sys_pipe.c revision 1.97 1 /* $NetBSD: sys_pipe.c,v 1.97 2008/02/29 12:04:48 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2003, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1996 John S. Dyson
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice immediately at the beginning of the file, without modification,
48 * this list of conditions, and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. Absolutely no warranty of function or purpose is made by the author
53 * John S. Dyson.
54 * 4. Modifications may be freely made to this file if the above conditions
55 * are met.
56 *
57 * $FreeBSD: src/sys/kern/sys_pipe.c,v 1.95 2002/03/09 22:06:31 alfred Exp $
58 */
59
60 /*
61 * This file contains a high-performance replacement for the socket-based
62 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support
63 * all features of sockets, but does do everything that pipes normally
64 * do.
65 *
66 * Adaption for NetBSD UVM, including uvm_loan() based direct write, was
67 * written by Jaromir Dolecek.
68 */
69
70 /*
71 * This code has two modes of operation, a small write mode and a large
72 * write mode. The small write mode acts like conventional pipes with
73 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
74 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
75 * and PIPE_SIZE in size it is mapped read-only into the kernel address space
76 * using the UVM page loan facility from where the receiving process can copy
77 * the data directly from the pages in the sending process.
78 *
79 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
80 * happen for small transfers so that the system will not spend all of
81 * its time context switching. PIPE_SIZE is constrained by the
82 * amount of kernel virtual memory.
83 */
84
85 #include <sys/cdefs.h>
86 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.97 2008/02/29 12:04:48 yamt Exp $");
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/proc.h>
91 #include <sys/fcntl.h>
92 #include <sys/file.h>
93 #include <sys/filedesc.h>
94 #include <sys/filio.h>
95 #include <sys/kernel.h>
96 #include <sys/ttycom.h>
97 #include <sys/stat.h>
98 #include <sys/malloc.h>
99 #include <sys/poll.h>
100 #include <sys/signalvar.h>
101 #include <sys/vnode.h>
102 #include <sys/uio.h>
103 #include <sys/select.h>
104 #include <sys/mount.h>
105 #include <sys/syscallargs.h>
106 #include <sys/sysctl.h>
107 #include <sys/kauth.h>
108 #include <sys/atomic.h>
109 #include <sys/pipe.h>
110
111 #include <uvm/uvm.h>
112
113 /*
114 * Use this define if you want to disable *fancy* VM things. Expect an
115 * approx 30% decrease in transfer rate.
116 */
117 /* #define PIPE_NODIRECT */
118
119 /*
120 * interfaces to the outside world
121 */
122 static int pipe_read(struct file *fp, off_t *offset, struct uio *uio,
123 kauth_cred_t cred, int flags);
124 static int pipe_write(struct file *fp, off_t *offset, struct uio *uio,
125 kauth_cred_t cred, int flags);
126 static int pipe_close(struct file *fp, struct lwp *l);
127 static int pipe_poll(struct file *fp, int events, struct lwp *l);
128 static int pipe_kqfilter(struct file *fp, struct knote *kn);
129 static int pipe_stat(struct file *fp, struct stat *sb, struct lwp *l);
130 static int pipe_ioctl(struct file *fp, u_long cmd, void *data,
131 struct lwp *l);
132
133 static const struct fileops pipeops = {
134 pipe_read, pipe_write, pipe_ioctl, fnullop_fcntl, pipe_poll,
135 pipe_stat, pipe_close, pipe_kqfilter
136 };
137
138 /*
139 * Single mutex shared between both ends of the pipe.
140 */
141
142 struct pipe_mutex {
143 kmutex_t pm_mutex;
144 u_int pm_refcnt;
145 };
146
147 /*
148 * Default pipe buffer size(s), this can be kind-of large now because pipe
149 * space is pageable. The pipe code will try to maintain locality of
150 * reference for performance reasons, so small amounts of outstanding I/O
151 * will not wipe the cache.
152 */
153 #define MINPIPESIZE (PIPE_SIZE/3)
154 #define MAXPIPESIZE (2*PIPE_SIZE/3)
155
156 /*
157 * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
158 * is there so that on large systems, we don't exhaust it.
159 */
160 #define MAXPIPEKVA (8*1024*1024)
161 static u_int maxpipekva = MAXPIPEKVA;
162
163 /*
164 * Limit for direct transfers, we cannot, of course limit
165 * the amount of kva for pipes in general though.
166 */
167 #define LIMITPIPEKVA (16*1024*1024)
168 static u_int limitpipekva = LIMITPIPEKVA;
169
170 /*
171 * Limit the number of "big" pipes
172 */
173 #define LIMITBIGPIPES 32
174 static u_int maxbigpipes = LIMITBIGPIPES;
175 static u_int nbigpipe = 0;
176
177 /*
178 * Amount of KVA consumed by pipe buffers.
