Home | History | Annotate | Line # | Download | only in kern
sys_pipe.c revision 1.95
      1 /*	$NetBSD: sys_pipe.c,v 1.95 2008/01/28 20:01:50 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2003, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Paul Kranenburg, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Copyright (c) 1996 John S. Dyson
     41  * All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice immediately at the beginning of the file, without modification,
     48  *    this list of conditions, and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. Absolutely no warranty of function or purpose is made by the author
     53  *    John S. Dyson.
     54  * 4. Modifications may be freely made to this file if the above conditions
     55  *    are met.
     56  *
     57  * $FreeBSD: src/sys/kern/sys_pipe.c,v 1.95 2002/03/09 22:06:31 alfred Exp $
     58  */
     59 
     60 /*
     61  * This file contains a high-performance replacement for the socket-based
     62  * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
     63  * all features of sockets, but does do everything that pipes normally
     64  * do.
     65  *
     66  * Adaption for NetBSD UVM, including uvm_loan() based direct write, was
     67  * written by Jaromir Dolecek.
     68  */
     69 
     70 /*
     71  * This code has two modes of operation, a small write mode and a large
     72  * write mode.  The small write mode acts like conventional pipes with
     73  * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
     74  * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
     75  * and PIPE_SIZE in size it is mapped read-only into the kernel address space
     76  * using the UVM page loan facility from where the receiving process can copy
     77  * the data directly from the pages in the sending process.
     78  *
     79  * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
     80  * happen for small transfers so that the system will not spend all of
     81  * its time context switching.  PIPE_SIZE is constrained by the
     82  * amount of kernel virtual memory.
     83  */
     84 
     85 #include <sys/cdefs.h>
     86 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.95 2008/01/28 20:01:50 ad Exp $");
     87 
     88 #include <sys/param.h>
     89 #include <sys/systm.h>
     90 #include <sys/proc.h>
     91 #include <sys/fcntl.h>
     92 #include <sys/file.h>
     93 #include <sys/filedesc.h>
     94 #include <sys/filio.h>
     95 #include <sys/kernel.h>
     96 #include <sys/ttycom.h>
     97 #include <sys/stat.h>
     98 #include <sys/malloc.h>
     99 #include <sys/poll.h>
    100 #include <sys/signalvar.h>
    101 #include <sys/vnode.h>
    102 #include <sys/uio.h>
    103 #include <sys/select.h>
    104 #include <sys/mount.h>
    105 #include <sys/syscallargs.h>
    106 #include <sys/sysctl.h>
    107 #include <sys/kauth.h>
    108 #include <sys/atomic.h>
    109 #include <sys/pipe.h>
    110 
    111 #include <uvm/uvm.h>
    112 
    113 /*
    114  * Use this define if you want to disable *fancy* VM things.  Expect an
    115  * approx 30% decrease in transfer rate.
    116  */
    117 /* #define PIPE_NODIRECT */
    118 
    119 /*
    120  * interfaces to the outside world
    121  */
    122 static int pipe_read(struct file *fp, off_t *offset, struct uio *uio,
    123 		kauth_cred_t cred, int flags);
    124 static int pipe_write(struct file *fp, off_t *offset, struct uio *uio,
    125 		kauth_cred_t cred, int flags);
    126 static int pipe_close(struct file *fp, struct lwp *l);
    127 static int pipe_poll(struct file *fp, int events, struct lwp *l);
    128 static int pipe_kqfilter(struct file *fp, struct knote *kn);
    129 static int pipe_stat(struct file *fp, struct stat *sb, struct lwp *l);
    130 static int pipe_ioctl(struct file *fp, u_long cmd, void *data,
    131 		struct lwp *l);
    132 
    133 static const struct fileops pipeops = {
    134 	pipe_read, pipe_write, pipe_ioctl, fnullop_fcntl, pipe_poll,
    135 	pipe_stat, pipe_close, pipe_kqfilter
    136 };
    137 
    138 /*
    139  * Single mutex shared between both ends of the pipe.
    140  */
    141 
    142 struct pipe_mutex {
    143 	kmutex_t	pm_mutex;
    144 	u_int		pm_refcnt;
    145 };
    146 
    147 /*
    148  * Default pipe buffer size(s), this can be kind-of large now because pipe
    149  * space is pageable.  The pipe code will try to maintain locality of
    150  * reference for performance reasons, so small amounts of outstanding I/O
    151  * will not wipe the cache.
    152  */
    153 #define MINPIPESIZE (PIPE_SIZE/3)
    154 #define MAXPIPESIZE (2*PIPE_SIZE/3)
    155 
    156 /*
    157  * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
    158  * is there so that on large systems, we don't exhaust it.
    159  */
    160 #define MAXPIPEKVA (8*1024*1024)
    161 static u_int maxpipekva = MAXPIPEKVA;
    162 
    163 /*
    164  * Limit for direct transfers, we cannot, of course limit
    165  * the amount of kva for pipes in general though.
    166  */
    167 #define LIMITPIPEKVA (16*1024*1024)
    168 static u_int limitpipekva = LIMITPIPEKVA;
    169 
    170 /*
    171  * Limit the number of "big" pipes
    172  */
    173 #define LIMITBIGPIPES  32
    174 static u_int maxbigpipes = LIMITBIGPIPES;
    175 static u_int nbigpipe = 0;
    176 
    177 /*
    178  * Amount of KVA consumed by pipe buffers.
