULL, 0, &limitpipekva, 0,
1513 CTL_KERN, KERN_PIPE, KERN_PIPE_LIMITKVA, CTL_EOL);
1514 sysctl_createv(clog, 0, NULL, NULL,
1515 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1516 CTLTYPE_INT, "maxbigpipes",
1517 SYSCTL_DESCR("Maximum number of \"big\" pipes"),
1518 NULL, 0, &maxbigpipes, 0,
1519 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL);
1520 sysctl_createv(clog, 0, NULL, NULL,
1521 CTLFLAG_PERMANENT,
1522 CTLTYPE_INT, "nbigpipes",
1523 SYSCTL_DESCR("Number of \"big\" pipes"),
1524 NULL, 0, &nbigpipe, 0,
1525 CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL);
1526 sysctl_createv(clog, 0, NULL, NULL,
1527 CTLFLAG_PERMANENT,
1528 CTLTYPE_INT, "kvasize",
1529 SYSCTL_DESCR("Amount of kernel memory consumed by pipe "
1530 "buffers"),
1531 NULL, 0, &amountpipekva, 0,
1532 CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL);
1533 }
1534