Home | History | Annotate | Line # | Download | only in kern
sys_pipe.c revision 1.97
      1 /*	$NetBSD: sys_pipe.c,v 1.97 2008/02/29 12:04:48 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2003, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Paul Kranenburg, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Copyright (c) 1996 John S. Dyson
     41  * All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice immediately at the beginning of the file, without modification,
     48  *    this list of conditions, and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. Absolutely no warranty of function or purpose is made by the author
     53  *    John S. Dyson.
     54  * 4. Modifications may be freely made to this file if the above conditions
     55  *    are met.
     56  *
     57  * $FreeBSD: src/sys/kern/sys_pipe.c,v 1.95 2002/03/09 22:06:31 alfred Exp $
     58  */
     59 
     60 /*
     61  * This file contains a high-performance replacement for the socket-based
     62  * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
     63  * all features of sockets, but does do everything that pipes normally
     64  * do.
     65  *
     66  * Adaption for NetBSD UVM, including uvm_loan() based direct write, was
     67  * written by Jaromir Dolecek.
     68  */
     69 
     70 /*
     71  * This code has two modes of operation, a small write mode and a large
     72  * write mode.  The small write mode acts like conventional pipes with
     73  * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
     74  * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
     75  * and PIPE_SIZE in size it is mapped read-only into the kernel address space
     76  * using the UVM page loan facility from where the receiving process can copy
     77  * the data directly from the pages in the sending process.
     78  *
     79  * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
     80  * happen for small transfers so that the system will not spend all of
     81  * its time context switching.  PIPE_SIZE is constrained by the
     82  * amount of kernel virtual memory.
     83  */
     84 
     85 #include <sys/cdefs.h>
     86 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.97 2008/02/29 12:04:48 yamt Exp $");
     87 
     88 #include <sys/param.h>
     89 #include <sys/systm.h>
     90 #include <sys/proc.h>
     91 #include <sys/fcntl.h>
     92 #include <sys/file.h>
     93 #include <sys/filedesc.h>
     94 #include <sys/filio.h>
     95 #include <sys/kernel.h>
     96 #include <sys/ttycom.h>
     97 #include <sys/stat.h>
     98 #include <sys/malloc.h>
     99 #include <sys/poll.h>
    100 #include <sys/signalvar.h>
    101 #include <sys/vnode.h>
    102 #include <sys/uio.h>
    103 #include <sys/select.h>
    104 #include <sys/mount.h>
    105 #include <sys/syscallargs.h>
    106 #include <sys/sysctl.h>
    107 #include <sys/kauth.h>
    108 #include <sys/atomic.h>
    109 #include <sys/pipe.h>
    110 
    111 #include <uvm/uvm.h>
    112 
    113 /*
    114  * Use this define if you want to disable *fancy* VM things.  Expect an
    115  * approx 30% decrease in transfer rate.
    116  */
    117 /* #define PIPE_NODIRECT */
    118 
    119 /*
    120  * interfaces to the outside world
    121  */
    122 static int pipe_read(struct file *fp, off_t *offset, struct uio *uio,
    123 		kauth_cred_t cred, int flags);
    124 static int pipe_write(struct file *fp, off_t *offset, struct uio *uio,
    125 		kauth_cred_t cred, int flags);
    126 static int pipe_close(struct file *fp, struct lwp *l);
    127 static int pipe_poll(struct file *fp, int events, struct lwp *l);
    128 static int pipe_kqfilter(struct file *fp, struct knote *kn);
    129 static int pipe_stat(struct file *fp, struct stat *sb, struct lwp *l);
    130 static int pipe_ioctl(struct file *fp, u_long cmd, void *data,
    131 		struct lwp *l);
    132 
    133 static const struct fileops pipeops = {
    134 	pipe_read, pipe_write, pipe_ioctl, fnullop_fcntl, pipe_poll,
    135 	pipe_stat, pipe_close, pipe_kqfilter
    136 };
    137 
    138 /*
    139  * Single mutex shared between both ends of the pipe.
    140  */
    141 
    142 struct pipe_mutex {
    143 	kmutex_t	pm_mutex;
    144 	u_int		pm_refcnt;
    145 };
    146 
    147 /*
    148  * Default pipe buffer size(s), this can be kind-of large now because pipe
    149  * space is pageable.  The pipe code will try to maintain locality of
    150  * reference for performance reasons, so small amounts of outstanding I/O
    151  * will not wipe the cache.
    152  */
    153 #define MINPIPESIZE (PIPE_SIZE/3)
    154 #define MAXPIPESIZE (2*PIPE_SIZE/3)
    155 
    156 /*
    157  * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
    158  * is there so that on large systems, we don't exhaust it.
    159  */
    160 #define MAXPIPEKVA (8*1024*1024)
    161 static u_int maxpipekva = MAXPIPEKVA;
    162 
    163 /*
    164  * Limit for direct transfers, we cannot, of course limit
    165  * the amount of kva for pipes in general though.
    166  */
    167 #define LIMITPIPEKVA (16*1024*1024)
    168 static u_int limitpipekva = LIMITPIPEKVA;
    169 
    170 /*
    171  * Limit the number of "big" pipes
    172  */
    173 #define LIMITBIGPIPES  32
    174 static u_int maxbigpipes = LIMITBIGPIPES;
    175 static u_int nbigpipe = 0;
    176 
    177 /*
    178  * Amount of KVA consumed by pipe buffers.