    179  */
    180 static u_int amountpipekva = 0;
    181 
    182 MALLOC_DEFINE(M_PIPE, "pipe", "Pipe structures");
    183 
    184 static void pipeclose(struct file *fp, struct pipe *pipe);
    185 static void pipe_free_kmem(struct pipe *pipe);
    186 static int pipe_create(struct pipe **pipep, int allockva, struct pipe_mutex *);
    187 static int pipelock(struct pipe *pipe, int catch);
    188 static inline void pipeunlock(struct pipe *pipe);
    189 static void pipeselwakeup(struct pipe *pipe, struct pipe *sigp, int code);
    190 #ifndef PIPE_NODIRECT
    191 static int pipe_direct_write(struct file *fp, struct pipe *wpipe,
    192     struct uio *uio);
    193 #endif
    194 static int pipespace(struct pipe *pipe, int size);
    195 
    196 #ifndef PIPE_NODIRECT
    197 static int pipe_loan_alloc(struct pipe *, int);
    198 static void pipe_loan_free(struct pipe *);
    199 #endif /* PIPE_NODIRECT */
    200 
    201 static int pipe_mutex_ctor(void *, void *, int);
    202 static void pipe_mutex_dtor(void *, void *);
    203 
    204 static pool_cache_t pipe_cache;
    205 static pool_cache_t pipe_mutex_cache;
    206 
    207 void
    208 pipe_init(void)
    209 {
    210 	size_t size;
    211 
    212 	pipe_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "pipepl",
    213 	    NULL, IPL_NONE, NULL, NULL, NULL);
    214 	KASSERT(pipe_cache != NULL);
    215 
    216 	size = (sizeof(struct pipe_mutex) + (CACHE_LINE_SIZE - 1)) &
    217 	    (CACHE_LINE_SIZE - 1);
    218 	pipe_mutex_cache = pool_cache_init(size, CACHE_LINE_SIZE,
    219 	    0, 0, "pipemtxpl", NULL, IPL_NONE, pipe_mutex_ctor,
    220 	    pipe_mutex_dtor, NULL);
    221 	KASSERT(pipe_cache != NULL);
    222 }
    223 
    224 static int
    225 pipe_mutex_ctor(void *arg, void *obj, int flag)
    226 {
    227 	struct pipe_mutex *pm = obj;
    228 
    229 	mutex_init(&pm->pm_mutex, MUTEX_DEFAULT, IPL_NONE);
    230 	pm->pm_refcnt = 0;
    231 
    232 	return 0;
    233 }
    234 
    235 static void
    236 pipe_mutex_dtor(void *arg, void *obj)
    237 {
    238 	struct pipe_mutex *pm = obj;
    239 
    240 	KASSERT(pm->pm_refcnt == 0);
    241 
    242 	mutex_destroy(&pm->pm_mutex);
    243 }
    244 
    245 /*
    246  * The pipe system call for the DTYPE_PIPE type of pipes
    247  */
    248 
    249 /* ARGSUSED */
    250 int
    251 sys_pipe(struct lwp *l, const void *v, register_t *retval)
    252 {
    253 	struct file *rf, *wf;
    254 	struct pipe *rpipe, *wpipe;
    255 	struct pipe_mutex *mutex;
    256 	int fd, error;
    257 
    258 	rpipe = wpipe = NULL;
    259 	mutex = pool_cache_get(pipe_mutex_cache, PR_WAITOK);
    260 	if (mutex == NULL)
    261 		return (ENOMEM);
    262 	if (pipe_create(&rpipe, 1, mutex) || pipe_create(&wpipe, 0, mutex)) {
    263 		pipeclose(NULL, rpipe);
    264 		pipeclose(NULL, wpipe);
    265 		return (ENFILE);
    266 	}
    267 
    268 	/*
    269 	 * Note: the file structure returned from falloc() is marked
    270 	 * as 'larval' initially. Unless we mark it as 'mature' by
    271 	 * FILE_SET_MATURE(), any attempt to do anything with it would
    272 	 * return EBADF, including e.g. dup(2) or close(2). This avoids
    273 	 * file descriptor races if we block in the second falloc().
    274 	 */
    275 
    276 	error = falloc(l, &rf, &fd);
    277 	if (error)
    278 		goto free2;
    279 	retval[0] = fd;
    280 	rf->f_flag = FREAD;
    281 	rf->f_type = DTYPE_PIPE;
    282 	rf->f_data = (void *)rpipe;
    283 	rf->f_ops = &pipeops;
    284 
    285 	error = falloc(l, &wf, &fd);
    286 	if (error)
    287 		goto free3;
    288 	retval[1] = fd;
    289 	wf->f_flag = FWRITE;
    290 	wf->f_type = DTYPE_PIPE;
    291 	wf->f_data = (void *)wpipe;
    292 	wf->f_ops = &pipeops;
    293 
    294 	rpipe->pipe_peer = wpipe;
    295 	wpipe->pipe_peer = rpipe;
    296 
    297 	FILE_SET_MATURE(rf);
    298 	FILE_SET_MATURE(wf);
    299 	FILE_UNUSE(rf, l);
    300 	FILE_UNUSE(wf, l);
    301 	return (0);
    302 free3:
    303 	FILE_UNUSE(rf, l);
    304 	ffree(rf);
    305 	fdremove(l->l_proc->p_fd, retval[0]);
    306 free2:
    307 	pipeclose(NULL, wpipe);
    308 	pipeclose(NULL, rpipe);
    309 
    310 	return (error);
    311 }
    312 
    313 /*
    314  * Allocate kva for pipe circular buffer, the space is pageable
    315  * This routine will 'realloc' the size of a pipe safely, if it fails
    316  * it will retain the old buffer.
    317  * If it fails it will return ENOMEM.
    318  */
    319 static int
    320 pipespace(struct pipe *pipe, int size)
    321 {
    322 	void *buffer;
    323 	/*
    324 	 * Allocate pageable virtual address space. Physical memory is
    325 	 * allocated on demand.
    326 	 */
    327 	buffer = (void *) uvm_km_alloc(kernel_map, round_page(size), 0,
    328 	    UVM_KMF_PAGEABLE);
    329 	if (buffer == NULL)
    330 		return (ENOMEM);
    331 
    332 	/* free old resources if we're resizing */
    333 	pipe_free_kmem(pipe);
    334 	pipe->pipe_buffer.buffer = buffer;
    335 	pipe->pipe_buffer.size = size;
    336 	pipe->pipe_buffer.in = 0;
    337 	pipe->pipe_buffer.out = 0;
    338 	pipe->pipe_buffer.cnt = 0;
    339 	atomic_add_int(&amountpipekva, pipe->pipe_buffer.size);
    340 	return (0);
    341 }
    342 
    343 /*
    344  * Initialize and allocate VM and memory for pipe.
    345  */
    346 static int
    347 pipe_create(struct pipe **pipep, int allockva, struct pipe_mutex *mutex)
    348 {
    349 	struct pipe *pipe;
    350 	int error;
    351 
    352 	pipe = *pipep = pool_cache_get(pipe_cache, PR_WAITOK);
    353 	mutex->pm_refcnt++;
    354 
    355 	/* Initialize */
    356 	memset(pipe, 0, sizeof(struct pipe));
    357 	pipe->pipe_state = PIPE_SIGNALR;
    358 
    359 	getmicrotime(&pipe->pipe_ctime);
    360 	pipe->pipe_atime = pipe->pipe_ctime;
    361 	pipe->pipe_mtime = pipe->pipe_ctime;
    362 	pipe->pipe_lock = &mutex->pm_mutex;
    363 	cv_init(&pipe->pipe_cv, "pipe");
    364 	cv_init(&pipe->pipe_lkcv, "pipelk");
    365 	selinit(&pipe->pipe_sel);
    366 
    367 	if (allockva && (error = pipespace(pipe, PIPE_SIZE)))
    368 		return (error);
    369 
    370 	return (0);
    371 }
    372 
    373 
    374 /*
    375  * Lock a pipe for I/O, blocking other access
    376  * Called with pipe spin lock held.
    377  * Return with pipe spin lock released on success.
    378  */
    379 static int
    380 pipelock(struct pipe *pipe, int catch)
    381 {
    382 	int error;
    383 
    384 	KASSERT(mutex_owned(pipe->pipe_lock));
    385 
    386 	while (pipe->pipe_state & PIPE_LOCKFL) {
    387 		pipe->pipe_state |= PIPE_LWANT;
    388 		if (catch) {
    389 			error = cv_wait_sig(&pipe->pipe_lkcv, pipe->pipe_lock);
    390 			if (error != 0)
    391 				return error;
    392 		} else
    393 			cv_wait(&pipe->pipe_lkcv, pipe->pipe_lock);
    394 	}
    395 
    396 	pipe->pipe_state |= PIPE_LOCKFL;
    397 
    398 	return 0;
    399 }
    400 
    401 /*
    402  * unlock a pipe I/O lock
    403  */
    404 static inline void
    405 pipeunlock(struct pipe *pipe)
    406 {
    407 
    408 	KASSERT(pipe->pipe_state & PIPE_LOCKFL);
    409 
    410 	pipe->pipe_state &= ~PIPE_LOCKFL;
    411 	if (pipe->pipe_state & PIPE_LWANT) {
    412 		pipe->pipe_state &= ~PIPE_LWANT;
    413 		cv_broadcast(&pipe->pipe_lkcv);
    414 	}
    415 }
    416 
    417 /*
    418  * Select/poll wakup. This also sends SIGIO to peer connected to
    419  * 'sigpipe' side of pipe.