179 */
180 static u_int amountpipekva = 0;
181
182 MALLOC_DEFINE(M_PIPE, "pipe", "Pipe structures");
183
184 static void pipeclose(struct file *fp, struct pipe *pipe);
185 static void pipe_free_kmem(struct pipe *pipe);
186 static int pipe_create(struct pipe **pipep, int allockva, struct pipe_mutex *);
187 static int pipelock(struct pipe *pipe, int catch);
188 static inline void pipeunlock(struct pipe *pipe);
189 static void pipeselwakeup(struct pipe *pipe, struct pipe *sigp, int code);
190 #ifndef PIPE_NODIRECT
191 static int pipe_direct_write(struct file *fp, struct pipe *wpipe,
192 struct uio *uio);
193 #endif
194 static int pipespace(struct pipe *pipe, int size);
195
196 #ifndef PIPE_NODIRECT
197 static int pipe_loan_alloc(struct pipe *, int);
198 static void pipe_loan_free(struct pipe *);
199 #endif /* PIPE_NODIRECT */
200
201 static int pipe_mutex_ctor(void *, void *, int);
202 static void pipe_mutex_dtor(void *, void *);
203
204 static pool_cache_t pipe_cache;
205 static pool_cache_t pipe_mutex_cache;
206
207 void
208 pipe_init(void)
209 {
210 size_t size;
211
212 pipe_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "pipepl",
213 NULL, IPL_NONE, NULL, NULL, NULL);
214 KASSERT(pipe_cache != NULL);
215
216 size = (sizeof(struct pipe_mutex) + (CACHE_LINE_SIZE - 1)) &
217 (CACHE_LINE_SIZE - 1);
218 pipe_mutex_cache = pool_cache_init(size, CACHE_LINE_SIZE,
219 0, 0, "pipemtxpl", NULL, IPL_NONE, pipe_mutex_ctor,
220 pipe_mutex_dtor, NULL);
221 KASSERT(pipe_cache != NULL);
222 }
223
224 static int
225 pipe_mutex_ctor(void *arg, void *obj, int flag)
226 {
227 struct pipe_mutex *pm = obj;
228
229 mutex_init(&pm->pm_mutex, MUTEX_DEFAULT, IPL_NONE);
230 pm->pm_refcnt = 0;
231
232 return 0;
233 }
234
235 static void
236 pipe_mutex_dtor(void *arg, void *obj)
237 {
238 struct pipe_mutex *pm = obj;
239
240 KASSERT(pm->pm_refcnt == 0);
241
242 mutex_destroy(&pm->pm_mutex);
243 }
244
245 /*
246 * The pipe system call for the DTYPE_PIPE type of pipes
247 */
248
249 /* ARGSUSED */
250 int
251 sys_pipe(struct lwp *l, const void *v, register_t *retval)
252 {
253 struct file *rf, *wf;
254 struct pipe *rpipe, *wpipe;
255 struct pipe_mutex *mutex;
256 int fd, error;
257
258 rpipe = wpipe = NULL;
259 mutex = pool_cache_get(pipe_mutex_cache, PR_WAITOK);
260 if (mutex == NULL)
261 return (ENOMEM);
262 if (pipe_create(&rpipe, 1, mutex) || pipe_create(&wpipe, 0, mutex)) {
263 pipeclose(NULL, rpipe);
264 pipeclose(NULL, wpipe);
265 return (ENFILE);
266 }
267
268 /*
269 * Note: the file structure returned from falloc() is marked
270 * as 'larval' initially. Unless we mark it as 'mature' by
271 * FILE_SET_MATURE(), any attempt to do anything with it would
272 * return EBADF, including e.g. dup(2) or close(2). This avoids
273 * file descriptor races if we block in the second falloc().
274 */
275
276 error = falloc(l, &rf, &fd);
277 if (error)
278 goto free2;
279 retval[0] = fd;
280 rf->f_flag = FREAD;
281 rf->f_type = DTYPE_PIPE;
282 rf->f_data = (void *)rpipe;
283 rf->f_ops = &pipeops;
284
285 error = falloc(l, &wf, &fd);
286 if (error)
287 goto free3;
288 retval[1] = fd;
289 wf->f_flag = FWRITE;
290 wf->f_type = DTYPE_PIPE;
291 wf->f_data = (void *)wpipe;
292 wf->f_ops = &pipeops;
293
294 rpipe->pipe_peer = wpipe;
295 wpipe->pipe_peer = rpipe;
296
297 FILE_SET_MATURE(rf);
298 FILE_SET_MATURE(wf);
299 FILE_UNUSE(rf, l);
300 FILE_UNUSE(wf, l);
301 return (0);
302 free3:
303 FILE_UNUSE(rf, l);
304 ffree(rf);
305 fdremove(l->l_proc->p_fd, retval[0]);
306 free2:
307 pipeclose(NULL, wpipe);
308 pipeclose(NULL, rpipe);
309
310 return (error);
311 }
312
313 /*
314 * Allocate kva for pipe circular buffer, the space is pageable
315 * This routine will 'realloc' the size of a pipe safely, if it fails
316 * it will retain the old buffer.
317 * If it fails it will return ENOMEM.
318 */
319 static int
320 pipespace(struct pipe *pipe, int size)
321 {
322 void *buffer;
323 /*
324 * Allocate pageable virtual address space. Physical memory is
325 * allocated on demand.
326 */
327 buffer = (void *) uvm_km_alloc(kernel_map, round_page(size), 0,
328 UVM_KMF_PAGEABLE);
329 if (buffer == NULL)
330 return (ENOMEM);
331
332 /* free old resources if we're resizing */
333 pipe_free_kmem(pipe);
334 pipe->pipe_buffer.buffer = buffer;
335 pipe->pipe_buffer.size = size;
336 pipe->pipe_buffer.in = 0;
337 pipe->pipe_buffer.out = 0;
338 pipe->pipe_buffer.cnt = 0;
339 atomic_add_int(&amountpipekva, pipe->pipe_buffer.size);
340 return (0);
341 }
342
343 /*
344 * Initialize and allocate VM and memory for pipe.
345 */
346 static int
347 pipe_create(struct pipe **pipep, int allockva, struct pipe_mutex *mutex)
348 {
349 struct pipe *pipe;
350 int error;
351
352 pipe = *pipep = pool_cache_get(pipe_cache, PR_WAITOK);
353 mutex->pm_refcnt++;
354
355 /* Initialize */
356 memset(pipe, 0, sizeof(struct pipe));
357 pipe->pipe_state = PIPE_SIGNALR;
358
359 getmicrotime(&pipe->pipe_ctime);
360 pipe->pipe_atime = pipe->pipe_ctime;
361 pipe->pipe_mtime = pipe->pipe_ctime;
362 pipe->pipe_lock = &mutex->pm_mutex;
363 cv_init(&pipe->pipe_rcv, "piperd");
364 cv_init(&pipe->pipe_wcv, "pipewr");
365 cv_init(&pipe->pipe_draincv, "pipedrain");
366 cv_init(&pipe->pipe_lkcv, "pipelk");
367 selinit(&pipe->pipe_sel);
368
369 if (allockva && (error = pipespace(pipe, PIPE_SIZE)))
370 return (error);
371
372 return (0);
373 }
374
375
376 /*
377 * Lock a pipe for I/O, blocking other access
378 * Called with pipe spin lock held.
379 * Return with pipe spin lock released on success.