    179  */
    180 static u_int amountpipekva = 0;
    181 
    182 MALLOC_DEFINE(M_PIPE, "pipe", "Pipe structures");
    183 
    184 static void pipeclose(struct file *fp, struct pipe *pipe);
    185 static void pipe_free_kmem(struct pipe *pipe);
    186 static int pipe_create(struct pipe **pipep, int allockva, struct pipe_mutex *);
    187 static int pipelock(struct pipe *pipe, int catch);
    188 static inline void pipeunlock(struct pipe *pipe);
    189 static void pipeselwakeup(struct pipe *pipe, struct pipe *sigp, int code);
    190 #ifndef PIPE_NODIRECT
    191 static int pipe_direct_write(struct file *fp, struct pipe *wpipe,
    192     struct uio *uio);
    193 #endif
    194 static int pipespace(struct pipe *pipe, int size);
    195 
    196 #ifndef PIPE_NODIRECT
    197 static int pipe_loan_alloc(struct pipe *, int);
    198 static void pipe_loan_free(struct pipe *);
    199 #endif /* PIPE_NODIRECT */
    200 
    201 static int pipe_mutex_ctor(void *, void *, int);
    202 static void pipe_mutex_dtor(void *, void *);
    203 
    204 static pool_cache_t pipe_cache;
    205 static pool_cache_t pipe_mutex_cache;
    206 
    207 void
    208 pipe_init(void)
    209 {
    210 	size_t size;
    211 
    212 	pipe_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "pipepl",
    213 	    NULL, IPL_NONE, NULL, NULL, NULL);
    214 	KASSERT(pipe_cache != NULL);
    215 
    216 	size = (sizeof(struct pipe_mutex) + (CACHE_LINE_SIZE - 1)) &
    217 	    (CACHE_LINE_SIZE - 1);
    218 	pipe_mutex_cache = pool_cache_init(size, CACHE_LINE_SIZE,
    219 	    0, 0, "pipemtxpl", NULL, IPL_NONE, pipe_mutex_ctor,
    220 	    pipe_mutex_dtor, NULL);
    221 	KASSERT(pipe_cache != NULL);
    222 }
    223 
    224 static int
    225 pipe_mutex_ctor(void *arg, void *obj, int flag)
    226 {
    227 	struct pipe_mutex *pm = obj;
    228 
    229 	mutex_init(&pm->pm_mutex, MUTEX_DEFAULT, IPL_NONE);
    230 	pm->pm_refcnt = 0;
    231 
    232 	return 0;
    233 }
    234 
    235 static void
    236 pipe_mutex_dtor(void *arg, void *obj)
    237 {
    238 	struct pipe_mutex *pm = obj;
    239 
    240 	KASSERT(pm->pm_refcnt == 0);
    241 
    242 	mutex_destroy(&pm->pm_mutex);
    243 }
    244 
    245 /*
    246  * The pipe system call for the DTYPE_PIPE type of pipes
    247  */
    248 
    249 /* ARGSUSED */
    250 int
    251 sys_pipe(struct lwp *l, const void *v, register_t *retval)
    252 {
    253 	struct file *rf, *wf;
    254 	struct pipe *rpipe, *wpipe;
    255 	struct pipe_mutex *mutex;
    256 	int fd, error;
    257 
    258 	rpipe = wpipe = NULL;
    259 	mutex = pool_cache_get(pipe_mutex_cache, PR_WAITOK);
    260 	if (mutex == NULL)
    261 		return (ENOMEM);
    262 	if (pipe_create(&rpipe, 1, mutex) || pipe_create(&wpipe, 0, mutex)) {
    263 		pipeclose(NULL, rpipe);
    264 		pipeclose(NULL, wpipe);
    265 		return (ENFILE);
    266 	}
    267 
    268 	/*
    269 	 * Note: the file structure returned from falloc() is marked
    270 	 * as 'larval' initially. Unless we mark it as 'mature' by
    271 	 * FILE_SET_MATURE(), any attempt to do anything with it would
    272 	 * return EBADF, including e.g. dup(2) or close(2). This avoids
    273 	 * file descriptor races if we block in the second falloc().
    274 	 */
    275 
    276 	error = falloc(l, &rf, &fd);
    277 	if (error)
    278 		goto free2;
    279 	retval[0] = fd;
    280 	rf->f_flag = FREAD;
    281 	rf->f_type = DTYPE_PIPE;
    282 	rf->f_data = (void *)rpipe;
    283 	rf->f_ops = &pipeops;
    284 
    285 	error = falloc(l, &wf, &fd);
    286 	if (error)
    287 		goto free3;
    288 	retval[1] = fd;
    289 	wf->f_flag = FWRITE;
    290 	wf->f_type = DTYPE_PIPE;
    291 	wf->f_data = (void *)wpipe;
    292 	wf->f_ops = &pipeops;
    293 
    294 	rpipe->pipe_peer = wpipe;
    295 	wpipe->pipe_peer = rpipe;
    296 
    297 	FILE_SET_MATURE(rf);
    298 	FILE_SET_MATURE(wf);
    299 	FILE_UNUSE(rf, l);
    300 	FILE_UNUSE(wf, l);
    301 	return (0);
    302 free3:
    303 	FILE_UNUSE(rf, l);
    304 	ffree(rf);
    305 	fdremove(l->l_proc->p_fd, retval[0]);
    306 free2:
    307 	pipeclose(NULL, wpipe);
    308 	pipeclose(NULL, rpipe);
    309 
    310 	return (error);
    311 }
    312 
    313 /*
    314  * Allocate kva for pipe circular buffer, the space is pageable
    315  * This routine will 'realloc' the size of a pipe safely, if it fails
    316  * it will retain the old buffer.
    317  * If it fails it will return ENOMEM.
    318  */
    319 static int
    320 pipespace(struct pipe *pipe, int size)
    321 {
    322 	void *buffer;
    323 	/*
    324 	 * Allocate pageable virtual address space. Physical memory is
    325 	 * allocated on demand.
    326 	 */
    327 	buffer = (void *) uvm_km_alloc(kernel_map, round_page(size), 0,
    328 	    UVM_KMF_PAGEABLE);
    329 	if (buffer == NULL)
    330 		return (ENOMEM);
    331 
    332 	/* free old resources if we're resizing */
    333 	pipe_free_kmem(pipe);
    334 	pipe->pipe_buffer.buffer = buffer;
    335 	pipe->pipe_buffer.size = size;
    336 	pipe->pipe_buffer.in = 0;
    337 	pipe->pipe_buffer.out = 0;
    338 	pipe->pipe_buffer.cnt = 0;
    339 	atomic_add_int(&amountpipekva, pipe->pipe_buffer.size);
    340 	return (0);
    341 }
    342 
    343 /*
    344  * Initialize and allocate VM and memory for pipe.