    420  */
    421 static void
    422 pipeselwakeup(struct pipe *selp, struct pipe *sigp, int code)
    423 {
    424 	int band;
    425 
    426 	selnotify(&selp->pipe_sel, NOTE_SUBMIT);
    427 
    428 	if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0)
    429 		return;
    430 
    431 	switch (code) {
    432 	case POLL_IN:
    433 		band = POLLIN|POLLRDNORM;
    434 		break;
    435 	case POLL_OUT:
    436 		band = POLLOUT|POLLWRNORM;
    437 		break;
    438 	case POLL_HUP:
    439 		band = POLLHUP;
    440 		break;
    441 #if POLL_HUP != POLL_ERR
    442 	case POLL_ERR:
    443 		band = POLLERR;
    444 		break;
    445 #endif
    446 	default:
    447 		band = 0;
    448 #ifdef DIAGNOSTIC
    449 		printf("bad siginfo code %d in pipe notification.\n", code);
    450 #endif
    451 		break;
    452 	}
    453 
    454 	fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp);
    455 }
    456 
    457 /* ARGSUSED */
    458 static int
    459 pipe_read(struct file *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
    460     int flags)
    461 {
    462 	struct pipe *rpipe = (struct pipe *) fp->f_data;
    463 	struct pipebuf *bp = &rpipe->pipe_buffer;
    464 	kmutex_t *lock = rpipe->pipe_lock;
    465 	int error;
    466 	size_t nread = 0;
    467 	size_t size;
    468 	size_t ocnt;
    469 
    470 	mutex_enter(lock);
    471 	++rpipe->pipe_busy;
    472 	ocnt = bp->cnt;
    473 
    474 again:
    475 	error = pipelock(rpipe, 1);
    476 	if (error)
    477 		goto unlocked_error;
    478 
    479 	while (uio->uio_resid) {
    480 		/*
    481 		 * normal pipe buffer receive
    482 		 */
    483 		if (bp->cnt > 0) {
    484 			size = bp->size - bp->out;
    485 			if (size > bp->cnt)
    486 				size = bp->cnt;
    487 			if (size > uio->uio_resid)
    488 				size = uio->uio_resid;
    489 
    490 			mutex_exit(lock);
    491 			error = uiomove((char *)bp->buffer + bp->out, size, uio);
    492 			mutex_enter(lock);
    493 			if (error)
    494 				break;
    495 
    496 			bp->out += size;
    497 			if (bp->out >= bp->size)
    498 				bp->out = 0;
    499 
    500 			bp->cnt -= size;
    501 
    502 			/*
    503 			 * If there is no more to read in the pipe, reset
    504 			 * its pointers to the beginning.  This improves
    505 			 * cache hit stats.
    506 			 */
    507 			if (bp->cnt == 0) {
    508 				bp->in = 0;
    509 				bp->out = 0;
    510 			}
    511 			nread += size;
    512 			continue;
    513 		}
    514 
    515 #ifndef PIPE_NODIRECT
    516 		if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) {
    517 			/*
    518 			 * Direct copy, bypassing a kernel buffer.
    519 			 */
    520 			void *	va;
    521 
    522 			KASSERT(rpipe->pipe_state & PIPE_DIRECTW);
    523 
    524 			size = rpipe->pipe_map.cnt;
    525 			if (size > uio->uio_resid)
    526 				size = uio->uio_resid;
    527 
    528 			va = (char *)rpipe->pipe_map.kva + rpipe->pipe_map.pos;
    529 			mutex_exit(lock);
    530 			error = uiomove(va, size, uio);
    531 			mutex_enter(lock);
    532 			if (error)
    533 				break;
    534 			nread += size;
    535 			rpipe->pipe_map.pos += size;
    536 			rpipe->pipe_map.cnt -= size;
    537 			if (rpipe->pipe_map.cnt == 0) {
    538 				rpipe->pipe_state &= ~PIPE_DIRECTR;
    539 				cv_broadcast(&rpipe->pipe_cv);
    540 			}
    541 			continue;
    542 		}
    543 #endif
    544 		/*
    545 		 * Break if some data was read.
    546 		 */
    547 		if (nread > 0)
    548 			break;
    549 
    550 		/*
    551 		 * detect EOF condition
    552 		 * read returns 0 on EOF, no need to set error
    553 		 */
    554 		if (rpipe->pipe_state & PIPE_EOF)
    555 			break;
    556 
    557 		/*
    558 		 * don't block on non-blocking I/O
    559 		 */
    560 		if (fp->f_flag & FNONBLOCK) {
    561 			error = EAGAIN;
    562 			break;
    563 		}
    564 
    565 		/*
    566 		 * Unlock the pipe buffer for our remaining processing.
    567 		 * We will either break out with an error or we will
    568 		 * sleep and relock to loop.
    569 		 */
    570 		pipeunlock(rpipe);
    571 
    572 		/*
    573 		 * Re-check to see if more direct writes are pending.
    574 		 */
    575 		if ((rpipe->pipe_state & PIPE_DIRECTR) != 0)
    576 			goto again;
    577 
    578 		/*
    579 		 * We want to read more, wake up select/poll.
    580 		 */
    581 		pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_IN);
    582 
    583 		/*
    584 		 * If the "write-side" is blocked, wake it up now.
    585 		 */
    586 		cv_broadcast(&rpipe->pipe_cv);
    587 
    588 		/* Now wait until the pipe is filled */
    589 		error = cv_wait_sig(&rpipe->pipe_cv, lock);
    590 		if (error != 0)
    591 			goto unlocked_error;
    592 		goto again;
    593 	}
    594 
    595 	if (error == 0)
    596 		getmicrotime(&rpipe->pipe_atime);
    597 	pipeunlock(rpipe);
    598 
    599 unlocked_error:
    600 	--rpipe->pipe_busy;
    601 	if (rpipe->pipe_busy == 0 || bp->cnt < MINPIPESIZE) {
    602 		cv_broadcast(&rpipe->pipe_cv);
    603 	}
    604 
    605 	/*
    606 	 * If anything was read off the buffer, signal to the writer it's
    607 	 * possible to write more data. Also send signal if we are here for the
    608 	 * first time after last write.
    609 	 */
    610 	if ((bp->size - bp->cnt) >= PIPE_BUF
    611 	    && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
    612 		pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
    613 		rpipe->pipe_state &= ~PIPE_SIGNALR;
    614 	}
    615 
    616 	mutex_exit(lock);
    617 	return (error);
    618 }
    619 
    620 #ifndef PIPE_NODIRECT
    621 /*
    622  * Allocate structure for loan transfer.
