sys_pipe.c revision 1.94 1 /* $NetBSD: sys_pipe.c,v 1.94 2008/01/04 21:18:14 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2003, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1996 John S. Dyson
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice immediately at the beginning of the file, without modification,
48 * this list of conditions, and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. Absolutely no warranty of function or purpose is made by the author
53 * John S. Dyson.
54 * 4. Modifications may be freely made to this file if the above conditions
55 * are met.
56 *
57 * $FreeBSD: src/sys/kern/sys_pipe.c,v 1.95 2002/03/09 22:06:31 alfred Exp $
58 */
59
60 /*
61 * This file contains a high-performance replacement for the socket-based
62 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support
63 * all features of sockets, but does do everything that pipes normally
64 * do.
65 *
66 * Adaption for NetBSD UVM, including uvm_loan() based direct write, was
67 * written by Jaromir Dolecek.
68 */
69
70 /*
71 * This code has two modes of operation, a small write mode and a large
72 * write mode. The small write mode acts like conventional pipes with
73 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
74 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
75 * and PIPE_SIZE in size it is mapped read-only into the kernel address space
76 * using the UVM page loan facility from where the receiving process can copy
77 * the data directly from the pages in the sending process.
78 *
79 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
80 * happen for small transfers so that the system will not spend all of
81 * its time context switching. PIPE_SIZE is constrained by the
82 * amount of kernel virtual memory.
83 */
84
85 #include <sys/cdefs.h>
86 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.94 2008/01/04 21:18:14 ad Exp $");
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/proc.h>
91 #include <sys/fcntl.h>
92 #include <sys/file.h>
93 #include <sys/filedesc.h>
94 #include <sys/filio.h>
95 #include <sys/kernel.h>
96 #include <sys/ttycom.h>
97 #include <sys/stat.h>
98 #include <sys/malloc.h>
99 #include <sys/poll.h>
100 #include <sys/signalvar.h>
101 #include <sys/vnode.h>
102 #include <sys/uio.h>
103 #include <sys/select.h>
104 #include <sys/mount.h>
105 #include <sys/syscallargs.h>
106 #include <sys/sysctl.h>
107 #include <sys/kauth.h>
108 #include <sys/atomic.h>
109 #include <sys/pipe.h>
110
111 #include <uvm/uvm.h>
112
113 /*
114 * Use this define if you want to disable *fancy* VM things. Expect an
115 * approx 30% decrease in transfer rate.
116 */
117 /* #define PIPE_NODIRECT */
118
119 /*
120 * interfaces to the outside world
121 */
122 static int pipe_read(struct file *fp, off_t *offset, struct uio *uio,
123 kauth_cred_t cred, int flags);
124 static int pipe_write(struct file *fp, off_t *offset, struct uio *uio,
125 kauth_cred_t cred, int flags);
126 static int pipe_close(struct file *fp, struct lwp *l);
127 static int pipe_poll(struct file *fp, int events, struct lwp *l);
128 static int pipe_kqfilter(struct file *fp, struct knote *kn);
129 static int pipe_stat(struct file *fp, struct stat *sb, struct lwp *l);
130 static int pipe_ioctl(struct file *fp, u_long cmd, void *data,
131 struct lwp *l);
132
133 static const struct fileops pipeops = {
134 pipe_read, pipe_write, pipe_ioctl, fnullop_fcntl, pipe_poll,
135 pipe_stat, pipe_close, pipe_kqfilter
136 };
137
138 /*
139 * Single mutex shared between both ends of the pipe.
140 */
141
142 struct pipe_mutex {
143 kmutex_t pm_mutex;
144 u_int pm_refcnt;
145 };
146
147 /*
148 * Default pipe buffer size(s), this can be kind-of large now because pipe
149 * space is pageable. The pipe code will try to maintain locality of
150 * reference for performance reasons, so small amounts of outstanding I/O
151 * will not wipe the cache.
152 */
153 #define MINPIPESIZE (PIPE_SIZE/3)
154 #define MAXPIPESIZE (2*PIPE_SIZE/3)
155
156 /*
157 * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
158 * is there so that on large systems, we don't exhaust it.
159 */
160 #define MAXPIPEKVA (8*1024*1024)
161 static u_int maxpipekva = MAXPIPEKVA;
162
163 /*
164 * Limit for direct transfers, we cannot, of course limit
165 * the amount of kva for pipes in general though.
166 */
167 #define LIMITPIPEKVA (16*1024*1024)
168 static u_int limitpipekva = LIMITPIPEKVA;
169
170 /*
171 * Limit the number of "big" pipes
172 */
173 #define LIMITBIGPIPES 32
174 static u_int maxbigpipes = LIMITBIGPIPES;
175 static u_int nbigpipe = 0;
176
177 /*
178 * Amount of KVA consumed by pipe buffers.