    345  */
    346 static int
    347 pipe_create(struct pipe **pipep, int allockva, struct pipe_mutex *mutex)
    348 {
    349 	struct pipe *pipe;
    350 	int error;
    351 
    352 	pipe = *pipep = pool_cache_get(pipe_cache, PR_WAITOK);
    353 	mutex->pm_refcnt++;
    354 
    355 	/* Initialize */
    356 	memset(pipe, 0, sizeof(struct pipe));
    357 	pipe->pipe_state = PIPE_SIGNALR;
    358 
    359 	getmicrotime(&pipe->pipe_ctime);
    360 	pipe->pipe_atime = pipe->pipe_ctime;
    361 	pipe->pipe_mtime = pipe->pipe_ctime;
    362 	pipe->pipe_lock = &mutex->pm_mutex;
    363 	cv_init(&pipe->pipe_rcv, "piperd");
    364 	cv_init(&pipe->pipe_wcv, "pipewr");
    365 	cv_init(&pipe->pipe_draincv, "pipedrain");
    366 	cv_init(&pipe->pipe_lkcv, "pipelk");
    367 	selinit(&pipe->pipe_sel);
    368 
    369 	if (allockva && (error = pipespace(pipe, PIPE_SIZE)))
    370 		return (error);
    371 
    372 	return (0);
    373 }
    374 
    375 
    376 /*
    377  * Lock a pipe for I/O, blocking other access
    378  * Called with pipe spin lock held.
    379  * Return with pipe spin lock released on success.
    380  */
    381 static int
    382 pipelock(struct pipe *pipe, int catch)
    383 {
    384 	int error;
    385 
    386 	KASSERT(mutex_owned(pipe->pipe_lock));
    387 
    388 	while (pipe->pipe_state & PIPE_LOCKFL) {
    389 		pipe->pipe_state |= PIPE_LWANT;
    390 		if (catch) {
    391 			error = cv_wait_sig(&pipe->pipe_lkcv, pipe->pipe_lock);
    392 			if (error != 0)
    393 				return error;
    394 		} else
    395 			cv_wait(&pipe->pipe_lkcv, pipe->pipe_lock);
    396 	}
    397 
    398 	pipe->pipe_state |= PIPE_LOCKFL;
    399 
    400 	return 0;
    401 }
    402 
    403 /*
    404  * unlock a pipe I/O lock
    405  */
    406 static inline void
    407 pipeunlock(struct pipe *pipe)
    408 {
    409 
    410 	KASSERT(pipe->pipe_state & PIPE_LOCKFL);
    411 
    412 	pipe->pipe_state &= ~PIPE_LOCKFL;
    413 	if (pipe->pipe_state & PIPE_LWANT) {
    414 		pipe->pipe_state &= ~PIPE_LWANT;
    415 		cv_broadcast(&pipe->pipe_lkcv);
    416 	}
    417 }
    418 
    419 /*
    420  * Select/poll wakup. This also sends SIGIO to peer connected to
    421  * 'sigpipe' side of pipe.
    422  */
    423 static void
    424 pipeselwakeup(struct pipe *selp, struct pipe *sigp, int code)
    425 {
    426 	int band;
    427 
    428 	selnotify(&selp->pipe_sel, NOTE_SUBMIT);
    429 
    430 	if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0)
    431 		return;
    432 
    433 	switch (code) {
    434 	case POLL_IN:
    435 		band = POLLIN|POLLRDNORM;
    436 		break;
    437 	case POLL_OUT:
    438 		band = POLLOUT|POLLWRNORM;
    439 		break;
    440 	case POLL_HUP:
    441 		band = POLLHUP;
    442 		break;
    443 #if POLL_HUP != POLL_ERR
    444 	case POLL_ERR:
    445 		band = POLLERR;
    446 		break;
    447 #endif
    448 	default:
    449 		band = 0;
    450 #ifdef DIAGNOSTIC
    451 		printf("bad siginfo code %d in pipe notification.\n", code);
    452 #endif
    453 		break;
    454 	}
    455 
    456 	fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp);
    457 }
    458 
    459 /* ARGSUSED */
    460 static int
    461 pipe_read(struct file *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
    462     int flags)
    463 {
    464 	struct pipe *rpipe = (struct pipe *) fp->f_data;
    465 	struct pipebuf *bp = &rpipe->pipe_buffer;
    466 	kmutex_t *lock = rpipe->pipe_lock;
    467 	int error;
    468 	size_t nread = 0;
    469 	size_t size;
    470 	size_t ocnt;
    471 
    472 	mutex_enter(lock);
    473 	++rpipe->pipe_busy;
    474 	ocnt = bp->cnt;
    475 
    476 again:
    477 	error = pipelock(rpipe, 1);
    478 	if (error)
    479 		goto unlocked_error;
    480 
    481 	while (uio->uio_resid) {
    482 		/*
    483 		 * normal pipe buffer receive
    484 		 */
    485 		if (bp->cnt > 0) {
    486 			size = bp->size - bp->out;
    487 			if (size > bp->cnt)
    488 				size = bp->cnt;
    489 			if (size > uio->uio_resid)
    490 				size = uio->uio_resid;
    491 
    492 			mutex_exit(lock);
    493 			error = uiomove((char *)bp->buffer + bp->out, size, uio);
    494 			mutex_enter(lock);
    495 			if (error)
    496 				break;
    497 
    498 			bp->out += size;
    499 			if (bp->out >= bp->size)
    500 				bp->out = 0;
    501 
    502 			bp->cnt -= size;
    503 
    504 			/*
    505 			 * If there is no more to read in the pipe, reset
    506 			 * its pointers to the beginning.  This improves
    507 			 * cache hit stats.
    508 			 */
    509 			if (bp->cnt == 0) {
    510 				bp->in = 0;
    511 				bp->out = 0;
    512 			}
    513 			nread += size;
    514 			continue;
    515 		}
    516 
    517 #ifndef PIPE_NODIRECT
    518 		if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) {
    519 			/*
    520 			 * Direct copy, bypassing a kernel buffer.