380 */
381 static int
382 pipelock(struct pipe *pipe, int catch)
383 {
384 int error;
385
386 KASSERT(mutex_owned(pipe->pipe_lock));
387
388 while (pipe->pipe_state & PIPE_LOCKFL) {
389 pipe->pipe_state |= PIPE_LWANT;
390 if (catch) {
391 error = cv_wait_sig(&pipe->pipe_lkcv, pipe->pipe_lock);
392 if (error != 0)
393 return error;
394 } else
395 cv_wait(&pipe->pipe_lkcv, pipe->pipe_lock);
396 }
397
398 pipe->pipe_state |= PIPE_LOCKFL;
399
400 return 0;
401 }
402
403 /*
404 * unlock a pipe I/O lock
405 */
406 static inline void
407 pipeunlock(struct pipe *pipe)
408 {
409
410 KASSERT(pipe->pipe_state & PIPE_LOCKFL);
411
412 pipe->pipe_state &= ~PIPE_LOCKFL;
413 if (pipe->pipe_state & PIPE_LWANT) {
414 pipe->pipe_state &= ~PIPE_LWANT;
415 cv_broadcast(&pipe->pipe_lkcv);
416 }
417 }
418
419 /*
420 * Select/poll wakup. This also sends SIGIO to peer connected to
421 * 'sigpipe' side of pipe.
422 */
423 static void
424 pipeselwakeup(struct pipe *selp, struct pipe *sigp, int code)
425 {
426 int band;
427
428 selnotify(&selp->pipe_sel, NOTE_SUBMIT);
429
430 if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0)
431 return;
432
433 switch (code) {
434 case POLL_IN:
435 band = POLLIN|POLLRDNORM;
436 break;
437 case POLL_OUT:
438 band = POLLOUT|POLLWRNORM;
439 break;
440 case POLL_HUP:
441 band = POLLHUP;
442 break;
443 #if POLL_HUP != POLL_ERR
444 case POLL_ERR:
445 band = POLLERR;
446 break;
447 #endif
448 default:
449 band = 0;
450 #ifdef DIAGNOSTIC
451 printf("bad siginfo code %d in pipe notification.\n", code);
452 #endif
453 break;
454 }
455
456 fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp);
457 }
458
459 /* ARGSUSED */
460 static int
461 pipe_read(struct file *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
462 int flags)
463 {
464 struct pipe *rpipe = (struct pipe *) fp->f_data;
465 struct pipebuf *bp = &rpipe->pipe_buffer;
466 kmutex_t *lock = rpipe->pipe_lock;
467 int error;
468 size_t nread = 0;
469 size_t size;
470 size_t ocnt;
471
472 mutex_enter(lock);
473 ++rpipe->pipe_busy;
474 ocnt = bp->cnt;
475
476 again:
477 error = pipelock(rpipe, 1);
478 if (error)
479 goto unlocked_error;
480
481 while (uio->uio_resid) {
482 /*
483 * normal pipe buffer receive
484 */
485 if (bp->cnt > 0) {
486 size = bp->size - bp->out;
487 if (size > bp->cnt)
488 size = bp->cnt;
489 if (size > uio->uio_resid)
490 size = uio->uio_resid;
491
492 mutex_exit(lock);
493 error = uiomove((char *)bp->buffer + bp->out, size, uio);
494 mutex_enter(lock);
495 if (error)
496 break;
497
498 bp->out += size;
499 if (bp->out >= bp->size)
500 bp->out = 0;
501
502 bp->cnt -= size;
503
504 /*
505 * If there is no more to read in the pipe, reset
506 * its pointers to the beginning. This improves
507 * cache hit stats.
508 */
509 if (bp->cnt == 0) {
510 bp->in = 0;
511 bp->out = 0;
512 }
513 nread += size;
514 continue;
515 }
516
517 #ifndef PIPE_NODIRECT
518 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) {
519 /*
520 * Direct copy, bypassing a kernel buffer.
521 */
522 void * va;
523
524 KASSERT(rpipe->pipe_state & PIPE_DIRECTW);
525
526 size = rpipe->pipe_map.cnt;
527 if (size > uio->uio_resid)
528 size = uio->uio_resid;
529
530 va = (char *)rpipe->pipe_map.kva + rpipe->pipe_map.pos;
531 mutex_exit(lock);
532 error = uiomove(va, size, uio);
533 mutex_enter(lock);
534 if (error)
535 break;
536 nread += size;
537 rpipe->pipe_map.pos += size;
538 rpipe->pipe_map.cnt -= size;
539 if (rpipe->pipe_map.cnt == 0) {
540 rpipe->pipe_state &= ~PIPE_DIRECTR;
541 cv_broadcast(&rpipe->pipe_wcv);
542 }
543 continue;
544 }
545 #endif
546 /*
547 * Break if some data was read.
548 */
549 if (nread > 0)
550 break;
551
552 /*
553 * detect EOF condition
554 * read returns 0 on EOF, no need to set error
555 */
556 if (rpipe->pipe_state & PIPE_EOF)
557 break;
558
559 /*
560 * don't block on non-blocking I/O
561 */
562 if (fp->f_flag & FNONBLOCK) {
563 error = EAGAIN;
564 break;
565 }
566
567 /*
568 * Unlock the pipe buffer for our remaining processing.
569 * We will either break out with an error or we will
570 * sleep and relock to loop.
571 */
572 pipeunlock(rpipe);
573
574 /*
575 * Re-check to see if more direct writes are pending.
576 */
577 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0)
578 goto again;
579
580 /*
581 * We want to read more, wake up select/poll.
582 */
583 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_IN);
584
585 /*
586 * If the "write-side" is blocked, wake it up now.
587 */
588 cv_broadcast(&rpipe->pipe_wcv);
589
590 /* Now wait until the pipe is filled */
591 error = cv_wait_sig(&rpipe->pipe_rcv, lock);
592 if (error != 0)
593 goto unlocked_error;
594 goto again;
595 }
596
597 if (error == 0)
598 getmicrotime(&rpipe->pipe_atime);
599 pipeunlock(rpipe);
600
601 unlocked_error:
602 --rpipe->pipe_busy;
603 if (rpipe->pipe_busy == 0) {
604 cv_broadcast(&rpipe->pipe_draincv);
605 }
606 if (bp->cnt < MINPIPESIZE) {
607 cv_broadcast(&rpipe->pipe_wcv);
608 }
609
610 /*
611 * If anything was read off the buffer, signal to the writer it's
612 * possible to write more data. Also send signal if we are here for the
613 * first time after last write.