179 */
180 static u_int amountpipekva = 0;
181
182 MALLOC_DEFINE(M_PIPE, "pipe", "Pipe structures");
183
184 static void pipeclose(struct file *fp, struct pipe *pipe);
185 static void pipe_free_kmem(struct pipe *pipe);
186 static int pipe_create(struct pipe **pipep, int allockva, struct pipe_mutex *);
187 static int pipelock(struct pipe *pipe, int catch);
188 static inline void pipeunlock(struct pipe *pipe);
189 static void pipeselwakeup(struct pipe *pipe, struct pipe *sigp, int code);
190 #ifndef PIPE_NODIRECT
191 static int pipe_direct_write(struct file *fp, struct pipe *wpipe,
192 struct uio *uio);
193 #endif
194 static int pipespace(struct pipe *pipe, int size);
195
196 #ifndef PIPE_NODIRECT
197 static int pipe_loan_alloc(struct pipe *, int);
198 static void pipe_loan_free(struct pipe *);
199 #endif /* PIPE_NODIRECT */
200
201 static int pipe_mutex_ctor(void *, void *, int);
202 static void pipe_mutex_dtor(void *, void *);
203
204 static pool_cache_t pipe_cache;
205 static pool_cache_t pipe_mutex_cache;
206
207 void
208 pipe_init(void)
209 {
210 size_t size;
211
212 pipe_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "pipepl",
213 NULL, IPL_NONE, NULL, NULL, NULL);
214 KASSERT(pipe_cache != NULL);
215
216 size = (sizeof(struct pipe_mutex) + (CACHE_LINE_SIZE - 1)) &
217 (CACHE_LINE_SIZE - 1);
218 pipe_mutex_cache = pool_cache_init(size, CACHE_LINE_SIZE,
219 0, 0, "pipemtxpl", NULL, IPL_NONE, pipe_mutex_ctor,
220 pipe_mutex_dtor, NULL);
221 KASSERT(pipe_cache != NULL);
222 }
223
224 static int
225 pipe_mutex_ctor(void *arg, void *obj, int flag)
226 {
227 struct pipe_mutex *pm = obj;
228
229 mutex_init(&pm->pm_mutex, MUTEX_DEFAULT, IPL_NONE);
230 pm->pm_refcnt = 0;
231
232 return 0;
233 }
234
235 static void
236 pipe_mutex_dtor(void *arg, void *obj)
237 {
238 struct pipe_mutex *pm = obj;
239
240 KASSERT(pm->pm_refcnt == 0);
241
242 mutex_destroy(&pm->pm_mutex);
243 }
244
245 /*
246 * The pipe system call for the DTYPE_PIPE type of pipes
247 */
248
249 /* ARGSUSED */
250 int
251 sys_pipe(struct lwp *l, const void *v, register_t *retval)
252 {
253 struct file *rf, *wf;
254 struct pipe *rpipe, *wpipe;
255 struct pipe_mutex *mutex;
256 int fd, error;
257
258 rpipe = wpipe = NULL;
259 mutex = pool_cache_get(pipe_mutex_cache, PR_WAITOK);
260 if (mutex == NULL)
261 return (ENOMEM);
262 if (pipe_create(&rpipe, 1, mutex) || pipe_create(&wpipe, 0, mutex)) {
263 pipeclose(NULL, rpipe);
264 pipeclose(NULL, wpipe);
265 return (ENFILE);
266 }
267
268 /*
269 * Note: the file structure returned from falloc() is marked
270 * as 'larval' initially. Unless we mark it as 'mature' by
271 * FILE_SET_MATURE(), any attempt to do anything with it would
272 * return EBADF, including e.g. dup(2) or close(2). This avoids
273 * file descriptor races if we block in the second falloc().
274 */
275
276 error = falloc(l, &rf, &fd);
277 if (error)
278 goto free2;
279 retval[0] = fd;
280 rf->f_flag = FREAD;
281 rf->f_type = DTYPE_PIPE;
282 rf->f_data = (void *)rpipe;
283 rf->f_ops = &pipeops;
284
285 error = falloc(l, &wf, &fd);
286 if (error)
287 goto free3;
288 retval[1] = fd;
289 wf->f_flag = FWRITE;
290 wf->f_type = DTYPE_PIPE;
291 wf->f_data = (void *)wpipe;
292 wf->f_ops = &pipeops;
293
294 rpipe->pipe_peer = wpipe;
295 wpipe->pipe_peer = rpipe;
296
297 FILE_SET_MATURE(rf);
298 FILE_SET_MATURE(wf);
299 FILE_UNUSE(rf, l);
300 FILE_UNUSE(wf, l);
301 return (0);
302 free3:
303 FILE_UNUSE(rf, l);
304 ffree(rf);
305 fdremove(l->l_proc->p_fd, retval[0]);
306 free2:
307 pipeclose(NULL, wpipe);
308 pipeclose(NULL, rpipe);
309
310 return (error);
311 }
312
313 /*
314 * Allocate kva for pipe circular buffer, the space is pageable
315 * This routine will 'realloc' the size of a pipe safely, if it fails
316 * it will retain the old buffer.
317 * If it fails it will return ENOMEM.
318 */
319 static int
320 pipespace(struct pipe *pipe, int size)
321 {
322 void *buffer;
323 /*
324 * Allocate pageable virtual address space. Physical memory is
325 * allocated on demand.
326 */
327 buffer = (void *) uvm_km_alloc(kernel_map, round_page(size), 0,
328 UVM_KMF_PAGEABLE);
329 if (buffer == NULL)
330 return (ENOMEM);
331
332 /* free old resources if we're resizing */
333 pipe_free_kmem(pipe);
334 pipe->pipe_buffer.buffer = buffer;
335 pipe->pipe_buffer.size = size;
336 pipe->pipe_buffer.in = 0;
337 pipe->pipe_buffer.out = 0;
338 pipe->pipe_buffer.cnt = 0;
339 atomic_add_int(&amountpipekva, pipe->pipe_buffer.size);
340 return (0);
341 }
342
343 /*
344 * Initialize and allocate VM and memory for pipe.
345 */
346 static int
347 pipe_create(struct pipe **pipep, int allockva, struct pipe_mutex *mutex)
348 {
349 struct pipe *pipe;
350 int error;
351
352 pipe = *pipep = pool_cache_get(pipe_cache, PR_WAITOK);
353 mutex->pm_refcnt++;
354
355 /* Initialize */
356 memset(pipe, 0, sizeof(struct pipe));
357 pipe->pipe_state = PIPE_SIGNALR;
358
359 getmicrotime(&pipe->pipe_ctime);
360 pipe->pipe_atime = pipe->pipe_ctime;
361 pipe->pipe_mtime = pipe->pipe_ctime;
362 pipe->pipe_lock = &mutex->pm_mutex;
363 cv_init(&pipe->pipe_cv, "pipe");
364 cv_init(&pipe->pipe_lkcv, "pipelk");
365 selinit(&pipe->pipe_sel);
366
367 if (allockva && (error = pipespace(pipe, PIPE_SIZE)))
368 return (error);
369
370 return (0);
371 }
372
373
374 /*
375 * Lock a pipe for I/O, blocking other access
376 * Called with pipe spin lock held.
377 * Return with pipe spin lock released on success.