    521 			 */
    522 			void *	va;
    523 
    524 			KASSERT(rpipe->pipe_state & PIPE_DIRECTW);
    525 
    526 			size = rpipe->pipe_map.cnt;
    527 			if (size > uio->uio_resid)
    528 				size = uio->uio_resid;
    529 
    530 			va = (char *)rpipe->pipe_map.kva + rpipe->pipe_map.pos;
    531 			mutex_exit(lock);
    532 			error = uiomove(va, size, uio);
    533 			mutex_enter(lock);
    534 			if (error)
    535 				break;
    536 			nread += size;
    537 			rpipe->pipe_map.pos += size;
    538 			rpipe->pipe_map.cnt -= size;
    539 			if (rpipe->pipe_map.cnt == 0) {
    540 				rpipe->pipe_state &= ~PIPE_DIRECTR;
    541 				cv_broadcast(&rpipe->pipe_wcv);
    542 			}
    543 			continue;
    544 		}
    545 #endif
    546 		/*
    547 		 * Break if some data was read.
    548 		 */
    549 		if (nread > 0)
    550 			break;
    551 
    552 		/*
    553 		 * detect EOF condition
    554 		 * read returns 0 on EOF, no need to set error
    555 		 */
    556 		if (rpipe->pipe_state & PIPE_EOF)
    557 			break;
    558 
    559 		/*
    560 		 * don't block on non-blocking I/O
    561 		 */
    562 		if (fp->f_flag & FNONBLOCK) {
    563 			error = EAGAIN;
    564 			break;
    565 		}
    566 
    567 		/*
    568 		 * Unlock the pipe buffer for our remaining processing.
    569 		 * We will either break out with an error or we will
    570 		 * sleep and relock to loop.
    571 		 */
    572 		pipeunlock(rpipe);
    573 
    574 		/*
    575 		 * Re-check to see if more direct writes are pending.
    576 		 */
    577 		if ((rpipe->pipe_state & PIPE_DIRECTR) != 0)
    578 			goto again;
    579 
    580 		/*
    581 		 * We want to read more, wake up select/poll.
    582 		 */
    583 		pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_IN);
    584 
    585 		/*
    586 		 * If the "write-side" is blocked, wake it up now.
    587 		 */
    588 		cv_broadcast(&rpipe->pipe_wcv);
    589 
    590 		/* Now wait until the pipe is filled */
    591 		error = cv_wait_sig(&rpipe->pipe_rcv, lock);
    592 		if (error != 0)
    593 			goto unlocked_error;
    594 		goto again;
    595 	}
    596 
    597 	if (error == 0)
    598 		getmicrotime(&rpipe->pipe_atime);
    599 	pipeunlock(rpipe);
    600 
    601 unlocked_error:
    602 	--rpipe->pipe_busy;
    603 	if (rpipe->pipe_busy == 0) {
    604 		cv_broadcast(&rpipe->pipe_draincv);
    605 	}
    606 	if (bp->cnt < MINPIPESIZE) {
    607 		cv_broadcast(&rpipe->pipe_wcv);
    608 	}
    609 
    610 	/*
    611 	 * If anything was read off the buffer, signal to the writer it's
    612 	 * possible to write more data. Also send signal if we are here for the
    613 	 * first time after last write.
    614 	 */
    615 	if ((bp->size - bp->cnt) >= PIPE_BUF
    616 	    && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
    617 		pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
    618 		rpipe->pipe_state &= ~PIPE_SIGNALR;
    619 	}
    620 
    621 	mutex_exit(lock);
    622 	return (error);
    623 }
    624 
    625 #ifndef PIPE_NODIRECT
    626 /*
    627  * Allocate structure for loan transfer.
    628  */
    629 static int
    630 pipe_loan_alloc(struct pipe *wpipe, int npages)
    631 {
    632 	vsize_t len;
    633 
    634 	len = (vsize_t)npages << PAGE_SHIFT;
    635 	atomic_add_int(&amountpipekva, len);
    636 	wpipe->pipe_map.kva = uvm_km_alloc(kernel_map, len, 0,
    637 	    UVM_KMF_VAONLY | UVM_KMF_WAITVA);
    638 	if (wpipe->pipe_map.kva == 0) {
    639 		atomic_add_int(&amountpipekva, -len);
    640 		return (ENOMEM);
    641 	}
    642 
    643 	wpipe->pipe_map.npages = npages;
    644 	wpipe->pipe_map.pgs = malloc(npages * sizeof(struct vm_page *), M_PIPE,
    645 	    M_WAITOK);
    646 	return (0);
    647 }
    648 
    649 /*
    650  * Free resources allocated for loan transfer.
    651  */
    652 static void
    653 pipe_loan_free(struct pipe *wpipe)
    654 {
    655 	vsize_t len;
    656 
    657 	len = (vsize_t)wpipe->pipe_map.npages << PAGE_SHIFT;
    658 	uvm_km_free(kernel_map, wpipe->pipe_map.kva, len, UVM_KMF_VAONLY);
    659 	wpipe->pipe_map.kva = 0;
    660 	atomic_add_int(&amountpipekva, -len);
    661 	free(wpipe->pipe_map.pgs, M_PIPE);
    662 	wpipe->pipe_map.pgs = NULL;
    663 }
    664 
    665 /*
    666  * NetBSD direct write, using uvm_loan() mechanism.
    667  * This implements the pipe buffer write mechanism.  Note that only
    668  * a direct write OR a normal pipe write can be pending at any given time.
    669  * If there are any characters in the pipe buffer, the direct write will
    670  * be deferred until the receiving process grabs all of the bytes from
    671  * the pipe buffer.  Then the direct mapping write is set-up.
    672  *
    673  * Called with the long-term pipe lock held.