614 */
615 if ((bp->size - bp->cnt) >= PIPE_BUF
616 && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
617 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
618 rpipe->pipe_state &= ~PIPE_SIGNALR;
619 }
620
621 mutex_exit(lock);
622 return (error);
623 }
624
625 #ifndef PIPE_NODIRECT
626 /*
627 * Allocate structure for loan transfer.
628 */
629 static int
630 pipe_loan_alloc(struct pipe *wpipe, int npages)
631 {
632 vsize_t len;
633
634 len = (vsize_t)npages << PAGE_SHIFT;
635 atomic_add_int(&amountpipekva, len);
636 wpipe->pipe_map.kva = uvm_km_alloc(kernel_map, len, 0,
637 UVM_KMF_VAONLY | UVM_KMF_WAITVA);
638 if (wpipe->pipe_map.kva == 0) {
639 atomic_add_int(&amountpipekva, -len);
640 return (ENOMEM);
641 }
642
643 wpipe->pipe_map.npages = npages;
644 wpipe->pipe_map.pgs = malloc(npages * sizeof(struct vm_page *), M_PIPE,
645 M_WAITOK);
646 return (0);
647 }
648
649 /*
650 * Free resources allocated for loan transfer.
651 */
652 static void
653 pipe_loan_free(struct pipe *wpipe)
654 {
655 vsize_t len;
656
657 len = (vsize_t)wpipe->pipe_map.npages << PAGE_SHIFT;
658 uvm_km_free(kernel_map, wpipe->pipe_map.kva, len, UVM_KMF_VAONLY);
659 wpipe->pipe_map.kva = 0;
660 atomic_add_int(&amountpipekva, -len);
661 free(wpipe->pipe_map.pgs, M_PIPE);
662 wpipe->pipe_map.pgs = NULL;
663 }
664
665 /*
666 * NetBSD direct write, using uvm_loan() mechanism.
667 * This implements the pipe buffer write mechanism. Note that only
668 * a direct write OR a normal pipe write can be pending at any given time.
669 * If there are any characters in the pipe buffer, the direct write will
670 * be deferred until the receiving process grabs all of the bytes from
671 * the pipe buffer. Then the direct mapping write is set-up.
672 *
673 * Called with the long-term pipe lock held.
674 */
675 static int
676 pipe_direct_write(struct file *fp, struct pipe *wpipe, struct uio *uio)
677 {
678 int error, npages, j;
679 struct vm_page **pgs;
680 vaddr_t bbase, kva, base, bend;
681 vsize_t blen, bcnt;
682 voff_t bpos;
683 kmutex_t *lock = wpipe->pipe_lock;
684
685 KASSERT(mutex_owned(wpipe->pipe_lock));
686 KASSERT(wpipe->pipe_map.cnt == 0);
687
688 mutex_exit(lock);
689
690 /*
691 * Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers
692 * not aligned to PAGE_SIZE.
693 */
694 bbase = (vaddr_t)uio->uio_iov->iov_base;
695 base = trunc_page(bbase);
696 bend = round_page(bbase + uio->uio_iov->iov_len);
697 blen = bend - base;
698 bpos = bbase - base;
699
700 if (blen > PIPE_DIRECT_CHUNK) {
701 blen = PIPE_DIRECT_CHUNK;
702 bend = base + blen;
703 bcnt = PIPE_DIRECT_CHUNK - bpos;
704 } else {
705 bcnt = uio->uio_iov->iov_len;
706 }
707 npages = blen >> PAGE_SHIFT;
708
709 /*
710 * Free the old kva if we need more pages than we have
711 * allocated.
712 */
713 if (wpipe->pipe_map.kva != 0 && npages > wpipe->pipe_map.npages)
714 pipe_loan_free(wpipe);
715
716 /* Allocate new kva. */
717 if (wpipe->pipe_map.kva == 0) {
718 error = pipe_loan_alloc(wpipe, npages);
719 if (error) {
720 mutex_enter(lock);
721 return (error);
722 }
723 }
724
725 /* Loan the write buffer memory from writer process */
726 pgs = wpipe->pipe_map.pgs;
727 error = uvm_loan(&uio->uio_vmspace->vm_map, base, blen,
728 pgs, UVM_LOAN_TOPAGE);
729 if (error) {
730 pipe_loan_free(wpipe);
731 mutex_enter(lock);
732 return (ENOMEM); /* so that caller fallback to ordinary write */
733 }
734
735 /* Enter the loaned pages to kva */
736 kva = wpipe->pipe_map.kva;
737 for (j = 0; j < npages; j++, kva += PAGE_SIZE) {
738 pmap_kenter_pa(kva, VM_PAGE_TO_PHYS(pgs[j]), VM_PROT_READ);
739 }
740 pmap_update(pmap_kernel());
741
742 /* Now we can put the pipe in direct write mode */
743 wpipe->pipe_map.pos = bpos;
744 wpipe->pipe_map.cnt = bcnt;
745
746 /*
747 * But before we can let someone do a direct read, we
748 * have to wait until the pipe is drained. Release the
749 * pipe lock while we wait.
750 */
751 mutex_enter(lock);
752 wpipe->pipe_state |= PIPE_DIRECTW;
753 pipeunlock(wpipe);
754
755 while (error == 0 && wpipe->pipe_buffer.cnt > 0) {
756 cv_broadcast(&wpipe->pipe_rcv);
757 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
758 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
759 error = EPIPE;
760 }
761
762 /* Pipe is drained; next read will off the direct buffer */
763 wpipe->pipe_state |= PIPE_DIRECTR;
764
765 /* Wait until the reader is done */
766 while (error == 0 && (wpipe->pipe_state & PIPE_DIRECTR)) {
767 cv_broadcast(&wpipe->pipe_rcv);
768 pipeselwakeup(wpipe, wpipe, POLL_IN);
769 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
770 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
771 error = EPIPE;
772 }
773
774 /* Take pipe out of direct write mode */
775 wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTR);
776
777 /* Acquire the pipe lock and cleanup */
778 (void)pipelock(wpipe, 0);
779 mutex_exit(lock);
780
781 if (pgs != NULL) {
782 pmap_kremove(wpipe->pipe_map.kva, blen);
783 pmap_update(pmap_kernel());
784 uvm_unloan(pgs, npages, UVM_LOAN_TOPAGE);
785 }
786 if (error || amountpipekva > maxpipekva)
787 pipe_loan_free(wpipe);
788
789 mutex_enter(lock);
790 if (error) {
791 pipeselwakeup(wpipe, wpipe, POLL_ERR);
792
793 /*
794 * If nothing was read from what we offered, return error
795 * straight on. Otherwise update uio resid first. Caller
796 * will deal with the error condition, returning short
797 * write, error, or restarting the write(2) as appropriate.