378 */
379 static int
380 pipelock(struct pipe *pipe, int catch)
381 {
382 int error;
383
384 KASSERT(mutex_owned(pipe->pipe_lock));
385
386 while (pipe->pipe_state & PIPE_LOCKFL) {
387 pipe->pipe_state |= PIPE_LWANT;
388 if (catch) {
389 error = cv_wait_sig(&pipe->pipe_lkcv, pipe->pipe_lock);
390 if (error != 0)
391 return error;
392 } else
393 cv_wait(&pipe->pipe_lkcv, pipe->pipe_lock);
394 }
395
396 pipe->pipe_state |= PIPE_LOCKFL;
397
398 return 0;
399 }
400
401 /*
402 * unlock a pipe I/O lock
403 */
404 static inline void
405 pipeunlock(struct pipe *pipe)
406 {
407
408 KASSERT(pipe->pipe_state & PIPE_LOCKFL);
409
410 pipe->pipe_state &= ~PIPE_LOCKFL;
411 if (pipe->pipe_state & PIPE_LWANT) {
412 pipe->pipe_state &= ~PIPE_LWANT;
413 cv_broadcast(&pipe->pipe_lkcv);
414 }
415 }
416
417 /*
418 * Select/poll wakup. This also sends SIGIO to peer connected to
419 * 'sigpipe' side of pipe.
420 */
421 static void
422 pipeselwakeup(struct pipe *selp, struct pipe *sigp, int code)
423 {
424 int band;
425
426 selnotify(&selp->pipe_sel, NOTE_SUBMIT);
427
428 if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0)
429 return;
430
431 switch (code) {
432 case POLL_IN:
433 band = POLLIN|POLLRDNORM;
434 break;
435 case POLL_OUT:
436 band = POLLOUT|POLLWRNORM;
437 break;
438 case POLL_HUP:
439 band = POLLHUP;
440 break;
441 #if POLL_HUP != POLL_ERR
442 case POLL_ERR:
443 band = POLLERR;
444 break;
445 #endif
446 default:
447 band = 0;
448 #ifdef DIAGNOSTIC
449 printf("bad siginfo code %d in pipe notification.\n", code);
450 #endif
451 break;
452 }
453
454 fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp);
455 }
456
457 /* ARGSUSED */
458 static int
459 pipe_read(struct file *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
460 int flags)
461 {
462 struct pipe *rpipe = (struct pipe *) fp->f_data;
463 struct pipebuf *bp = &rpipe->pipe_buffer;
464 int error;
465 size_t nread = 0;
466 size_t size;
467 size_t ocnt;
468
469 mutex_enter(rpipe->pipe_lock);
470 ++rpipe->pipe_busy;
471 ocnt = bp->cnt;
472
473 again:
474 error = pipelock(rpipe, 1);
475 if (error)
476 goto unlocked_error;
477
478 while (uio->uio_resid) {
479 /*
480 * normal pipe buffer receive
481 */
482 if (bp->cnt > 0) {
483 size = bp->size - bp->out;
484 if (size > bp->cnt)
485 size = bp->cnt;
486 if (size > uio->uio_resid)
487 size = uio->uio_resid;
488
489 mutex_exit(rpipe->pipe_lock);
490 error = uiomove((char *)bp->buffer + bp->out, size, uio);
491 mutex_enter(rpipe->pipe_lock);
492 if (error)
493 break;
494
495 bp->out += size;
496 if (bp->out >= bp->size)
497 bp->out = 0;
498
499 bp->cnt -= size;
500
501 /*
502 * If there is no more to read in the pipe, reset
503 * its pointers to the beginning. This improves
504 * cache hit stats.
505 */
506 if (bp->cnt == 0) {
507 bp->in = 0;
508 bp->out = 0;
509 }
510 nread += size;
511 continue;
512 }
513
514 #ifndef PIPE_NODIRECT
515 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) {
516 /*
517 * Direct copy, bypassing a kernel buffer.
518 */
519 void * va;
520
521 KASSERT(rpipe->pipe_state & PIPE_DIRECTW);
522
523 size = rpipe->pipe_map.cnt;
524 if (size > uio->uio_resid)
525 size = uio->uio_resid;
526
527 va = (char *)rpipe->pipe_map.kva + rpipe->pipe_map.pos;
528 mutex_exit(rpipe->pipe_lock);
529 error = uiomove(va, size, uio);
530 mutex_enter(rpipe->pipe_lock);
531 if (error)
532 break;
533 nread += size;
534 rpipe->pipe_map.pos += size;
535 rpipe->pipe_map.cnt -= size;
536 if (rpipe->pipe_map.cnt == 0) {
537 rpipe->pipe_state &= ~PIPE_DIRECTR;
538 cv_broadcast(&rpipe->pipe_cv);
539 }
540 continue;
541 }
542 #endif
543 /*
544 * Break if some data was read.
545 */
546 if (nread > 0)
547 break;
548
549 /*
550 * detect EOF condition
551 * read returns 0 on EOF, no need to set error
552 */
553 if (rpipe->pipe_state & PIPE_EOF)
554 break;
555
556 /*
557 * don't block on non-blocking I/O
558 */
559 if (fp->f_flag & FNONBLOCK) {
560 error = EAGAIN;
561 break;
562 }
563
564 /*
565 * Unlock the pipe buffer for our remaining processing.
566 * We will either break out with an error or we will
567 * sleep and relock to loop.
568 */
569 pipeunlock(rpipe);
570
571 /*
572 * Re-check to see if more direct writes are pending.
573 */
574 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0)
575 goto again;
576
577 /*
578 * We want to read more, wake up select/poll.
579 */
580 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_IN);
581
582 /*
583 * If the "write-side" is blocked, wake it up now.
584 */
585 cv_broadcast(&rpipe->pipe_cv);
586
587 /* Now wait until the pipe is filled */
588 error = cv_wait_sig(&rpipe->pipe_cv, rpipe->pipe_lock);
589 if (error != 0)
590 goto unlocked_error;
591 goto again;
592 }
593
594 if (error == 0)
595 getmicrotime(&rpipe->pipe_atime);
596 pipeunlock(rpipe);
597
598 unlocked_error:
599 --rpipe->pipe_busy;
600 if (rpipe->pipe_busy == 0 || bp->cnt < MINPIPESIZE) {
601 cv_broadcast(&rpipe->pipe_cv);
602 }
603
604 /*
605 * If anything was read off the buffer, signal to the writer it's
606 * possible to write more data. Also send signal if we are here for the
607 * first time after last write.
608 */
609 if ((bp->size - bp->cnt) >= PIPE_BUF
610 && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
611 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
612 rpipe->pipe_state &= ~PIPE_SIGNALR;
613 }
614
615 mutex_exit(rpipe->pipe_lock);
616 return (error);
617 }
618
619 #ifndef PIPE_NODIRECT
620 /*
621 * Allocate structure for loan transfer.