    674  */
    675 static int
    676 pipe_direct_write(struct file *fp, struct pipe *wpipe, struct uio *uio)
    677 {
    678 	int error, npages, j;
    679 	struct vm_page **pgs;
    680 	vaddr_t bbase, kva, base, bend;
    681 	vsize_t blen, bcnt;
    682 	voff_t bpos;
    683 	kmutex_t *lock = wpipe->pipe_lock;
    684 
    685 	KASSERT(mutex_owned(wpipe->pipe_lock));
    686 	KASSERT(wpipe->pipe_map.cnt == 0);
    687 
    688 	mutex_exit(lock);
    689 
    690 	/*
    691 	 * Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers
    692 	 * not aligned to PAGE_SIZE.
    693 	 */
    694 	bbase = (vaddr_t)uio->uio_iov->iov_base;
    695 	base = trunc_page(bbase);
    696 	bend = round_page(bbase + uio->uio_iov->iov_len);
    697 	blen = bend - base;
    698 	bpos = bbase - base;
    699 
    700 	if (blen > PIPE_DIRECT_CHUNK) {
    701 		blen = PIPE_DIRECT_CHUNK;
    702 		bend = base + blen;
    703 		bcnt = PIPE_DIRECT_CHUNK - bpos;
    704 	} else {
    705 		bcnt = uio->uio_iov->iov_len;
    706 	}
    707 	npages = blen >> PAGE_SHIFT;
    708 
    709 	/*
    710 	 * Free the old kva if we need more pages than we have
    711 	 * allocated.
    712 	 */
    713 	if (wpipe->pipe_map.kva != 0 && npages > wpipe->pipe_map.npages)
    714 		pipe_loan_free(wpipe);
    715 
    716 	/* Allocate new kva. */
    717 	if (wpipe->pipe_map.kva == 0) {
    718 		error = pipe_loan_alloc(wpipe, npages);
    719 		if (error) {
    720 			mutex_enter(lock);
    721 			return (error);
    722 		}
    723 	}
    724 
    725 	/* Loan the write buffer memory from writer process */
    726 	pgs = wpipe->pipe_map.pgs;
    727 	error = uvm_loan(&uio->uio_vmspace->vm_map, base, blen,
    728 			 pgs, UVM_LOAN_TOPAGE);
    729 	if (error) {
    730 		pipe_loan_free(wpipe);
    731 		mutex_enter(lock);
    732 		return (ENOMEM); /* so that caller fallback to ordinary write */
    733 	}
    734 
    735 	/* Enter the loaned pages to kva */
    736 	kva = wpipe->pipe_map.kva;
    737 	for (j = 0; j < npages; j++, kva += PAGE_SIZE) {
    738 		pmap_kenter_pa(kva, VM_PAGE_TO_PHYS(pgs[j]), VM_PROT_READ);
    739 	}
    740 	pmap_update(pmap_kernel());
    741 
    742 	/* Now we can put the pipe in direct write mode */
    743 	wpipe->pipe_map.pos = bpos;
    744 	wpipe->pipe_map.cnt = bcnt;
    745 
    746 	/*
    747 	 * But before we can let someone do a direct read, we
    748 	 * have to wait until the pipe is drained.  Release the
    749 	 * pipe lock while we wait.
    750 	 */
    751 	mutex_enter(lock);
    752 	wpipe->pipe_state |= PIPE_DIRECTW;
    753 	pipeunlock(wpipe);
    754 
    755 	while (error == 0 && wpipe->pipe_buffer.cnt > 0) {
    756 		cv_broadcast(&wpipe->pipe_rcv);
    757 		error = cv_wait_sig(&wpipe->pipe_wcv, lock);
    758 		if (error == 0 && wpipe->pipe_state & PIPE_EOF)
    759 			error = EPIPE;
    760 	}
    761 
    762 	/* Pipe is drained; next read will off the direct buffer */
    763 	wpipe->pipe_state |= PIPE_DIRECTR;
    764 
    765 	/* Wait until the reader is done */
    766 	while (error == 0 && (wpipe->pipe_state & PIPE_DIRECTR)) {
    767 		cv_broadcast(&wpipe->pipe_rcv);
    768 		pipeselwakeup(wpipe, wpipe, POLL_IN);
    769 		error = cv_wait_sig(&wpipe->pipe_wcv, lock);
    770 		if (error == 0 && wpipe->pipe_state & PIPE_EOF)
    771 			error = EPIPE;
    772 	}
    773 
    774 	/* Take pipe out of direct write mode */
    775 	wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTR);
    776 
    777 	/* Acquire the pipe lock and cleanup */
    778 	(void)pipelock(wpipe, 0);
    779 	mutex_exit(lock);
    780 
    781 	if (pgs != NULL) {
    782 		pmap_kremove(wpipe->pipe_map.kva, blen);
    783 		pmap_update(pmap_kernel());
    784 		uvm_unloan(pgs, npages, UVM_LOAN_TOPAGE);
    785 	}
    786 	if (error || amountpipekva > maxpipekva)
    787 		pipe_loan_free(wpipe);
    788 
    789 	mutex_enter(lock);
    790 	if (error) {
    791 		pipeselwakeup(wpipe, wpipe, POLL_ERR);
    792 
    793 		/*
    794 		 * If nothing was read from what we offered, return error
    795 		 * straight on. Otherwise update uio resid first. Caller
    796 		 * will deal with the error condition, returning short
    797 		 * write, error, or restarting the write(2) as appropriate.
    798 		 */
    799 		if (wpipe->pipe_map.cnt == bcnt) {
    800 			wpipe->pipe_map.cnt = 0;
    801 			cv_broadcast(&wpipe->pipe_wcv);
    802 			return (error);
    803 		}
    804 
    805 		bcnt -= wpipe->pipe_map.cnt;
    806 	}
    807 
    808 	uio->uio_resid -= bcnt;
    809 	/* uio_offset not updated, not set/used for write(2) */
    810 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt;
    811 	uio->uio_iov->iov_len -= bcnt;
    812 	if (uio->uio_iov->iov_len == 0) {
    813 		uio->uio_iov++;
    814 		uio->uio_iovcnt--;
    815 	}
    816 
    817 	wpipe->pipe_map.cnt = 0;
    818 	return (error);
    819 }
    820 #endif /* !PIPE_NODIRECT */
    821 
    822 static int
    823 pipe_write(struct file *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
    824     int flags)
    825 {
    826 	struct pipe *wpipe, *rpipe;
    827 	struct pipebuf *bp;
    828 	kmutex_t *lock;
    829 	int error;
    830 
    831 	/* We want to write to our peer */
    832 	rpipe = (struct pipe *) fp->f_data;
    833 	lock = rpipe->pipe_lock;
    834 	error = 0;
    835 
    836 	mutex_enter(lock);
    837 	wpipe = rpipe->pipe_peer;
    838 
    839 	/*
    840 	 * Detect loss of pipe read side, issue SIGPIPE if lost.