798 */
799 if (wpipe->pipe_map.cnt == bcnt) {
800 wpipe->pipe_map.cnt = 0;
801 cv_broadcast(&wpipe->pipe_wcv);
802 return (error);
803 }
804
805 bcnt -= wpipe->pipe_map.cnt;
806 }
807
808 uio->uio_resid -= bcnt;
809 /* uio_offset not updated, not set/used for write(2) */
810 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt;
811 uio->uio_iov->iov_len -= bcnt;
812 if (uio->uio_iov->iov_len == 0) {
813 uio->uio_iov++;
814 uio->uio_iovcnt--;
815 }
816
817 wpipe->pipe_map.cnt = 0;
818 return (error);
819 }
820 #endif /* !PIPE_NODIRECT */
821
822 static int
823 pipe_write(struct file *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
824 int flags)
825 {
826 struct pipe *wpipe, *rpipe;
827 struct pipebuf *bp;
828 kmutex_t *lock;
829 int error;
830
831 /* We want to write to our peer */
832 rpipe = (struct pipe *) fp->f_data;
833 lock = rpipe->pipe_lock;
834 error = 0;
835
836 mutex_enter(lock);
837 wpipe = rpipe->pipe_peer;
838
839 /*
840 * Detect loss of pipe read side, issue SIGPIPE if lost.
841 */
842 if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) != 0) {
843 mutex_exit(lock);
844 return EPIPE;
845 }
846 ++wpipe->pipe_busy;
847
848 /* Aquire the long-term pipe lock */
849 if ((error = pipelock(wpipe, 1)) != 0) {
850 --wpipe->pipe_busy;
851 if (wpipe->pipe_busy == 0) {
852 cv_broadcast(&wpipe->pipe_draincv);
853 }
854 mutex_exit(lock);
855 return (error);
856 }
857
858 bp = &wpipe->pipe_buffer;
859
860 /*
861 * If it is advantageous to resize the pipe buffer, do so.
862 */
863 if ((uio->uio_resid > PIPE_SIZE) &&
864 (nbigpipe < maxbigpipes) &&
865 #ifndef PIPE_NODIRECT
866 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
867 #endif
868 (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) {
869
870 if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
871 atomic_inc_uint(&nbigpipe);
872 }
873
874 while (uio->uio_resid) {
875 size_t space;
876
877 #ifndef PIPE_NODIRECT
878 /*
879 * Pipe buffered writes cannot be coincidental with
880 * direct writes. Also, only one direct write can be
881 * in progress at any one time. We wait until the currently
882 * executing direct write is completed before continuing.
883 *
884 * We break out if a signal occurs or the reader goes away.
885 */
886 while (error == 0 && wpipe->pipe_state & PIPE_DIRECTW) {
887 cv_broadcast(&wpipe->pipe_rcv);
888 pipeunlock(wpipe);
889 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
890 (void)pipelock(wpipe, 0);
891 if (wpipe->pipe_state & PIPE_EOF)
892 error = EPIPE;
893 }
894 if (error)
895 break;
896
897 /*
898 * If the transfer is large, we can gain performance if
899 * we do process-to-process copies directly.
900 * If the write is non-blocking, we don't use the
901 * direct write mechanism.
902 *
903 * The direct write mechanism will detect the reader going
904 * away on us.
905 */
906 if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
907 (fp->f_flag & FNONBLOCK) == 0 &&
908 (wpipe->pipe_map.kva || (amountpipekva < limitpipekva))) {
909 error = pipe_direct_write(fp, wpipe, uio);
910
911 /*
912 * Break out if error occurred, unless it's ENOMEM.
913 * ENOMEM means we failed to allocate some resources
914 * for direct write, so we just fallback to ordinary
915 * write. If the direct write was successful,
916 * process rest of data via ordinary write.
917 */
918 if (error == 0)
919 continue;
920
921 if (error != ENOMEM)
922 break;
923 }
924 #endif /* PIPE_NODIRECT */
925
926 space = bp->size - bp->cnt;
927
928 /* Writes of size <= PIPE_BUF must be atomic. */
929 if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
930 space = 0;
931
932 if (space > 0) {
933 int size; /* Transfer size */
934 int segsize; /* first segment to transfer */
935
936 /*
937 * Transfer size is minimum of uio transfer
938 * and free space in pipe buffer.
939 */
940 if (space > uio->uio_resid)
941 size = uio->uio_resid;
942 else
943 size = space;
944 /*
945 * First segment to transfer is minimum of
946 * transfer size and contiguous space in
947 * pipe buffer. If first segment to transfer
948 * is less than the transfer size, we've got
949 * a wraparound in the buffer.
950 */
951 segsize = bp->size - bp->in;
952 if (segsize > size)
953 segsize = size;
954
955 /* Transfer first segment */
956 mutex_exit(lock);
957 error = uiomove((char *)bp->buffer + bp->in, segsize,
958 uio);
959
960 if (error == 0 && segsize < size) {
961 /*
962 * Transfer remaining part now, to
963 * support atomic writes. Wraparound
964 * happened.
965 */
966 #ifdef DEBUG
967 if (bp->in + segsize != bp->size)
968 panic("Expected pipe buffer wraparound disappeared");
969 #endif
970
971 error = uiomove(bp->buffer,
972 size - segsize, uio);
973 }
974 mutex_enter(lock);
975 if (error)
976 break;
977
978 bp->in += size;
979 if (bp->in >= bp->size) {
980 #ifdef DEBUG
981 if (bp->in != size - segsize + bp->size)
982 panic("Expected wraparound bad");
983 #endif
984 bp->in = size - segsize;
985 }
986
987 bp->cnt += size;
988 #ifdef DEBUG
989 if (bp->cnt > bp->size)
990 panic("Pipe buffer overflow");
991 #endif
992 } else {
993 /*
994 * If the "read-side" has been blocked, wake it up now.