    623  */
    624 static int
    625 pipe_loan_alloc(struct pipe *wpipe, int npages)
    626 {
    627 	vsize_t len;
    628 
    629 	len = (vsize_t)npages << PAGE_SHIFT;
    630 	atomic_add_int(&amountpipekva, len);
    631 	wpipe->pipe_map.kva = uvm_km_alloc(kernel_map, len, 0,
    632 	    UVM_KMF_VAONLY | UVM_KMF_WAITVA);
    633 	if (wpipe->pipe_map.kva == 0) {
    634 		atomic_add_int(&amountpipekva, -len);
    635 		return (ENOMEM);
    636 	}
    637 
    638 	wpipe->pipe_map.npages = npages;
    639 	wpipe->pipe_map.pgs = malloc(npages * sizeof(struct vm_page *), M_PIPE,
    640 	    M_WAITOK);
    641 	return (0);
    642 }
    643 
    644 /*
    645  * Free resources allocated for loan transfer.
    646  */
    647 static void
    648 pipe_loan_free(struct pipe *wpipe)
    649 {
    650 	vsize_t len;
    651 
    652 	len = (vsize_t)wpipe->pipe_map.npages << PAGE_SHIFT;
    653 	uvm_km_free(kernel_map, wpipe->pipe_map.kva, len, UVM_KMF_VAONLY);
    654 	wpipe->pipe_map.kva = 0;
    655 	atomic_add_int(&amountpipekva, -len);
    656 	free(wpipe->pipe_map.pgs, M_PIPE);
    657 	wpipe->pipe_map.pgs = NULL;
    658 }
    659 
    660 /*
    661  * NetBSD direct write, using uvm_loan() mechanism.
    662  * This implements the pipe buffer write mechanism.  Note that only
    663  * a direct write OR a normal pipe write can be pending at any given time.
    664  * If there are any characters in the pipe buffer, the direct write will
    665  * be deferred until the receiving process grabs all of the bytes from
    666  * the pipe buffer.  Then the direct mapping write is set-up.
    667  *
    668  * Called with the long-term pipe lock held.
    669  */
    670 static int
    671 pipe_direct_write(struct file *fp, struct pipe *wpipe, struct uio *uio)
    672 {
    673 	int error, npages, j;
    674 	struct vm_page **pgs;
    675 	vaddr_t bbase, kva, base, bend;
    676 	vsize_t blen, bcnt;
    677 	voff_t bpos;
    678 	kmutex_t *lock = wpipe->pipe_lock;
    679 
    680 	KASSERT(mutex_owned(wpipe->pipe_lock));
    681 	KASSERT(wpipe->pipe_map.cnt == 0);
    682 
    683 	mutex_exit(lock);
    684 
    685 	/*
    686 	 * Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers
    687 	 * not aligned to PAGE_SIZE.
    688 	 */
    689 	bbase = (vaddr_t)uio->uio_iov->iov_base;
    690 	base = trunc_page(bbase);
    691 	bend = round_page(bbase + uio->uio_iov->iov_len);
    692 	blen = bend - base;
    693 	bpos = bbase - base;
    694 
    695 	if (blen > PIPE_DIRECT_CHUNK) {
    696 		blen = PIPE_DIRECT_CHUNK;
    697 		bend = base + blen;
    698 		bcnt = PIPE_DIRECT_CHUNK - bpos;
    699 	} else {
    700 		bcnt = uio->uio_iov->iov_len;
    701 	}
    702 	npages = blen >> PAGE_SHIFT;
    703 
    704 	/*
    705 	 * Free the old kva if we need more pages than we have
    706 	 * allocated.
    707 	 */
    708 	if (wpipe->pipe_map.kva != 0 && npages > wpipe->pipe_map.npages)
    709 		pipe_loan_free(wpipe);
    710 
    711 	/* Allocate new kva. */
    712 	if (wpipe->pipe_map.kva == 0) {
    713 		error = pipe_loan_alloc(wpipe, npages);
    714 		if (error) {
    715 			mutex_enter(lock);
    716 			return (error);
    717 		}
    718 	}
    719 
    720 	/* Loan the write buffer memory from writer process */
    721 	pgs = wpipe->pipe_map.pgs;
    722 	error = uvm_loan(&uio->uio_vmspace->vm_map, base, blen,
    723 			 pgs, UVM_LOAN_TOPAGE);
    724 	if (error) {
    725 		pipe_loan_free(wpipe);
    726 		mutex_enter(lock);
    727 		return (ENOMEM); /* so that caller fallback to ordinary write */
    728 	}
    729 
    730 	/* Enter the loaned pages to kva */
    731 	kva = wpipe->pipe_map.kva;
    732 	for (j = 0; j < npages; j++, kva += PAGE_SIZE) {
    733 		pmap_kenter_pa(kva, VM_PAGE_TO_PHYS(pgs[j]), VM_PROT_READ);
    734 	}
    735 	pmap_update(pmap_kernel());
    736 
    737 	/* Now we can put the pipe in direct write mode */
    738 	wpipe->pipe_map.pos = bpos;
    739 	wpipe->pipe_map.cnt = bcnt;
    740 
    741 	/*
    742 	 * But before we can let someone do a direct read, we
    743 	 * have to wait until the pipe is drained.  Release the
    744 	 * pipe lock while we wait.
    745 	 */
    746 	mutex_enter(lock);
    747 	wpipe->pipe_state |= PIPE_DIRECTW;
    748 	pipeunlock(wpipe);
    749 
    750 	while (error == 0 && wpipe->pipe_buffer.cnt > 0) {
    751 		cv_broadcast(&wpipe->pipe_cv);
    752 		error = cv_wait_sig(&wpipe->pipe_cv, lock);
    753 		if (error == 0 && wpipe->pipe_state & PIPE_EOF)
    754 			error = EPIPE;
    755 	}
    756 
    757 	/* Pipe is drained; next read will off the direct buffer */
    758 	wpipe->pipe_state |= PIPE_DIRECTR;
    759 
    760 	/* Wait until the reader is done */
    761 	while (error == 0 && (wpipe->pipe_state & PIPE_DIRECTR)) {
    762 		cv_broadcast(&wpipe->pipe_cv);
    763 		pipeselwakeup(wpipe, wpipe, POLL_IN);
    764 		error = cv_wait_sig(&wpipe->pipe_cv, lock);
    765 		if (error == 0 && wpipe->pipe_state & PIPE_EOF)
    766 			error = EPIPE;
    767 	}
    768 
    769 	/* Take pipe out of direct write mode */
    770 	wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTR);
    771 
    772 	/* Acquire the pipe lock and cleanup */
    773 	(void)pipelock(wpipe, 0);
    774 	mutex_exit(lock);
    775 
    776 	if (pgs != NULL) {
    777 		pmap_kremove(wpipe->pipe_map.kva, blen);
    778 		uvm_unloan(pgs, npages, UVM_LOAN_TOPAGE);
    779 	}
    780 	if (error || amountpipekva > maxpipekva)
    781 		pipe_loan_free(wpipe);
    782 
    783 	mutex_enter(lock);
    784 	if (error) {
    785 		pipeselwakeup(wpipe, wpipe, POLL_ERR);
    786 
    787 		/*
    788 		 * If nothing was read from what we offered, return error
    789 		 * straight on. Otherwise update uio resid first. Caller
    790 		 * will deal with the error condition, returning short
    791 		 * write, error, or restarting the write(2) as appropriate.