    841 	 */
    842 	if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) != 0) {
    843 		mutex_exit(lock);
    844 		return EPIPE;
    845 	}
    846 	++wpipe->pipe_busy;
    847 
    848 	/* Aquire the long-term pipe lock */
    849 	if ((error = pipelock(wpipe, 1)) != 0) {
    850 		--wpipe->pipe_busy;
    851 		if (wpipe->pipe_busy == 0) {
    852 			cv_broadcast(&wpipe->pipe_draincv);
    853 		}
    854 		mutex_exit(lock);
    855 		return (error);
    856 	}
    857 
    858 	bp = &wpipe->pipe_buffer;
    859 
    860 	/*
    861 	 * If it is advantageous to resize the pipe buffer, do so.
    862 	 */
    863 	if ((uio->uio_resid > PIPE_SIZE) &&
    864 	    (nbigpipe < maxbigpipes) &&
    865 #ifndef PIPE_NODIRECT
    866 	    (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
    867 #endif
    868 	    (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) {
    869 
    870 		if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
    871 			atomic_inc_uint(&nbigpipe);
    872 	}
    873 
    874 	while (uio->uio_resid) {
    875 		size_t space;
    876 
    877 #ifndef PIPE_NODIRECT
    878 		/*
    879 		 * Pipe buffered writes cannot be coincidental with
    880 		 * direct writes.  Also, only one direct write can be
    881 		 * in progress at any one time.  We wait until the currently
    882 		 * executing direct write is completed before continuing.
    883 		 *
    884 		 * We break out if a signal occurs or the reader goes away.
    885 		 */
    886 		while (error == 0 && wpipe->pipe_state & PIPE_DIRECTW) {
    887 			cv_broadcast(&wpipe->pipe_rcv);
    888 			pipeunlock(wpipe);
    889 			error = cv_wait_sig(&wpipe->pipe_wcv, lock);
    890 			(void)pipelock(wpipe, 0);
    891 			if (wpipe->pipe_state & PIPE_EOF)
    892 				error = EPIPE;
    893 		}
    894 		if (error)
    895 			break;
    896 
    897 		/*
    898 		 * If the transfer is large, we can gain performance if
    899 		 * we do process-to-process copies directly.
    900 		 * If the write is non-blocking, we don't use the
    901 		 * direct write mechanism.
    902 		 *
    903 		 * The direct write mechanism will detect the reader going
    904 		 * away on us.
    905 		 */
    906 		if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
    907 		    (fp->f_flag & FNONBLOCK) == 0 &&
    908 		    (wpipe->pipe_map.kva || (amountpipekva < limitpipekva))) {
    909 			error = pipe_direct_write(fp, wpipe, uio);
    910 
    911 			/*
    912 			 * Break out if error occurred, unless it's ENOMEM.
    913 			 * ENOMEM means we failed to allocate some resources
    914 			 * for direct write, so we just fallback to ordinary
    915 			 * write. If the direct write was successful,
    916 			 * process rest of data via ordinary write.
    917 			 */
    918 			if (error == 0)
    919 				continue;
    920 
    921 			if (error != ENOMEM)
    922 				break;
    923 		}
    924 #endif /* PIPE_NODIRECT */
    925 
    926 		space = bp->size - bp->cnt;
    927 
    928 		/* Writes of size <= PIPE_BUF must be atomic. */
    929 		if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
    930 			space = 0;
    931 
    932 		if (space > 0) {
    933 			int size;	/* Transfer size */
    934 			int segsize;	/* first segment to transfer */
    935 
    936 			/*
    937 			 * Transfer size is minimum of uio transfer
    938 			 * and free space in pipe buffer.
    939 			 */
    940 			if (space > uio->uio_resid)
    941 				size = uio->uio_resid;
    942 			else
    943 				size = space;
    944 			/*
    945 			 * First segment to transfer is minimum of
    946 			 * transfer size and contiguous space in
    947 			 * pipe buffer.  If first segment to transfer
    948 			 * is less than the transfer size, we've got
    949 			 * a wraparound in the buffer.
    950 			 */
    951 			segsize = bp->size - bp->in;
    952 			if (segsize > size)
    953 				segsize = size;
    954 
    955 			/* Transfer first segment */
    956 			mutex_exit(lock);
    957 			error = uiomove((char *)bp->buffer + bp->in, segsize,
    958 			    uio);
    959 
    960 			if (error == 0 && segsize < size) {
    961 				/*
    962 				 * Transfer remaining part now, to
    963 				 * support atomic writes.  Wraparound
    964 				 * happened.
    965 				 */
    966 #ifdef DEBUG
    967 				if (bp->in + segsize != bp->size)
    968 					panic("Expected pipe buffer wraparound disappeared");
    969 #endif
    970 
    971 				error = uiomove(bp->buffer,
    972 				    size - segsize, uio);
    973 			}
    974 			mutex_enter(lock);
    975 			if (error)
    976 				break;
    977 
    978 			bp->in += size;
    979 			if (bp->in >= bp->size) {
    980 #ifdef DEBUG
    981 				if (bp->in != size - segsize + bp->size)
    982 					panic("Expected wraparound bad");
    983 #endif
    984 				bp->in = size - segsize;
    985 			}
    986 
    987 			bp->cnt += size;
    988 #ifdef DEBUG
    989 			if (bp->cnt > bp->size)
    990 				panic("Pipe buffer overflow");
    991 #endif
    992 		} else {
    993 			/*
    994 			 * If the "read-side" has been blocked, wake it up now.