622 */
623 static int
624 pipe_loan_alloc(struct pipe *wpipe, int npages)
625 {
626 vsize_t len;
627
628 len = (vsize_t)npages << PAGE_SHIFT;
629 wpipe->pipe_map.kva = uvm_km_alloc(kernel_map, len, 0,
630 UVM_KMF_VAONLY | UVM_KMF_WAITVA);
631 if (wpipe->pipe_map.kva == 0)
632 return (ENOMEM);
633
634 atomic_add_int(&amountpipekva, len);
635 wpipe->pipe_map.npages = npages;
636 wpipe->pipe_map.pgs = malloc(npages * sizeof(struct vm_page *), M_PIPE,
637 M_WAITOK);
638 return (0);
639 }
640
641 /*
642 * Free resources allocated for loan transfer.
643 */
644 static void
645 pipe_loan_free(struct pipe *wpipe)
646 {
647 vsize_t len;
648
649 len = (vsize_t)wpipe->pipe_map.npages << PAGE_SHIFT;
650 uvm_km_free(kernel_map, wpipe->pipe_map.kva, len, UVM_KMF_VAONLY);
651 wpipe->pipe_map.kva = 0;
652 atomic_add_int(&amountpipekva, -len);
653 free(wpipe->pipe_map.pgs, M_PIPE);
654 wpipe->pipe_map.pgs = NULL;
655 }
656
657 /*
658 * NetBSD direct write, using uvm_loan() mechanism.
659 * This implements the pipe buffer write mechanism. Note that only
660 * a direct write OR a normal pipe write can be pending at any given time.
661 * If there are any characters in the pipe buffer, the direct write will
662 * be deferred until the receiving process grabs all of the bytes from
663 * the pipe buffer. Then the direct mapping write is set-up.
664 *
665 * Called with the long-term pipe lock held.
666 */
667 static int
668 pipe_direct_write(struct file *fp, struct pipe *wpipe, struct uio *uio)
669 {
670 int error, npages, j;
671 struct vm_page **pgs;
672 vaddr_t bbase, kva, base, bend;
673 vsize_t blen, bcnt;
674 voff_t bpos;
675
676 KASSERT(mutex_owned(wpipe->pipe_lock));
677 KASSERT(wpipe->pipe_map.cnt == 0);
678
679 mutex_exit(wpipe->pipe_lock);
680
681 /*
682 * Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers
683 * not aligned to PAGE_SIZE.
684 */
685 bbase = (vaddr_t)uio->uio_iov->iov_base;
686 base = trunc_page(bbase);
687 bend = round_page(bbase + uio->uio_iov->iov_len);
688 blen = bend - base;
689 bpos = bbase - base;
690
691 if (blen > PIPE_DIRECT_CHUNK) {
692 blen = PIPE_DIRECT_CHUNK;
693 bend = base + blen;
694 bcnt = PIPE_DIRECT_CHUNK - bpos;
695 } else {
696 bcnt = uio->uio_iov->iov_len;
697 }
698 npages = blen >> PAGE_SHIFT;
699
700 /*
701 * Free the old kva if we need more pages than we have
702 * allocated.
703 */
704 if (wpipe->pipe_map.kva != 0 && npages > wpipe->pipe_map.npages)
705 pipe_loan_free(wpipe);
706
707 /* Allocate new kva. */
708 if (wpipe->pipe_map.kva == 0) {
709 error = pipe_loan_alloc(wpipe, npages);
710 if (error) {
711 mutex_enter(wpipe->pipe_lock);
712 return (error);
713 }
714 }
715
716 /* Loan the write buffer memory from writer process */
717 pgs = wpipe->pipe_map.pgs;
718 error = uvm_loan(&uio->uio_vmspace->vm_map, base, blen,
719 pgs, UVM_LOAN_TOPAGE);
720 if (error) {
721 pipe_loan_free(wpipe);
722 mutex_enter(wpipe->pipe_lock);
723 return (ENOMEM); /* so that caller fallback to ordinary write */
724 }
725
726 /* Enter the loaned pages to kva */
727 kva = wpipe->pipe_map.kva;
728 for (j = 0; j < npages; j++, kva += PAGE_SIZE) {
729 pmap_kenter_pa(kva, VM_PAGE_TO_PHYS(pgs[j]), VM_PROT_READ);
730 }
731 pmap_update(pmap_kernel());
732
733 /* Now we can put the pipe in direct write mode */
734 wpipe->pipe_map.pos = bpos;
735 wpipe->pipe_map.cnt = bcnt;
736
737 /*
738 * But before we can let someone do a direct read, we
739 * have to wait until the pipe is drained. Release the
740 * pipe lock while we wait.
741 */
742 mutex_enter(wpipe->pipe_lock);
743 wpipe->pipe_state |= PIPE_DIRECTW;
744 pipeunlock(wpipe);
745
746 while (error == 0 && wpipe->pipe_buffer.cnt > 0) {
747 cv_broadcast(&wpipe->pipe_cv);
748 error = cv_wait_sig(&wpipe->pipe_cv, wpipe->pipe_lock);
749 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
750 error = EPIPE;
751 }
752
753 /* Pipe is drained; next read will off the direct buffer */
754 wpipe->pipe_state |= PIPE_DIRECTR;
755
756 /* Wait until the reader is done */
757 while (error == 0 && (wpipe->pipe_state & PIPE_DIRECTR)) {
758 cv_broadcast(&wpipe->pipe_cv);
759 pipeselwakeup(wpipe, wpipe, POLL_IN);
760 error = cv_wait_sig(&wpipe->pipe_cv, wpipe->pipe_lock);
761 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
762 error = EPIPE;
763 }
764
765 /* Take pipe out of direct write mode */
766 wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTR);
767
768 /* Acquire the pipe lock and cleanup */
769 (void)pipelock(wpipe, 0);
770 mutex_exit(wpipe->pipe_lock);
771
772 if (pgs != NULL) {
773 pmap_kremove(wpipe->pipe_map.kva, blen);
774 uvm_unloan(pgs, npages, UVM_LOAN_TOPAGE);
775 }
776 if (error || amountpipekva > maxpipekva)
777 pipe_loan_free(wpipe);
778
779 mutex_enter(wpipe->pipe_lock);
780 if (error) {
781 pipeselwakeup(wpipe, wpipe, POLL_ERR);
782
783 /*
784 * If nothing was read from what we offered, return error
785 * straight on. Otherwise update uio resid first. Caller
786 * will deal with the error condition, returning short
787 * write, error, or restarting the write(2) as appropriate.