    792 		 */
    793 		if (wpipe->pipe_map.cnt == bcnt) {
    794 			wpipe->pipe_map.cnt = 0;
    795 			cv_broadcast(&wpipe->pipe_cv);
    796 			return (error);
    797 		}
    798 
    799 		bcnt -= wpipe->pipe_map.cnt;
    800 	}
    801 
    802 	uio->uio_resid -= bcnt;
    803 	/* uio_offset not updated, not set/used for write(2) */
    804 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt;
    805 	uio->uio_iov->iov_len -= bcnt;
    806 	if (uio->uio_iov->iov_len == 0) {
    807 		uio->uio_iov++;
    808 		uio->uio_iovcnt--;
    809 	}
    810 
    811 	wpipe->pipe_map.cnt = 0;
    812 	return (error);
    813 }
    814 #endif /* !PIPE_NODIRECT */
    815 
    816 static int
    817 pipe_write(struct file *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
    818     int flags)
    819 {
    820 	struct pipe *wpipe, *rpipe;
    821 	struct pipebuf *bp;
    822 	kmutex_t *lock;
    823 	int error;
    824 
    825 	/* We want to write to our peer */
    826 	rpipe = (struct pipe *) fp->f_data;
    827 	lock = rpipe->pipe_lock;
    828 	error = 0;
    829 
    830 	mutex_enter(lock);
    831 	wpipe = rpipe->pipe_peer;
    832 
    833 	/*
    834 	 * Detect loss of pipe read side, issue SIGPIPE if lost.
    835 	 */
    836 	if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) != 0) {
    837 		mutex_exit(lock);
    838 		return EPIPE;
    839 	}
    840 	++wpipe->pipe_busy;
    841 
    842 	/* Aquire the long-term pipe lock */
    843 	if ((error = pipelock(wpipe, 1)) != 0) {
    844 		--wpipe->pipe_busy;
    845 		if (wpipe->pipe_busy == 0) {
    846 			cv_broadcast(&wpipe->pipe_cv);
    847 		}
    848 		mutex_exit(lock);
    849 		return (error);
    850 	}
    851 
    852 	bp = &wpipe->pipe_buffer;
    853 
    854 	/*
    855 	 * If it is advantageous to resize the pipe buffer, do so.
    856 	 */
    857 	if ((uio->uio_resid > PIPE_SIZE) &&
    858 	    (nbigpipe < maxbigpipes) &&
    859 #ifndef PIPE_NODIRECT
    860 	    (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
    861 #endif
    862 	    (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) {
    863 
    864 		if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
    865 			atomic_inc_uint(&nbigpipe);
    866 	}
    867 
    868 	while (uio->uio_resid) {
    869 		size_t space;
    870 
    871 #ifndef PIPE_NODIRECT
    872 		/*
    873 		 * Pipe buffered writes cannot be coincidental with
    874 		 * direct writes.  Also, only one direct write can be
    875 		 * in progress at any one time.  We wait until the currently
    876 		 * executing direct write is completed before continuing.
    877 		 *
    878 		 * We break out if a signal occurs or the reader goes away.
    879 		 */
    880 		while (error == 0 && wpipe->pipe_state & PIPE_DIRECTW) {
    881 			cv_broadcast(&wpipe->pipe_cv);
    882 			pipeunlock(wpipe);
    883 			error = cv_wait_sig(&wpipe->pipe_cv, lock);
    884 			(void)pipelock(wpipe, 0);
    885 			if (wpipe->pipe_state & PIPE_EOF)
    886 				error = EPIPE;
    887 		}
    888 		if (error)
    889 			break;
    890 
    891 		/*
    892 		 * If the transfer is large, we can gain performance if
    893 		 * we do process-to-process copies directly.
    894 		 * If the write is non-blocking, we don't use the
    895 		 * direct write mechanism.
    896 		 *
    897 		 * The direct write mechanism will detect the reader going
    898 		 * away on us.
    899 		 */
    900 		if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
    901 		    (fp->f_flag & FNONBLOCK) == 0 &&
    902 		    (wpipe->pipe_map.kva || (amountpipekva < limitpipekva))) {
    903 			error = pipe_direct_write(fp, wpipe, uio);
    904 
    905 			/*
    906 			 * Break out if error occurred, unless it's ENOMEM.
    907 			 * ENOMEM means we failed to allocate some resources
    908 			 * for direct write, so we just fallback to ordinary
    909 			 * write. If the direct write was successful,
    910 			 * process rest of data via ordinary write.
    911 			 */
    912 			if (error == 0)
    913 				continue;
    914 
    915 			if (error != ENOMEM)
    916 				break;
    917 		}
    918 #endif /* PIPE_NODIRECT */
    919 
    920 		space = bp->size - bp->cnt;
    921 
    922 		/* Writes of size <= PIPE_BUF must be atomic. */
    923 		if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
    924 			space = 0;
    925 
    926 		if (space > 0) {
    927 			int size;	/* Transfer size */
    928 			int segsize;	/* first segment to transfer */
    929 
    930 			/*
    931 			 * Transfer size is minimum of uio transfer
    932 			 * and free space in pipe buffer.
    933 			 */
    934 			if (space > uio->uio_resid)
    935 				size = uio->uio_resid;
    936 			else
    937 				size = space;
    938 			/*
    939 			 * First segment to transfer is minimum of
    940 			 * transfer size and contiguous space in
    941 			 * pipe buffer.  If first segment to transfer
    942 			 * is less than the transfer size, we've got
    943 			 * a wraparound in the buffer.
    944 			 */
    945 			segsize = bp->size - bp->in;
    946 			if (segsize > size)
    947 				segsize = size;
    948 
    949 			/* Transfer first segment */
    950 			mutex_exit(lock);
    951 			error = uiomove((char *)bp->buffer + bp->in, segsize,
    952 			    uio);
    953 
    954 			if (error == 0 && segsize < size) {
    955 				/*
    956 				 * Transfer remaining part now, to
    957 				 * support atomic writes.  Wraparound
    958 				 * happened.
    959 				 */
    960 #ifdef DEBUG
    961 				if (bp->in + segsize != bp->size)
    962 					panic("Expected pipe buffer wraparound disappeared");
    963 #endif
    964 
    965 				error = uiomove(bp->buffer,
    966 				    size - segsize, uio);
    967 			}
    968 			mutex_enter(lock);
    969 			if (error)
    970 				break;
    971 
    972 			bp->in += size;
    973 			if (bp->in >= bp->size) {
    974 #ifdef DEBUG
    975 				if (bp->in != size - segsize + bp->size)
    976 					panic("Expected wraparound bad");
    977 #endif
    978 				bp->in = size - segsize;
    979 			}
    980 
    981 			bp->cnt += size;
    982 #ifdef DEBUG
    983 			if (bp->cnt > bp->size)
    984 				panic("Pipe buffer overflow");
    985 #endif
    986 		} else {
    987 			/*
    988 			 * If the "read-side" has been blocked, wake it up now.