995 */
996 cv_broadcast(&wpipe->pipe_rcv);
997
998 /*
999 * don't block on non-blocking I/O
1000 */
1001 if (fp->f_flag & FNONBLOCK) {
1002 error = EAGAIN;
1003 break;
1004 }
1005
1006 /*
1007 * We have no more space and have something to offer,
1008 * wake up select/poll.
1009 */
1010 if (bp->cnt)
1011 pipeselwakeup(wpipe, wpipe, POLL_OUT);
1012
1013 pipeunlock(wpipe);
1014 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
1015 (void)pipelock(wpipe, 0);
1016 if (error != 0)
1017 break;
1018 /*
1019 * If read side wants to go away, we just issue a signal
1020 * to ourselves.
1021 */
1022 if (wpipe->pipe_state & PIPE_EOF) {
1023 error = EPIPE;
1024 break;
1025 }
1026 }
1027 }
1028
1029 --wpipe->pipe_busy;
1030 if (wpipe->pipe_busy == 0) {
1031 cv_broadcast(&wpipe->pipe_draincv);
1032 }
1033 if (bp->cnt > 0) {
1034 cv_broadcast(&wpipe->pipe_rcv);
1035 }
1036
1037 /*
1038 * Don't return EPIPE if I/O was successful
1039 */
1040 if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0)
1041 error = 0;
1042
1043 if (error == 0)
1044 getmicrotime(&wpipe->pipe_mtime);
1045
1046 /*
1047 * We have something to offer, wake up select/poll.
1048 * wpipe->pipe_map.cnt is always 0 in this point (direct write
1049 * is only done synchronously), so check only wpipe->pipe_buffer.cnt
1050 */
1051 if (bp->cnt)
1052 pipeselwakeup(wpipe, wpipe, POLL_OUT);
1053
1054 /*
1055 * Arrange for next read(2) to do a signal.
1056 */
1057 wpipe->pipe_state |= PIPE_SIGNALR;
1058
1059 pipeunlock(wpipe);
1060 mutex_exit(lock);
1061 return (error);
1062 }
1063
1064 /*
1065 * we implement a very minimal set of ioctls for compatibility with sockets.
1066 */
1067 int
1068 pipe_ioctl(struct file *fp, u_long cmd, void *data, struct lwp *l)
1069 {
1070 struct pipe *pipe = (struct pipe *)fp->f_data;
1071 struct proc *p = l->l_proc;
1072 kmutex_t *lock = pipe->pipe_lock;
1073
1074 switch (cmd) {
1075
1076 case FIONBIO:
1077 return (0);
1078
1079 case FIOASYNC:
1080 mutex_enter(lock);
1081 if (*(int *)data) {
1082 pipe->pipe_state |= PIPE_ASYNC;
1083 } else {
1084 pipe->pipe_state &= ~PIPE_ASYNC;
1085 }
1086 mutex_exit(lock);
1087 return (0);
1088
1089 case FIONREAD:
1090 mutex_enter(lock);
1091 #ifndef PIPE_NODIRECT
1092 if (pipe->pipe_state & PIPE_DIRECTW)
1093 *(int *)data = pipe->pipe_map.cnt;
1094 else
1095 #endif
1096 *(int *)data = pipe->pipe_buffer.cnt;
1097 mutex_exit(lock);
1098 return (0);
1099
1100 case FIONWRITE:
1101 /* Look at other side */
1102 pipe = pipe->pipe_peer;
1103 mutex_enter(lock);
1104 #ifndef PIPE_NODIRECT
1105 if (pipe->pipe_state & PIPE_DIRECTW)
1106 *(int *)data = pipe->pipe_map.cnt;
1107 else
1108 #endif
1109 *(int *)data = pipe->pipe_buffer.cnt;
1110 mutex_exit(lock);
1111 return (0);
1112
1113 case FIONSPACE:
1114 /* Look at other side */
1115 pipe = pipe->pipe_peer;
1116 mutex_enter(lock);
1117 #ifndef PIPE_NODIRECT
1118 /*
1119 * If we're in direct-mode, we don't really have a
1120 * send queue, and any other write will block. Thus
1121 * zero seems like the best answer.
1122 */
1123 if (pipe->pipe_state & PIPE_DIRECTW)
1124 *(int *)data = 0;
1125 else
1126 #endif
1127 *(int *)data = pipe->pipe_buffer.size -
1128 pipe->pipe_buffer.cnt;
1129 mutex_exit(lock);
1130 return (0);
1131
1132 case TIOCSPGRP:
1133 case FIOSETOWN:
1134 return fsetown(p, &pipe->pipe_pgid, cmd, data);
1135
1136 case TIOCGPGRP:
1137 case FIOGETOWN:
1138 return fgetown(p, pipe->pipe_pgid, cmd, data);
1139
1140 }
1141 return (EPASSTHROUGH);
1142 }
1143
1144 int
1145 pipe_poll(struct file *fp, int events, struct lwp *l)
1146 {
1147 struct pipe *rpipe = (struct pipe *)fp->f_data;
1148 struct pipe *wpipe;
1149 int eof = 0;
1150 int revents = 0;
1151
1152 mutex_enter(rpipe->pipe_lock);
1153 wpipe = rpipe->pipe_peer;
1154
1155 if (events & (POLLIN | POLLRDNORM))
1156 if ((rpipe->pipe_buffer.cnt > 0) ||
1157 #ifndef PIPE_NODIRECT
1158 (rpipe->pipe_state & PIPE_DIRECTR) ||
1159 #endif
1160 (rpipe->pipe_state & PIPE_EOF))
1161 revents |= events & (POLLIN | POLLRDNORM);
1162
1163 eof |= (rpipe->pipe_state & PIPE_EOF);
1164
1165 if (wpipe == NULL)
1166 revents |= events & (POLLOUT | POLLWRNORM);
1167 else {
1168 if (events & (POLLOUT | POLLWRNORM))
1169 if ((wpipe->pipe_state & PIPE_EOF) || (
1170 #ifndef PIPE_NODIRECT
1171 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
1172 #endif
1173 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1174 revents |= events & (POLLOUT | POLLWRNORM);
1175
1176 eof |= (wpipe->pipe_state & PIPE_EOF);
1177 }
1178
1179 if (wpipe == NULL || eof)
1180 revents |= POLLHUP;
1181
1182 if (revents == 0) {
1183 if (events & (POLLIN | POLLRDNORM))
1184 selrecord(l, &rpipe->pipe_sel);
1185
1186 if (events & (POLLOUT | POLLWRNORM))
1187 selrecord(l, &wpipe->pipe_sel);
1188 }
1189 mutex_exit(rpipe->pipe_lock);
1190
1191 return (revents);
1192 }
1193
1194 static int
1195 pipe_stat(struct file *fp, struct stat *ub, struct lwp *l)
1196 {
1197 struct pipe *pipe = (struct pipe *)fp->f_data;
1198
1199 memset((void *)ub, 0, sizeof(*ub));
1200 ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
1201 ub->st_blksize = pipe->pipe_buffer.size;
1202 if (ub->st_blksize == 0 && pipe->pipe_peer)
1203 ub->st_blksize = pipe->pipe_peer->pipe_buffer.size;
1204 ub->st_size = pipe->pipe_buffer.cnt;
1205 ub->st_blocks = (ub->st_size) ? 1 : 0;
1206 TIMEVAL_TO_TIMESPEC(&pipe->pipe_atime, &ub->st_atimespec);
1207 TIMEVAL_TO_TIMESPEC(&pipe->pipe_mtime, &ub->st_mtimespec);
1208 TIMEVAL_TO_TIMESPEC(&pipe->pipe_ctime, &ub->st_ctimespec);
1209 ub->st_uid = kauth_cred_geteuid(fp->f_cred);
1210 ub->st_gid = kauth_cred_getegid(fp->f_cred);
1211
1212 /*
1213 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1214 * XXX (st_dev, st_ino) should be unique.