    995 			 */
    996 			cv_broadcast(&wpipe->pipe_rcv);
    997 
    998 			/*
    999 			 * don't block on non-blocking I/O
   1000 			 */
   1001 			if (fp->f_flag & FNONBLOCK) {
   1002 				error = EAGAIN;
   1003 				break;
   1004 			}
   1005 
   1006 			/*
   1007 			 * We have no more space and have something to offer,
   1008 			 * wake up select/poll.
   1009 			 */
   1010 			if (bp->cnt)
   1011 				pipeselwakeup(wpipe, wpipe, POLL_OUT);
   1012 
   1013 			pipeunlock(wpipe);
   1014 			error = cv_wait_sig(&wpipe->pipe_wcv, lock);
   1015 			(void)pipelock(wpipe, 0);
   1016 			if (error != 0)
   1017 				break;
   1018 			/*
   1019 			 * If read side wants to go away, we just issue a signal
   1020 			 * to ourselves.
   1021 			 */
   1022 			if (wpipe->pipe_state & PIPE_EOF) {
   1023 				error = EPIPE;
   1024 				break;
   1025 			}
   1026 		}
   1027 	}
   1028 
   1029 	--wpipe->pipe_busy;
   1030 	if (wpipe->pipe_busy == 0) {
   1031 		cv_broadcast(&wpipe->pipe_draincv);
   1032 	}
   1033 	if (bp->cnt > 0) {
   1034 		cv_broadcast(&wpipe->pipe_rcv);
   1035 	}
   1036 
   1037 	/*
   1038 	 * Don't return EPIPE if I/O was successful
   1039 	 */
   1040 	if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0)
   1041 		error = 0;
   1042 
   1043 	if (error == 0)
   1044 		getmicrotime(&wpipe->pipe_mtime);
   1045 
   1046 	/*
   1047 	 * We have something to offer, wake up select/poll.
   1048 	 * wpipe->pipe_map.cnt is always 0 in this point (direct write
   1049 	 * is only done synchronously), so check only wpipe->pipe_buffer.cnt
   1050 	 */
   1051 	if (bp->cnt)
   1052 		pipeselwakeup(wpipe, wpipe, POLL_OUT);
   1053 
   1054 	/*
   1055 	 * Arrange for next read(2) to do a signal.
   1056 	 */
   1057 	wpipe->pipe_state |= PIPE_SIGNALR;
   1058 
   1059 	pipeunlock(wpipe);
   1060 	mutex_exit(lock);
   1061 	return (error);
   1062 }
   1063 
   1064 /*
   1065  * we implement a very minimal set of ioctls for compatibility with sockets.
   1066  */
   1067 int
   1068 pipe_ioctl(struct file *fp, u_long cmd, void *data, struct lwp *l)
   1069 {
   1070 	struct pipe *pipe = (struct pipe *)fp->f_data;
   1071 	struct proc *p = l->l_proc;
   1072 	kmutex_t *lock = pipe->pipe_lock;
   1073 
   1074 	switch (cmd) {
   1075 
   1076 	case FIONBIO:
   1077 		return (0);
   1078 
   1079 	case FIOASYNC:
   1080 		mutex_enter(lock);
   1081 		if (*(int *)data) {
   1082 			pipe->pipe_state |= PIPE_ASYNC;
   1083 		} else {
   1084 			pipe->pipe_state &= ~PIPE_ASYNC;
   1085 		}
   1086 		mutex_exit(lock);
   1087 		return (0);
   1088 
   1089 	case FIONREAD:
   1090 		mutex_enter(lock);
   1091 #ifndef PIPE_NODIRECT
   1092 		if (pipe->pipe_state & PIPE_DIRECTW)
   1093 			*(int *)data = pipe->pipe_map.cnt;
   1094 		else
   1095 #endif
   1096 			*(int *)data = pipe->pipe_buffer.cnt;
   1097 		mutex_exit(lock);
   1098 		return (0);
   1099 
   1100 	case FIONWRITE:
   1101 		/* Look at other side */
   1102 		pipe = pipe->pipe_peer;
   1103 		mutex_enter(lock);
   1104 #ifndef PIPE_NODIRECT
   1105 		if (pipe->pipe_state & PIPE_DIRECTW)
   1106 			*(int *)data = pipe->pipe_map.cnt;
   1107 		else
   1108 #endif
   1109 			*(int *)data = pipe->pipe_buffer.cnt;
   1110 		mutex_exit(lock);
   1111 		return (0);
   1112 
   1113 	case FIONSPACE:
   1114 		/* Look at other side */
   1115 		pipe = pipe->pipe_peer;
   1116 		mutex_enter(lock);
   1117 #ifndef PIPE_NODIRECT
   1118 		/*
   1119 		 * If we're in direct-mode, we don't really have a
   1120 		 * send queue, and any other write will block. Thus
   1121 		 * zero seems like the best answer.