    989 			 */
    990 			cv_broadcast(&wpipe->pipe_cv);
    991 
    992 			/*
    993 			 * don't block on non-blocking I/O
    994 			 */
    995 			if (fp->f_flag & FNONBLOCK) {
    996 				error = EAGAIN;
    997 				break;
    998 			}
    999 
   1000 			/*
   1001 			 * We have no more space and have something to offer,
   1002 			 * wake up select/poll.
   1003 			 */
   1004 			if (bp->cnt)
   1005 				pipeselwakeup(wpipe, wpipe, POLL_OUT);
   1006 
   1007 			pipeunlock(wpipe);
   1008 			error = cv_wait_sig(&wpipe->pipe_cv, lock);
   1009 			(void)pipelock(wpipe, 0);
   1010 			if (error != 0)
   1011 				break;
   1012 			/*
   1013 			 * If read side wants to go away, we just issue a signal
   1014 			 * to ourselves.
   1015 			 */
   1016 			if (wpipe->pipe_state & PIPE_EOF) {
   1017 				error = EPIPE;
   1018 				break;
   1019 			}
   1020 		}
   1021 	}
   1022 
   1023 	--wpipe->pipe_busy;
   1024 	if (wpipe->pipe_busy == 0 || bp->cnt > 0) {
   1025 		cv_broadcast(&wpipe->pipe_cv);
   1026 	}
   1027 
   1028 	/*
   1029 	 * Don't return EPIPE if I/O was successful
   1030 	 */
   1031 	if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0)
   1032 		error = 0;
   1033 
   1034 	if (error == 0)
   1035 		getmicrotime(&wpipe->pipe_mtime);
   1036 
   1037 	/*
   1038 	 * We have something to offer, wake up select/poll.
   1039 	 * wpipe->pipe_map.cnt is always 0 in this point (direct write
   1040 	 * is only done synchronously), so check only wpipe->pipe_buffer.cnt
   1041 	 */
   1042 	if (bp->cnt)
   1043 		pipeselwakeup(wpipe, wpipe, POLL_OUT);
   1044 
   1045 	/*
   1046 	 * Arrange for next read(2) to do a signal.
   1047 	 */
   1048 	wpipe->pipe_state |= PIPE_SIGNALR;
   1049 
   1050 	pipeunlock(wpipe);
   1051 	mutex_exit(lock);
   1052 	return (error);
   1053 }
   1054 
   1055 /*
   1056  * we implement a very minimal set of ioctls for compatibility with sockets.
   1057  */
   1058 int
   1059 pipe_ioctl(struct file *fp, u_long cmd, void *data, struct lwp *l)
   1060 {
   1061 	struct pipe *pipe = (struct pipe *)fp->f_data;
   1062 	struct proc *p = l->l_proc;
   1063 	kmutex_t *lock = pipe->pipe_lock;
   1064 
   1065 	switch (cmd) {
   1066 
   1067 	case FIONBIO:
   1068 		return (0);
   1069 
   1070 	case FIOASYNC:
   1071 		mutex_enter(lock);
   1072 		if (*(int *)data) {
   1073 			pipe->pipe_state |= PIPE_ASYNC;
   1074 		} else {
   1075 			pipe->pipe_state &= ~PIPE_ASYNC;
   1076 		}
   1077 		mutex_exit(lock);
   1078 		return (0);
   1079 
   1080 	case FIONREAD:
   1081 		mutex_enter(lock);
   1082 #ifndef PIPE_NODIRECT
   1083 		if (pipe->pipe_state & PIPE_DIRECTW)
   1084 			*(int *)data = pipe->pipe_map.cnt;
   1085 		else
   1086 #endif
   1087 			*(int *)data = pipe->pipe_buffer.cnt;
   1088 		mutex_exit(lock);
   1089 		return (0);
   1090 
   1091 	case FIONWRITE:
   1092 		/* Look at other side */
   1093 		pipe = pipe->pipe_peer;
   1094 		mutex_enter(lock);
   1095 #ifndef PIPE_NODIRECT
   1096 		if (pipe->pipe_state & PIPE_DIRECTW)
   1097 			*(int *)data = pipe->pipe_map.cnt;
   1098 		else
   1099 #endif
   1100 			*(int *)data = pipe->pipe_buffer.cnt;
   1101 		mutex_exit(lock);
   1102 		return (0);
   1103 
   1104 	case FIONSPACE:
   1105 		/* Look at other side */
   1106 		pipe = pipe->pipe_peer;
   1107 		mutex_enter(lock);
   1108 #ifndef PIPE_NODIRECT
   1109 		/*
   1110 		 * If we're in direct-mode, we don't really have a
   1111 		 * send queue, and any other write will block. Thus
   1112 		 * zero seems like the best answer.