1215 */
1216 return (0);
1217 }
1218
1219 /* ARGSUSED */
1220 static int
1221 pipe_close(struct file *fp, struct lwp *l)
1222 {
1223 struct pipe *pipe = (struct pipe *)fp->f_data;
1224
1225 fp->f_data = NULL;
1226 pipeclose(fp, pipe);
1227 return (0);
1228 }
1229
1230 static void
1231 pipe_free_kmem(struct pipe *pipe)
1232 {
1233
1234 if (pipe->pipe_buffer.buffer != NULL) {
1235 if (pipe->pipe_buffer.size > PIPE_SIZE)
1236 atomic_dec_uint(&nbigpipe);
1237 uvm_km_free(kernel_map,
1238 (vaddr_t)pipe->pipe_buffer.buffer,
1239 pipe->pipe_buffer.size, UVM_KMF_PAGEABLE);
1240 atomic_add_int(&amountpipekva, -pipe->pipe_buffer.size);
1241 pipe->pipe_buffer.buffer = NULL;
1242 }
1243 #ifndef PIPE_NODIRECT
1244 if (pipe->pipe_map.kva != 0) {
1245 pipe_loan_free(pipe);
1246 pipe->pipe_map.cnt = 0;
1247 pipe->pipe_map.kva = 0;
1248 pipe->pipe_map.pos = 0;
1249 pipe->pipe_map.npages = 0;
1250 }
1251 #endif /* !PIPE_NODIRECT */
1252 }
1253
1254 /*
1255 * shutdown the pipe
1256 */
1257 static void
1258 pipeclose(struct file *fp, struct pipe *pipe)
1259 {
1260 struct pipe_mutex *mutex;
1261 kmutex_t *lock;
1262 struct pipe *ppipe;
1263 u_int refcnt;
1264
1265 if (pipe == NULL)
1266 return;
1267 lock = pipe->pipe_lock;
1268 mutex_enter(lock);
1269 pipeselwakeup(pipe, pipe, POLL_HUP);
1270
1271 /*
1272 * If the other side is blocked, wake it up saying that
1273 * we want to close it down.
1274 */
1275 pipe->pipe_state |= PIPE_EOF;
1276 if (pipe->pipe_busy) {
1277 while (pipe->pipe_busy) {
1278 cv_broadcast(&pipe->pipe_wcv);
1279 cv_wait_sig(&pipe->pipe_draincv, lock);
1280 }
1281 }
1282
1283 /*
1284 * Disconnect from peer
1285 */
1286 if ((ppipe = pipe->pipe_peer) != NULL) {
1287 pipeselwakeup(ppipe, ppipe, POLL_HUP);
1288 ppipe->pipe_state |= PIPE_EOF;
1289 cv_broadcast(&ppipe->pipe_rcv);
1290 ppipe->pipe_peer = NULL;
1291 }
1292
1293 KASSERT((pipe->pipe_state & PIPE_LOCKFL) == 0);
1294
1295 mutex = (struct pipe_mutex *)lock;
1296 refcnt = --(mutex->pm_refcnt);
1297 KASSERT(refcnt == 0 || refcnt == 1);
1298 mutex_exit(lock);
1299
1300 /*
1301 * free resources
1302 */
1303 pipe_free_kmem(pipe);
1304 cv_destroy(&pipe->pipe_rcv);
1305 cv_destroy(&pipe->pipe_wcv);
1306 cv_destroy(&pipe->pipe_draincv);
1307 cv_destroy(&pipe->pipe_lkcv);
1308 seldestroy(&pipe->pipe_sel);
1309 pool_cache_put(pipe_cache, pipe);
1310 if (refcnt == 0)
1311 pool_cache_put(pipe_mutex_cache, mutex);
1312 }
1313
1314 static void
1315 filt_pipedetach(struct knote *kn)
1316 {
1317 struct pipe *pipe;
1318 kmutex_t *lock;
1319
1320 pipe = (struct pipe *)kn->kn_fp->f_data;
1321 lock = pipe->pipe_lock;
1322
1323 mutex_enter(lock);
1324
1325 switch(kn->kn_filter) {
1326 case EVFILT_WRITE:
1327 /* need the peer structure, not our own */
1328 pipe = pipe->pipe_peer;
1329
1330 /* if reader end already closed, just return */
1331 if (pipe == NULL) {
1332 mutex_exit(lock);
1333 return;
1334 }
1335
1336 break;
1337 default:
1338 /* nothing to do */
1339 break;
1340 }
1341
1342 #ifdef DIAGNOSTIC
1343 if (kn->kn_hook != pipe)
1344 panic("filt_pipedetach: inconsistent knote");
1345 #endif
1346
1347 SLIST_REMOVE(&pipe->pipe_sel.sel_klist, kn, knote, kn_selnext);
1348 mutex_exit(lock);
1349 }
1350
1351 /*ARGSUSED*/
1352 static int
1353 filt_piperead(struct knote *kn, long hint)
1354 {
1355 struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1356 struct pipe *wpipe;
1357
1358 if ((hint & NOTE_SUBMIT) == 0) {
1359 mutex_enter(rpipe->pipe_lock);
1360 }
1361 wpipe = rpipe->pipe_peer;
1362 kn->kn_data = rpipe->pipe_buffer.cnt;
1363
1364 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1365 kn->kn_data = rpipe->pipe_map.cnt;
1366
1367 if ((rpipe->pipe_state & PIPE_EOF) ||
1368 (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1369 kn->kn_flags |= EV_EOF;
1370 if ((hint & NOTE_SUBMIT) == 0) {