788 */
789 if (wpipe->pipe_map.cnt == bcnt) {
790 wpipe->pipe_map.cnt = 0;
791 cv_broadcast(&wpipe->pipe_cv);
792 return (error);
793 }
794
795 bcnt -= wpipe->pipe_map.cnt;
796 }
797
798 uio->uio_resid -= bcnt;
799 /* uio_offset not updated, not set/used for write(2) */
800 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt;
801 uio->uio_iov->iov_len -= bcnt;
802 if (uio->uio_iov->iov_len == 0) {
803 uio->uio_iov++;
804 uio->uio_iovcnt--;
805 }
806
807 wpipe->pipe_map.cnt = 0;
808 return (error);
809 }
810 #endif /* !PIPE_NODIRECT */
811
812 static int
813 pipe_write(struct file *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
814 int flags)
815 {
816 struct pipe *wpipe, *rpipe;
817 struct pipebuf *bp;
818 int error;
819
820 /* We want to write to our peer */
821 rpipe = (struct pipe *) fp->f_data;
822 error = 0;
823
824 mutex_enter(rpipe->pipe_lock);
825 wpipe = rpipe->pipe_peer;
826
827 /*
828 * Detect loss of pipe read side, issue SIGPIPE if lost.
829 */
830 if (wpipe == NULL) {
831 mutex_exit(rpipe->pipe_lock);
832 return EPIPE;
833 } else if ((wpipe->pipe_state & PIPE_EOF) != 0) {
834 mutex_exit(rpipe->pipe_lock);
835 return EPIPE;
836 }
837 ++wpipe->pipe_busy;
838
839 /* Aquire the long-term pipe lock */
840 if ((error = pipelock(wpipe,1)) != 0) {
841 --wpipe->pipe_busy;
842 if (wpipe->pipe_busy == 0) {
843 cv_broadcast(&wpipe->pipe_cv);
844 }
845 mutex_exit(rpipe->pipe_lock);
846 return (error);
847 }
848
849 bp = &wpipe->pipe_buffer;
850
851 /*
852 * If it is advantageous to resize the pipe buffer, do so.
853 */
854 if ((uio->uio_resid > PIPE_SIZE) &&
855 (nbigpipe < maxbigpipes) &&
856 #ifndef PIPE_NODIRECT
857 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
858 #endif
859 (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) {
860
861 if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
862 atomic_inc_uint(&nbigpipe);
863 }
864
865 while (uio->uio_resid) {
866 size_t space;
867
868 #ifndef PIPE_NODIRECT
869 /*
870 * Pipe buffered writes cannot be coincidental with
871 * direct writes. Also, only one direct write can be
872 * in progress at any one time. We wait until the currently
873 * executing direct write is completed before continuing.
874 *
875 * We break out if a signal occurs or the reader goes away.
876 */
877 while (error == 0 && wpipe->pipe_state & PIPE_DIRECTW) {
878 cv_broadcast(&wpipe->pipe_cv);
879 pipeunlock(wpipe);
880 error = cv_wait_sig(&wpipe->pipe_cv,
881 wpipe->pipe_lock);
882 (void)pipelock(wpipe, 0);
883 if (wpipe->pipe_state & PIPE_EOF)
884 error = EPIPE;
885 }
886 if (error)
887 break;
888
889 /*
890 * If the transfer is large, we can gain performance if
891 * we do process-to-process copies directly.
892 * If the write is non-blocking, we don't use the
893 * direct write mechanism.
894 *
895 * The direct write mechanism will detect the reader going
896 * away on us.
897 */
898 if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
899 (fp->f_flag & FNONBLOCK) == 0 &&
900 (wpipe->pipe_map.kva || (amountpipekva < limitpipekva))) {
901 error = pipe_direct_write(fp, wpipe, uio);
902
903 /*
904 * Break out if error occurred, unless it's ENOMEM.
905 * ENOMEM means we failed to allocate some resources
906 * for direct write, so we just fallback to ordinary
907 * write. If the direct write was successful,
908 * process rest of data via ordinary write.
909 */
910 if (error == 0)
911 continue;
912
913 if (error != ENOMEM)
914 break;
915 }
916 #endif /* PIPE_NODIRECT */
917
918 space = bp->size - bp->cnt;
919
920 /* Writes of size <= PIPE_BUF must be atomic. */
921 if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
922 space = 0;
923
924 if (space > 0) {
925 int size; /* Transfer size */
926 int segsize; /* first segment to transfer */
927
928 /*
929 * Transfer size is minimum of uio transfer
930 * and free space in pipe buffer.
931 */
932 if (space > uio->uio_resid)
933 size = uio->uio_resid;
934 else
935 size = space;
936 /*
937 * First segment to transfer is minimum of
938 * transfer size and contiguous space in
939 * pipe buffer. If first segment to transfer
940 * is less than the transfer size, we've got
941 * a wraparound in the buffer.
942 */
943 segsize = bp->size - bp->in;
944 if (segsize > size)
945 segsize = size;
946
947 /* Transfer first segment */
948 mutex_exit(wpipe->pipe_lock);
949 error = uiomove((char *)bp->buffer + bp->in, segsize,
950 uio);
951
952 if (error == 0 && segsize < size) {
953 /*
954 * Transfer remaining part now, to
955 * support atomic writes. Wraparound
956 * happened.
957 */
958 #ifdef DEBUG
959 if (bp->in + segsize != bp->size)
960 panic("Expected pipe buffer wraparound disappeared");
961 #endif
962
963 error = uiomove(bp->buffer,
964 size - segsize, uio);
965 }
966 mutex_enter(wpipe->pipe_lock);
967 if (error)
968 break;
969
970 bp->in += size;
971 if (bp->in >= bp->size) {
972 #ifdef DEBUG
973 if (bp->in != size - segsize + bp->size)
974 panic("Expected wraparound bad");
975 #endif
976 bp->in = size - segsize;
977 }
978
979 bp->cnt += size;
980 #ifdef DEBUG
981 if (bp->cnt > bp->size)
982 panic("Pipe buffer overflow");
983 #endif
984 } else {
985 /*
986 * If the "read-side" has been blocked, wake it up now.