   1113 		 */
   1114 		if (pipe->pipe_state & PIPE_DIRECTW)
   1115 			*(int *)data = 0;
   1116 		else
   1117 #endif
   1118 			*(int *)data = pipe->pipe_buffer.size -
   1119 			    pipe->pipe_buffer.cnt;
   1120 		mutex_exit(lock);
   1121 		return (0);
   1122 
   1123 	case TIOCSPGRP:
   1124 	case FIOSETOWN:
   1125 		return fsetown(p, &pipe->pipe_pgid, cmd, data);
   1126 
   1127 	case TIOCGPGRP:
   1128 	case FIOGETOWN:
   1129 		return fgetown(p, pipe->pipe_pgid, cmd, data);
   1130 
   1131 	}
   1132 	return (EPASSTHROUGH);
   1133 }
   1134 
   1135 int
   1136 pipe_poll(struct file *fp, int events, struct lwp *l)
   1137 {
   1138 	struct pipe *rpipe = (struct pipe *)fp->f_data;
   1139 	struct pipe *wpipe;
   1140 	int eof = 0;
   1141 	int revents = 0;
   1142 
   1143 	mutex_enter(rpipe->pipe_lock);
   1144 	wpipe = rpipe->pipe_peer;
   1145 
   1146 	if (events & (POLLIN | POLLRDNORM))
   1147 		if ((rpipe->pipe_buffer.cnt > 0) ||
   1148 #ifndef PIPE_NODIRECT
   1149 		    (rpipe->pipe_state & PIPE_DIRECTR) ||
   1150 #endif
   1151 		    (rpipe->pipe_state & PIPE_EOF))
   1152 			revents |= events & (POLLIN | POLLRDNORM);
   1153 
   1154 	eof |= (rpipe->pipe_state & PIPE_EOF);
   1155 
   1156 	if (wpipe == NULL)
   1157 		revents |= events & (POLLOUT | POLLWRNORM);
   1158 	else {
   1159 		if (events & (POLLOUT | POLLWRNORM))
   1160 			if ((wpipe->pipe_state & PIPE_EOF) || (
   1161 #ifndef PIPE_NODIRECT
   1162 			     (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
   1163 #endif
   1164 			     (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
   1165 				revents |= events & (POLLOUT | POLLWRNORM);
   1166 
   1167 		eof |= (wpipe->pipe_state & PIPE_EOF);
   1168 	}
   1169 
   1170 	if (wpipe == NULL || eof)
   1171 		revents |= POLLHUP;
   1172 
   1173 	if (revents == 0) {
   1174 		if (events & (POLLIN | POLLRDNORM))
   1175 			selrecord(l, &rpipe->pipe_sel);
   1176 
   1177 		if (events & (POLLOUT | POLLWRNORM))
   1178 			selrecord(l, &wpipe->pipe_sel);
   1179 	}
   1180 	mutex_exit(rpipe->pipe_lock);
   1181 
   1182 	return (revents);
   1183 }
   1184 
   1185 static int
   1186 pipe_stat(struct file *fp, struct stat *ub, struct lwp *l)
   1187 {
   1188 	struct pipe *pipe = (struct pipe *)fp->f_data;
   1189 
   1190 	memset((void *)ub, 0, sizeof(*ub));
   1191 	ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
   1192 	ub->st_blksize = pipe->pipe_buffer.size;
   1193 	if (ub->st_blksize == 0 && pipe->pipe_peer)
   1194 		ub->st_blksize = pipe->pipe_peer->pipe_buffer.size;
   1195 	ub->st_size = pipe->pipe_buffer.cnt;
   1196 	ub->st_blocks = (ub->st_size) ? 1 : 0;
   1197 	TIMEVAL_TO_TIMESPEC(&pipe->pipe_atime, &ub->st_atimespec);
   1198 	TIMEVAL_TO_TIMESPEC(&pipe->pipe_mtime, &ub->st_mtimespec);
   1199 	TIMEVAL_TO_TIMESPEC(&pipe->pipe_ctime, &ub->st_ctimespec);
   1200 	ub->st_uid = kauth_cred_geteuid(fp->f_cred);
   1201 	ub->st_gid = kauth_cred_getegid(fp->f_cred);
   1202 
   1203 	/*
   1204 	 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
   1205 	 * XXX (st_dev, st_ino) should be unique.
   1206 	 */
   1207 	return (0);
   1208 }
   1209 
   1210 /* ARGSUSED */
   1211 static int
   1212 pipe_close(struct file *fp, struct lwp *l)
   1213 {
   1214 	struct pipe *pipe = (struct pipe *)fp->f_data;
   1215 
   1216 	fp->f_data = NULL;
   1217 	pipeclose(fp, pipe);
   1218 	return (0);
   1219 }
   1220 
   1221 static void
   1222 pipe_free_kmem(struct pipe *pipe)
   1223 {
   1224 
   1225 	if (pipe->pipe_buffer.buffer != NULL) {
   1226 		if (pipe->pipe_buffer.size > PIPE_SIZE)
   1227 			atomic_dec_uint(&nbigpipe);
   1228 		uvm_km_free(kernel_map,
   1229 			(vaddr_t)pipe->pipe_buffer.buffer,
   1230 			pipe->pipe_buffer.size, UVM_KMF_PAGEABLE);
   1231 		atomic_add_int(&amountpipekva, -pipe->pipe_buffer.size);
   1232 		pipe->pipe_buffer.buffer = NULL;
   1233 	}
   1234 #ifndef PIPE_NODIRECT
   1235 	if (pipe->pipe_map.kva != 0) {
   1236 		pipe_loan_free(pipe);
   1237 		pipe->pipe_map.cnt = 0;
   1238 		pipe->pipe_map.kva = 0;
   1239 		pipe->pipe_map.pos = 0;
   1240 		pipe->pipe_map.npages = 0;
   1241 	}
   1242 #endif /* !PIPE_NODIRECT */
   1243 }
   1244 
   1245 /*
   1246  * shutdown the pipe
   1247  */
   1248 static void
   1249 pipeclose(struct file *fp, struct pipe *pipe)
   1250 {
   1251 	struct pipe_mutex *mutex;
   1252 	kmutex_t *lock;
   1253 	struct pipe *ppipe;
   1254 	u_int refcnt;
   1255 
   1256 	if (pipe == NULL)
   1257 		return;
   1258 	lock = pipe->pipe_lock;
   1259 	mutex_enter(lock);
   1260 	pipeselwakeup(pipe, pipe, POLL_HUP);
   1261 
   1262 	/*
   1263 	 * If the other side is blocked, wake it up saying that
   1264 	 * we want to close it down.
   1265 	 */
   1266 	pipe->pipe_state |= PIPE_EOF;
   1267 	if (pipe->pipe_busy) {
   1268 		while (pipe->pipe_busy) {
   1269 			cv_broadcast(&pipe->pipe_cv);
   1270 			cv_wait_sig(&pipe->pipe_cv, lock);
   1271 		}
   1272 	}
   1273 
   1274 	/*
   1275 	 * Disconnect from peer
   1276 	 */
   1277 	if ((ppipe = pipe->pipe_peer) != NULL) {
   1278 		pipeselwakeup(ppipe, ppipe, POLL_HUP);
   1279 		ppipe->pipe_state |= PIPE_EOF;
   1280 		cv_broadcast(&ppipe->pipe_cv);
   1281 		ppipe->pipe_peer = NULL;
   1282 	}
   1283 
   1284 	KASSERT((pipe->pipe_state & PIPE_LOCKFL) == 0);
   1285 
   1286 	mutex = (struct pipe_mutex *)lock;
   1287 	refcnt = --(mutex->pm_refcnt);
   1288 	KASSERT(refcnt == 0 || refcnt == 1);
   1289 	mutex_exit(lock);
   1290 
   1291 	/*
   1292 	 * free resources
   1293 	 */
   1294 	pipe_free_kmem(pipe);
   1295 	cv_destroy(&pipe->pipe_cv);
   1296 	cv_destroy(&pipe->pipe_lkcv);
   1297 	seldestroy(&pipe->pipe_sel);
   1298 	pool_cache_put(pipe_cache, pipe);
   1299 	if (refcnt == 0)
   1300 		pool_cache_put(pipe_mutex_cache, mutex);
   1301 }
   1302 
   1303 static void
   1304 filt_pipedetach(struct knote *kn)
   1305 {
   1306 	struct pipe *pipe;
   1307 	kmutex_t *lock;
   1308 
   1309 	pipe = (struct pipe *)kn->kn_fp->f_data;