1371 mutex_exit(rpipe->pipe_lock);
1372 }
1373 return (1);
1374 }
1375
1376 if ((hint & NOTE_SUBMIT) == 0) {
1377 mutex_exit(rpipe->pipe_lock);
1378 }
1379 return (kn->kn_data > 0);
1380 }
1381
1382 /*ARGSUSED*/
1383 static int
1384 filt_pipewrite(struct knote *kn, long hint)
1385 {
1386 struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1387 struct pipe *wpipe;
1388
1389 if ((hint & NOTE_SUBMIT) == 0) {
1390 mutex_enter(rpipe->pipe_lock);
1391 }
1392 wpipe = rpipe->pipe_peer;
1393
1394 if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1395 kn->kn_data = 0;
1396 kn->kn_flags |= EV_EOF;
1397 if ((hint & NOTE_SUBMIT) == 0) {
1398 mutex_exit(rpipe->pipe_lock);
1399 }
1400 return (1);
1401 }
1402 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1403 if (wpipe->pipe_state & PIPE_DIRECTW)
1404 kn->kn_data = 0;
1405
1406 if ((hint & NOTE_SUBMIT) == 0) {
1407 mutex_exit(rpipe->pipe_lock);
1408 }
1409 return (kn->kn_data >= PIPE_BUF);
1410 }
1411
1412 static const struct filterops pipe_rfiltops =
1413 { 1, NULL, filt_pipedetach, filt_piperead };
1414 static const struct filterops pipe_wfiltops =
1415 { 1, NULL, filt_pipedetach, filt_pipewrite };
1416
1417 /*ARGSUSED*/
1418 static int
1419 pipe_kqfilter(struct file *fp, struct knote *kn)
1420 {
1421 struct pipe *pipe;
1422 kmutex_t *lock;
1423
1424 pipe = (struct pipe *)kn->kn_fp->f_data;
1425 lock = pipe->pipe_lock;
1426
1427 mutex_enter(lock);
1428
1429 switch (kn->kn_filter) {
1430 case EVFILT_READ:
1431 kn->kn_fop = &pipe_rfiltops;
1432 break;
1433 case EVFILT_WRITE:
1434 kn->kn_fop = &pipe_wfiltops;
1435 pipe = pipe->pipe_peer;
1436 if (pipe == NULL) {
1437 /* other end of pipe has been closed */
1438 mutex_exit(lock);
1439 return (EBADF);
1440 }
1441 break;
1442 default:
1443 mutex_exit(lock);
1444 return (EINVAL);
1445 }
1446
1447 kn->kn_hook = pipe;
1448 SLIST_INSERT_HEAD(&pipe->pipe_sel.sel_klist, kn, kn_selnext);
1449 mutex_exit(lock);
1450
1451 return (0);
1452 }
1453
1454 /*
1455 * Handle pipe sysctls.
1456 */
1457 SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup")
1458 {
1459
1460 sysctl_createv(clog, 0, NULL, NULL,
1461 CTLFLAG_PERMANENT,
1462 CTLTYPE_NODE, "kern", NULL,
1463 NULL, 0, NULL, 0,
1464 CTL_KERN, CTL_EOL);
1465 sysctl_createv(clog, 0, NULL, NULL,
1466 CTLFLAG_PERMANENT,
1467 CTLTYPE_NODE, "pipe",
1468 SYSCTL_DESCR("Pipe settings"),
1469 NULL, 0, NULL, 0,
1470 CTL_KERN, KERN_PIPE, CTL_EOL);
1471
1472 sysctl_createv(clog, 0, NULL, NULL,
1473 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1474 CTLTYPE_INT, "maxkvasz",
1475 SYSCTL_DESCR("Maximum amount of kernel memory to be "
1476 "used for pipes"),
1477 NULL, 0, &maxpipekva, 0,
1478 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXKVASZ, CTL_EOL);
1479 sysctl_createv(clog, 0, NULL, NULL,
1480 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1481 CTLTYPE_INT, "maxloankvasz",
1482 SYSCTL_DESCR("Limit for direct transfers via page loan"),
1483 NULL, 0, &limitpipekva, 0,
1484 CTL_KERN, KERN_PIPE, KERN_PIPE_LIMITKVA, CTL_EOL);
1485 sysctl_createv(clog, 0, NULL, NULL,
1486 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1487 CTLTYPE_INT, "maxbigpipes",
1488 SYSCTL_DESCR("Maximum number of \"big\" pipes"),
1489 NULL, 0, &maxbigpipes, 0,
1490 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL);
1491 sysctl_createv(clog, 0, NULL, NULL,
1492 CTLFLAG_PERMANENT,
1493 CTLTYPE_INT, "nbigpipes",
1494 SYSCTL_DESCR("Number of \"big\" pipes"),
1495 NULL, 0, &nbigpipe, 0,
1496 CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL);
1497 sysctl_createv(clog, 0, NULL, NULL,
1498 CTLFLAG_PERMANENT,
1499 CTLTYPE_INT, "kvasize",
1500 SYSCTL_DESCR("Amount of kernel memory consumed by pipe "
1501 "buffers"),
1502 NULL, 0, &amountpipekva, 0,
1503 CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL);
1504 }
1505