987 */
988 cv_broadcast(&wpipe->pipe_cv);
989
990 /*
991 * don't block on non-blocking I/O
992 */
993 if (fp->f_flag & FNONBLOCK) {
994 error = EAGAIN;
995 break;
996 }
997
998 /*
999 * We have no more space and have something to offer,
1000 * wake up select/poll.
1001 */
1002 if (bp->cnt)
1003 pipeselwakeup(wpipe, wpipe, POLL_OUT);
1004
1005 pipeunlock(wpipe);
1006 error = cv_wait_sig(&wpipe->pipe_cv, wpipe->pipe_lock);
1007 (void)pipelock(wpipe, 0);
1008 if (error != 0)
1009 break;
1010 /*
1011 * If read side wants to go away, we just issue a signal
1012 * to ourselves.
1013 */
1014 if (wpipe->pipe_state & PIPE_EOF) {
1015 error = EPIPE;
1016 break;
1017 }
1018 }
1019 }
1020
1021 --wpipe->pipe_busy;
1022 if (wpipe->pipe_busy == 0 || bp->cnt > 0) {
1023 cv_broadcast(&wpipe->pipe_cv);
1024 }
1025
1026 /*
1027 * Don't return EPIPE if I/O was successful
1028 */
1029 if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0)
1030 error = 0;
1031
1032 if (error == 0)
1033 getmicrotime(&wpipe->pipe_mtime);
1034
1035 /*
1036 * We have something to offer, wake up select/poll.
1037 * wpipe->pipe_map.cnt is always 0 in this point (direct write
1038 * is only done synchronously), so check only wpipe->pipe_buffer.cnt
1039 */
1040 if (bp->cnt)
1041 pipeselwakeup(wpipe, wpipe, POLL_OUT);
1042
1043 /*
1044 * Arrange for next read(2) to do a signal.
1045 */
1046 wpipe->pipe_state |= PIPE_SIGNALR;
1047
1048 pipeunlock(wpipe);
1049 mutex_exit(wpipe->pipe_lock);
1050 return (error);
1051 }
1052
1053 /*
1054 * we implement a very minimal set of ioctls for compatibility with sockets.
1055 */
1056 int
1057 pipe_ioctl(struct file *fp, u_long cmd, void *data, struct lwp *l)
1058 {
1059 struct pipe *pipe = (struct pipe *)fp->f_data;
1060 struct proc *p = l->l_proc;
1061
1062 switch (cmd) {
1063
1064 case FIONBIO:
1065 return (0);
1066
1067 case FIOASYNC:
1068 mutex_enter(pipe->pipe_lock);
1069 if (*(int *)data) {
1070 pipe->pipe_state |= PIPE_ASYNC;
1071 } else {
1072 pipe->pipe_state &= ~PIPE_ASYNC;
1073 }
1074 mutex_exit(pipe->pipe_lock);
1075 return (0);
1076
1077 case FIONREAD:
1078 mutex_enter(pipe->pipe_lock);
1079 #ifndef PIPE_NODIRECT
1080 if (pipe->pipe_state & PIPE_DIRECTW)
1081 *(int *)data = pipe->pipe_map.cnt;
1082 else
1083 #endif
1084 *(int *)data = pipe->pipe_buffer.cnt;
1085 mutex_exit(pipe->pipe_lock);
1086 return (0);
1087
1088 case FIONWRITE:
1089 /* Look at other side */
1090 pipe = pipe->pipe_peer;
1091 mutex_enter(pipe->pipe_lock);
1092 #ifndef PIPE_NODIRECT
1093 if (pipe->pipe_state & PIPE_DIRECTW)
1094 *(int *)data = pipe->pipe_map.cnt;
1095 else
1096 #endif
1097 *(int *)data = pipe->pipe_buffer.cnt;
1098 mutex_exit(pipe->pipe_lock);
1099 return (0);
1100
1101 case FIONSPACE:
1102 /* Look at other side */
1103 pipe = pipe->pipe_peer;
1104 mutex_enter(pipe->pipe_lock);
1105 #ifndef PIPE_NODIRECT
1106 /*
1107 * If we're in direct-mode, we don't really have a
1108 * send queue, and any other write will block. Thus
1109 * zero seems like the best answer.