   1310 	lock = pipe->pipe_lock;
   1311 
   1312 	mutex_enter(lock);
   1313 
   1314 	switch(kn->kn_filter) {
   1315 	case EVFILT_WRITE:
   1316 		/* need the peer structure, not our own */
   1317 		pipe = pipe->pipe_peer;
   1318 
   1319 		/* if reader end already closed, just return */
   1320 		if (pipe == NULL) {
   1321 			mutex_exit(lock);
   1322 			return;
   1323 		}
   1324 
   1325 		break;
   1326 	default:
   1327 		/* nothing to do */
   1328 		break;
   1329 	}
   1330 
   1331 #ifdef DIAGNOSTIC
   1332 	if (kn->kn_hook != pipe)
   1333 		panic("filt_pipedetach: inconsistent knote");
   1334 #endif
   1335 
   1336 	SLIST_REMOVE(&pipe->pipe_sel.sel_klist, kn, knote, kn_selnext);
   1337 	mutex_exit(lock);
   1338 }
   1339 
   1340 /*ARGSUSED*/
   1341 static int
   1342 filt_piperead(struct knote *kn, long hint)
   1343 {
   1344 	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
   1345 	struct pipe *wpipe;
   1346 
   1347 	if ((hint & NOTE_SUBMIT) == 0) {
   1348 		mutex_enter(rpipe->pipe_lock);
   1349 	}
   1350 	wpipe = rpipe->pipe_peer;
   1351 	kn->kn_data = rpipe->pipe_buffer.cnt;
   1352 
   1353 	if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
   1354 		kn->kn_data = rpipe->pipe_map.cnt;
   1355 
   1356 	if ((rpipe->pipe_state & PIPE_EOF) ||
   1357 	    (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
   1358 		kn->kn_flags |= EV_EOF;
   1359 		if ((hint & NOTE_SUBMIT) == 0) {
   1360 			mutex_exit(rpipe->pipe_lock);
   1361 		}
   1362 		return (1);
   1363 	}
   1364 
   1365 	if ((hint & NOTE_SUBMIT) == 0) {
   1366 		mutex_exit(rpipe->pipe_lock);
   1367 	}
   1368 	return (kn->kn_data > 0);
   1369 }
   1370 
   1371 /*ARGSUSED*/
   1372 static int
   1373 filt_pipewrite(struct knote *kn, long hint)
   1374 {
   1375 	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
   1376 	struct pipe *wpipe;
   1377 
   1378 	if ((hint & NOTE_SUBMIT) == 0) {
   1379 		mutex_enter(rpipe->pipe_lock);
   1380 	}
   1381 	wpipe = rpipe->pipe_peer;
   1382 
   1383 	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
   1384 		kn->kn_data = 0;
   1385 		kn->kn_flags |= EV_EOF;
   1386 		if ((hint & NOTE_SUBMIT) == 0) {
   1387 			mutex_exit(rpipe->pipe_lock);
   1388 		}
   1389 		return (1);
   1390 	}
   1391 	kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
   1392 	if (wpipe->pipe_state & PIPE_DIRECTW)
   1393 		kn->kn_data = 0;
   1394 
   1395 	if ((hint & NOTE_SUBMIT) == 0) {
   1396 		mutex_exit(rpipe->pipe_lock);
   1397 	}
   1398 	return (kn->kn_data >= PIPE_BUF);
   1399 }
   1400 
   1401 static const struct filterops pipe_rfiltops =
   1402 	{ 1, NULL, filt_pipedetach, filt_piperead };
   1403 static const struct filterops pipe_wfiltops =
   1404 	{ 1, NULL, filt_pipedetach, filt_pipewrite };
   1405 
   1406 /*ARGSUSED*/
   1407 static int
   1408 pipe_kqfilter(struct file *fp, struct knote *kn)
   1409 {
   1410 	struct pipe *pipe;
   1411 	kmutex_t *lock;
   1412 
   1413 	pipe = (struct pipe *)kn->kn_fp->f_data;
   1414 	lock = pipe->pipe_lock;
   1415 
   1416 	mutex_enter(lock);
   1417 
   1418 	switch (kn->kn_filter) {
   1419 	case EVFILT_READ:
   1420 		kn->kn_fop = &pipe_rfiltops;
   1421 		break;
   1422 	case EVFILT_WRITE:
   1423 		kn->kn_fop = &pipe_wfiltops;
   1424 		pipe = pipe->pipe_peer;
   1425 		if (pipe == NULL) {
   1426 			/* other end of pipe has been closed */
   1427 			mutex_exit(lock);
   1428 			return (EBADF);
   1429 		}
   1430 		break;
   1431 	default:
   1432 		mutex_exit(lock);
   1433 		return (EINVAL);
   1434 	}
   1435 
   1436 	kn->kn_hook = pipe;
   1437 	SLIST_INSERT_HEAD(&pipe->pipe_sel.sel_klist, kn, kn_selnext);
   1438 	mutex_exit(lock);
   1439 
   1440 	return (0);
   1441 }
   1442 
   1443 /*
   1444  * Handle pipe sysctls.
   1445  */
   1446 SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup")
   1447 {
   1448 
   1449 	sysctl_createv(clog, 0, NULL, NULL,
   1450 		       CTLFLAG_PERMANENT,
   1451 		       CTLTYPE_NODE, "kern", NULL,
   1452 		       NULL, 0, NULL, 0,
   1453 		       CTL_KERN, CTL_EOL);
   1454 	sysctl_createv(clog, 0, NULL, NULL,
   1455 		       CTLFLAG_PERMANENT,
   1456 		       CTLTYPE_NODE, "pipe",
   1457 		       SYSCTL_DESCR("Pipe settings"),
   1458 		       NULL, 0, NULL, 0,
   1459 		       CTL_KERN, KERN_PIPE, CTL_EOL);
   1460 
   1461 	sysctl_createv(clog, 0, NULL, NULL,
   1462 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1463 		       CTLTYPE_INT, "maxkvasz",
   1464 		       SYSCTL_DESCR("Maximum amount of kernel memory to be "
   1465 				    "used for pipes"),
   1466 		       NULL, 0, &maxpipekva, 0,
   1467 		       CTL_KERN, KERN_PIPE, KERN_PIPE_MAXKVASZ, CTL_EOL);
   1468 	sysctl_createv(clog, 0, NULL, NULL,
   1469 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1470 		       CTLTYPE_INT, "maxloankvasz",
   1471 		       SYSCTL_DESCR("Limit for direct transfers via page loan"),
   1472 		       NULL, 0, &limitpipekva, 0,
   1473 		       CTL_KERN, KERN_PIPE, KERN_PIPE_LIMITKVA, CTL_EOL);
   1474 	sysctl_createv(clog, 0, NULL, NULL,
   1475 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1476 		       CTLTYPE_INT, "maxbigpipes",
   1477 		       SYSCTL_DESCR("Maximum number of \"big\" pipes"),
   1478 		       NULL, 0, &maxbigpipes, 0,
   1479 		       CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL);
   1480 	sysctl_createv(clog, 0, NULL, NULL,
   1481 		       CTLFLAG_PERMANENT,
   1482 		       CTLTYPE_INT, "nbigpipes",
   1483 		       SYSCTL_DESCR("Number of \"big\" pipes"),
   1484 		       NULL, 0, &nbigpipe, 0,
   1485 		       CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL);
   1486 	sysctl_createv(clog, 0, NULL, NULL,
   1487 		       CTLFLAG_PERMANENT,
   1488 		       CTLTYPE_INT, "kvasize",
   1489 		       SYSCTL_DESCR("Amount of kernel memory consumed by pipe "
   1490 				    "buffers"),
   1491 		       NULL, 0, &amountpipekva, 0,
   1492 		       CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL);
   1493 }
   1494