1110 */
1111 if (pipe->pipe_state & PIPE_DIRECTW)
1112 *(int *)data = 0;
1113 else
1114 #endif
1115 *(int *)data = pipe->pipe_buffer.size -
1116 pipe->pipe_buffer.cnt;
1117 mutex_exit(pipe->pipe_lock);
1118 return (0);
1119
1120 case TIOCSPGRP:
1121 case FIOSETOWN:
1122 return fsetown(p, &pipe->pipe_pgid, cmd, data);
1123
1124 case TIOCGPGRP:
1125 case FIOGETOWN:
1126 return fgetown(p, pipe->pipe_pgid, cmd, data);
1127
1128 }
1129 return (EPASSTHROUGH);
1130 }
1131
1132 int
1133 pipe_poll(struct file *fp, int events, struct lwp *l)
1134 {
1135 struct pipe *rpipe = (struct pipe *)fp->f_data;
1136 struct pipe *wpipe;
1137 int eof = 0;
1138 int revents = 0;
1139
1140 mutex_enter(rpipe->pipe_lock);
1141 wpipe = rpipe->pipe_peer;
1142
1143 if (events & (POLLIN | POLLRDNORM))
1144 if ((rpipe->pipe_buffer.cnt > 0) ||
1145 #ifndef PIPE_NODIRECT
1146 (rpipe->pipe_state & PIPE_DIRECTR) ||
1147 #endif
1148 (rpipe->pipe_state & PIPE_EOF))
1149 revents |= events & (POLLIN | POLLRDNORM);
1150
1151 eof |= (rpipe->pipe_state & PIPE_EOF);
1152
1153 if (wpipe == NULL)
1154 revents |= events & (POLLOUT | POLLWRNORM);
1155 else {
1156 if (events & (POLLOUT | POLLWRNORM))
1157 if ((wpipe->pipe_state & PIPE_EOF) || (
1158 #ifndef PIPE_NODIRECT
1159 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
1160 #endif
1161 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1162 revents |= events & (POLLOUT | POLLWRNORM);
1163
1164 eof |= (wpipe->pipe_state & PIPE_EOF);
1165 }
1166
1167 if (wpipe == NULL || eof)
1168 revents |= POLLHUP;
1169
1170 if (revents == 0) {
1171 if (events & (POLLIN | POLLRDNORM))
1172 selrecord(l, &rpipe->pipe_sel);
1173
1174 if (events & (POLLOUT | POLLWRNORM))
1175 selrecord(l, &wpipe->pipe_sel);
1176 }
1177 mutex_exit(rpipe->pipe_lock);
1178
1179 return (revents);
1180 }
1181
1182 static int
1183 pipe_stat(struct file *fp, struct stat *ub, struct lwp *l)
1184 {
1185 struct pipe *pipe = (struct pipe *)fp->f_data;
1186
1187 memset((void *)ub, 0, sizeof(*ub));
1188 ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
1189 ub->st_blksize = pipe->pipe_buffer.size;
1190 if (ub->st_blksize == 0 && pipe->pipe_peer)
1191 ub->st_blksize = pipe->pipe_peer->pipe_buffer.size;
1192 ub->st_size = pipe->pipe_buffer.cnt;
1193 ub->st_blocks = (ub->st_size) ? 1 : 0;
1194 TIMEVAL_TO_TIMESPEC(&pipe->pipe_atime, &ub->st_atimespec);
1195 TIMEVAL_TO_TIMESPEC(&pipe->pipe_mtime, &ub->st_mtimespec);
1196 TIMEVAL_TO_TIMESPEC(&pipe->pipe_ctime, &ub->st_ctimespec);
1197 ub->st_uid = kauth_cred_geteuid(fp->f_cred);
1198 ub->st_gid = kauth_cred_getegid(fp->f_cred);
1199
1200 /*
1201 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1202 * XXX (st_dev, st_ino) should be unique.
1203 */
1204 return (0);
1205 }
1206
1207 /* ARGSUSED */
1208 static int
1209 pipe_close(struct file *fp, struct lwp *l)
1210 {
1211 struct pipe *pipe = (struct pipe *)fp->f_data;
1212
1213 fp->f_data = NULL;
1214 pipeclose(fp, pipe);
1215 return (0);
1216 }
1217
1218 static void
1219 pipe_free_kmem(struct pipe *pipe)
1220 {
1221
1222 if (pipe->pipe_buffer.buffer != NULL) {
1223 if (pipe->pipe_buffer.size > PIPE_SIZE)
1224 atomic_dec_uint(&nbigpipe);
1225 atomic_add_int(&amountpipekva, -pipe->pipe_buffer.size);
1226 uvm_km_free(kernel_map,
1227 (vaddr_t)pipe->pipe_buffer.buffer,
1228 pipe->pipe_buffer.size, UVM_KMF_PAGEABLE);
1229 pipe->pipe_buffer.buffer = NULL;
1230 }
1231 #ifndef PIPE_NODIRECT
1232 if (pipe->pipe_map.kva != 0) {
1233 pipe_loan_free(pipe);
1234 pipe->pipe_map.cnt = 0;
1235 pipe->pipe_map.kva = 0;
1236 pipe->pipe_map.pos = 0;
1237 pipe->pipe_map.npages = 0;
1238 }
1239 #endif /* !PIPE_NODIRECT */
1240 }
1241
1242 /*
1243 * shutdown the pipe
1244 */
1245 static void
1246 pipeclose(struct file *fp, struct pipe *pipe)
1247 {
1248 struct pipe_mutex *mutex;
1249 struct pipe *ppipe;
1250 u_int refcnt;
1251
1252 if (pipe == NULL)
1253 return;
1254
1255 mutex_enter(pipe->pipe_lock);
1256 pipeselwakeup(pipe, pipe, POLL_HUP);
1257
1258 /*
1259 * If the other side is blocked, wake it up saying that
1260 * we want to close it down.
1261 */
1262 pipe->pipe_state |= PIPE_EOF;
1263 if (pipe->pipe_busy) {
1264 while (pipe->pipe_busy) {
1265 cv_broadcast(&pipe->pipe_cv);
1266 cv_wait_sig(&pipe->pipe_cv, pipe->pipe_lock);
1267 }
1268 }
1269
1270 /*
1271 * Disconnect from peer
1272 */
1273 if ((ppipe = pipe->pipe_peer) != NULL) {
1274 pipeselwakeup(ppipe, ppipe, POLL_HUP);
1275 ppipe->pipe_state |= PIPE_EOF;
1276 cv_broadcast(&ppipe->pipe_cv);
1277 ppipe->pipe_peer = NULL;
1278 }
1279
1280 KASSERT((pipe->pipe_state & PIPE_LOCKFL) == 0);
1281
1282 mutex = (struct pipe_mutex *)pipe->pipe_lock;
1283 refcnt = --(mutex->pm_refcnt);
1284 KASSERT(refcnt == 0 || refcnt == 1);
1285 mutex_exit(pipe->pipe_lock);
1286
1287 /*
1288 * free resources
1289 */
1290 pipe_free_kmem(pipe);
1291 cv_destroy(&pipe->pipe_cv);
1292 cv_destroy(&pipe->pipe_lkcv);
1293 seldestroy(&pipe->pipe_sel);
1294 pool_cache_put(pipe_cache, pipe);
1295 if (refcnt == 0)
1296 pool_cache_put(pipe_mutex_cache, mutex);
1297 }
1298
1299 static void
1300 filt_pipedetach(struct knote *kn)
1301 {
1302 struct pipe *pipe;
1303 kmutex_t *lock;
1304
1305 pipe = (struct pipe *)kn->kn_fp->f_data;
1306 lock = pipe->pipe_lock;
1307
1308 mutex_enter(lock);
1309
1310 switch(kn->kn_filter) {
1311 case EVFILT_WRITE:
1312 /* need the peer structure, not our own */
1313 pipe = pipe->pipe_peer;
1314
1315 /* if reader end already closed, just return */
1316 if (pipe == NULL) {
1317 mutex_exit(lock);
1318 return;
1319 }
1320
1321 break;
1322 default:
1323 /* nothing to do */
1324 break;
1325 }
1326
1327 #ifdef DIAGNOSTIC
1328 if (kn->kn_hook != pipe)
1329 panic("filt_pipedetach: inconsistent knote");
1330 #endif
1331
1332 SLIST_REMOVE(&pipe->pipe_sel.sel_klist, kn, knote, kn_selnext);
1333 mutex_exit(lock);
1334 }
1335
1336 /*ARGSUSED*/
1337 static int
1338 filt_piperead(struct knote *kn, long hint)
1339 {
1340 struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1341 struct pipe *wpipe;
1342
1343 if ((hint & NOTE_SUBMIT) == 0) {
1344 mutex_enter(rpipe->pipe_lock);
1345 }
1346 wpipe = rpipe->pipe_peer;
1347 kn->kn_data = rpipe->pipe_buffer.cnt;
1348
1349 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1350 kn->kn_data = rpipe->pipe_map.cnt;
1351
1352 if ((rpipe->pipe_state & PIPE_EOF) ||
1353 (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1354 kn->kn_flags |= EV_EOF;
1355 if ((hint & NOTE_SUBMIT) == 0) {
1356 mutex_exit(rpipe->pipe_lock);
1357 }
1358 return (1);
1359 }
1360
1361 if ((hint & NOTE_SUBMIT) == 0) {
1362 mutex_exit(rpipe->pipe_lock);
1363 }
1364 return (kn->kn_data > 0);
1365 }
1366
1367 /*ARGSUSED*/
1368 static int
1369 filt_pipewrite(struct knote *kn, long hint)
1370 {
1371 struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1372 struct pipe *wpipe;
1373
1374 if ((hint & NOTE_SUBMIT) == 0) {
1375 mutex_enter(rpipe->pipe_lock);
1376 }
1377 wpipe = rpipe->pipe_peer;
1378
1379 if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1380 kn->kn_data = 0;
1381 kn->kn_flags |= EV_EOF;
1382 if ((hint & NOTE_SUBMIT) == 0) {
1383 mutex_exit(rpipe->pipe_lock);
1384 }
1385 return (1);
1386 }
1387 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1388 if (wpipe->pipe_state & PIPE_DIRECTW)
1389 kn->kn_data = 0;
1390
1391 if ((hint & NOTE_SUBMIT) == 0) {
1392 mutex_exit(rpipe->pipe_lock);
1393 }
1394 return (kn->kn_data >= PIPE_BUF);
1395 }
1396
1397 static const struct filterops pipe_rfiltops =
1398 { 1, NULL, filt_pipedetach, filt_piperead };
1399 static const struct filterops pipe_wfiltops =
1400 { 1, NULL, filt_pipedetach, filt_pipewrite };
1401
1402 /*ARGSUSED*/
1403 static int
1404 pipe_kqfilter(struct file *fp, struct knote *kn)
1405 {
1406 struct pipe *pipe;
1407 kmutex_t *lock;
1408
1409 pipe = (struct pipe *)kn->kn_fp->f_data;
1410 lock = pipe->pipe_lock;
1411
1412 mutex_enter(lock);
1413
1414 switch (kn->kn_filter) {
1415 case EVFILT_READ:
1416 kn->kn_fop = &pipe_rfiltops;
1417 break;
1418 case EVFILT_WRITE:
1419 kn->kn_fop = &pipe_wfiltops;
1420 pipe = pipe->pipe_peer;
1421 if (pipe == NULL) {
1422 /* other end of pipe has been closed */
1423 mutex_exit(lock);
1424 return (EBADF);
1425 }
1426 break;
1427 default:
1428 mutex_exit(lock);
1429 return (EINVAL);
1430 }
1431
1432 kn->kn_hook = pipe;
1433 SLIST_INSERT_HEAD(&pipe->pipe_sel.sel_klist, kn, kn_selnext);
1434 mutex_exit(lock);
1435
1436 return (0);
1437 }
1438
1439 /*
1440 * Handle pipe sysctls.
1441 */
1442 SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup")
1443 {
1444
1445 sysctl_createv(clog, 0, NULL, NULL,
1446 CTLFLAG_PERMANENT,
1447 CTLTYPE_NODE, "kern", NULL,
1448 NULL, 0, NULL, 0,
1449 CTL_KERN, CTL_EOL);
1450 sysctl_createv(clog, 0, NULL, NULL,
1451 CTLFLAG_PERMANENT,
1452 CTLTYPE_NODE, "pipe",
1453 SYSCTL_DESCR("Pipe settings"),
1454 NULL, 0, NULL, 0,
1455 CTL_KERN, KERN_PIPE, CTL_EOL);
1456
1457 sysctl_createv(clog, 0, NULL, NULL,
1458 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1459 CTLTYPE_INT, "maxkvasz",
1460 SYSCTL_DESCR("Maximum amount of kernel memory to be "
1461 "used for pipes"),
1462 NULL, 0, &maxpipekva, 0,
1463 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXKVASZ, CTL_EOL);
1464 sysctl_createv(clog, 0, NULL, NULL,
1465 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1466 CTLTYPE_INT, "maxloankvasz",
1467 SYSCTL_DESCR("Limit for direct transfers via page loan"),
1468 NULL, 0, &limitpipekva, 0,
1469 CTL_KERN, KERN_PIPE, KERN_PIPE_LIMITKVA, CTL_EOL);
1470 sysctl_createv(clog, 0, NULL, NULL,
1471 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1472 CTLTYPE_INT, "maxbigpipes",
1473 SYSCTL_DESCR("Maximum number of \"big\" pipes"),
1474 NULL, 0, &maxbigpipes, 0,
1475 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL);
1476 sysctl_createv(clog, 0, NULL, NULL,
1477 CTLFLAG_PERMANENT,
1478 CTLTYPE_INT, "nbigpipes",
1479 SYSCTL_DESCR("Number of \"big\" pipes"),
1480 NULL, 0, &nbigpipe, 0,
1481 CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL);
1482 sysctl_createv(clog, 0, NULL, NULL,
1483 CTLFLAG_PERMANENT,
1484 CTLTYPE_INT, "kvasize",
1485 SYSCTL_DESCR("Amount of kernel memory consumed by pipe "
1486 "buffers"),
1487 NULL, 0, &amountpipekva, 0,
1488 CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL);
1489 }
1490