   1122 		 */
   1123 		if (pipe->pipe_state & PIPE_DIRECTW)
   1124 			*(int *)data = 0;
   1125 		else
   1126 #endif
   1127 			*(int *)data = pipe->pipe_buffer.size -
   1128 			    pipe->pipe_buffer.cnt;
   1129 		mutex_exit(lock);
   1130 		return (0);
   1131 
   1132 	case TIOCSPGRP:
   1133 	case FIOSETOWN:
   1134 		return fsetown(p, &pipe->pipe_pgid, cmd, data);
   1135 
   1136 	case TIOCGPGRP:
   1137 	case FIOGETOWN:
   1138 		return fgetown(p, pipe->pipe_pgid, cmd, data);
   1139 
   1140 	}
   1141 	return (EPASSTHROUGH);
   1142 }
   1143 
   1144 int
   1145 pipe_poll(struct file *fp, int events, struct lwp *l)
   1146 {
   1147 	struct pipe *rpipe = (struct pipe *)fp->f_data;
   1148 	struct pipe *wpipe;
   1149 	int eof = 0;
   1150 	int revents = 0;
   1151 
   1152 	mutex_enter(rpipe->pipe_lock);
   1153 	wpipe = rpipe->pipe_peer;
   1154 
   1155 	if (events & (POLLIN | POLLRDNORM))
   1156 		if ((rpipe->pipe_buffer.cnt > 0) ||
   1157 #ifndef PIPE_NODIRECT
   1158 		    (rpipe->pipe_state & PIPE_DIRECTR) ||
   1159 #endif
   1160 		    (rpipe->pipe_state & PIPE_EOF))
   1161 			revents |= events & (POLLIN | POLLRDNORM);
   1162 
   1163 	eof |= (rpipe->pipe_state & PIPE_EOF);
   1164 
   1165 	if (wpipe == NULL)
   1166 		revents |= events & (POLLOUT | POLLWRNORM);
   1167 	else {
   1168 		if (events & (POLLOUT | POLLWRNORM))
   1169 			if ((wpipe->pipe_state & PIPE_EOF) || (
   1170 #ifndef PIPE_NODIRECT
   1171 			     (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
   1172 #endif
   1173 			     (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
   1174 				revents |= events & (POLLOUT | POLLWRNORM);
   1175 
   1176 		eof |= (wpipe->pipe_state & PIPE_EOF);
   1177 	}
   1178 
   1179 	if (wpipe == NULL || eof)
   1180 		revents |= POLLHUP;
   1181 
   1182 	if (revents == 0) {
   1183 		if (events & (POLLIN | POLLRDNORM))
   1184 			selrecord(l, &rpipe->pipe_sel);
   1185 
   1186 		if (events & (POLLOUT | POLLWRNORM))
   1187 			selrecord(l, &wpipe->pipe_sel);
   1188 	}
   1189 	mutex_exit(rpipe->pipe_lock);
   1190 
   1191 	return (revents);
   1192 }
   1193 
   1194 static int
   1195 pipe_stat(struct file *fp, struct stat *ub, struct lwp *l)
   1196 {
   1197 	struct pipe *pipe = (struct pipe *)fp->f_data;
   1198 
   1199 	memset((void *)ub, 0, sizeof(*ub));
   1200 	ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
   1201 	ub->st_blksize = pipe->pipe_buffer.size;
   1202 	if (ub->st_blksize == 0 && pipe->pipe_peer)
   1203 		ub->st_blksize = pipe->pipe_peer->pipe_buffer.size;
   1204 	ub->st_size = pipe->pipe_buffer.cnt;
   1205 	ub->st_blocks = (ub->st_size) ? 1 : 0;
   1206 	TIMEVAL_TO_TIMESPEC(&pipe->pipe_atime, &ub->st_atimespec);
   1207 	TIMEVAL_TO_TIMESPEC(&pipe->pipe_mtime, &ub->st_mtimespec);
   1208 	TIMEVAL_TO_TIMESPEC(&pipe->pipe_ctime, &ub->st_ctimespec);
   1209 	ub->st_uid = kauth_cred_geteuid(fp->f_cred);
   1210 	ub->st_gid = kauth_cred_getegid(fp->f_cred);
   1211 
   1212 	/*
   1213 	 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
   1214 	 * XXX (st_dev, st_ino) should be unique.
   1215 	 */
   1216 	return (0);
   1217 }
   1218 
   1219 /* ARGSUSED */
   1220 static int
   1221 pipe_close(struct file *fp, struct lwp *l)
   1222 {
   1223 	struct pipe *pipe = (struct pipe *)fp->f_data;
   1224 
   1225 	fp->f_data = NULL;
   1226 	pipeclose(fp, pipe);
   1227 	return (0);
   1228 }
   1229 
   1230 static void
   1231 pipe_free_kmem(struct pipe *pipe)
   1232 {
   1233 
   1234 	if (pipe->pipe_buffer.buffer != NULL) {
   1235 		if (pipe->pipe_buffer.size > PIPE_SIZE)
   1236 			atomic_dec_uint(&nbigpipe);
   1237 		uvm_km_free(kernel_map,
   1238 			(vaddr_t)pipe->pipe_buffer.buffer,
   1239 			pipe->pipe_buffer.size, UVM_KMF_PAGEABLE);
   1240 		atomic_add_int(&amountpipekva, -pipe->pipe_buffer.size);
   1241 		pipe->pipe_buffer.buffer = NULL;
   1242 	}
   1243 #ifndef PIPE_NODIRECT
   1244 	if (pipe->pipe_map.kva != 0) {
   1245 		pipe_loan_free(pipe);
   1246 		pipe->pipe_map.cnt = 0;
   1247 		pipe->pipe_map.kva = 0;
   1248 		pipe->pipe_map.pos = 0;
   1249 		pipe->pipe_map.npages = 0;
   1250 	}
   1251 #endif /* !PIPE_NODIRECT */
   1252 }
   1253 
   1254 /*
   1255  * shutdown the pipe
   1256  */
   1257 static void
   1258 pipeclose(struct file *fp, struct pipe *pipe)
   1259 {
   1260 	struct pipe_mutex *mutex;
   1261 	kmutex_t *lock;
   1262 	struct pipe *ppipe;
   1263 	u_int refcnt;
   1264 
   1265 	if (pipe == NULL)
   1266 		return;
   1267 	lock = pipe->pipe_lock;
   1268 	mutex_enter(lock);
   1269 	pipeselwakeup(pipe, pipe, POLL_HUP);
   1270 
   1271 	/*
   1272 	 * If the other side is blocked, wake it up saying that
   1273 	 * we want to close it down.
   1274 	 */
   1275 	pipe->pipe_state |= PIPE_EOF;
   1276 	if (pipe->pipe_busy) {
   1277 		while (pipe->pipe_busy) {
   1278 			cv_broadcast(&pipe->pipe_wcv);
   1279 			cv_wait_sig(&pipe->pipe_draincv, lock);
   1280 		}
   1281 	}
   1282 
   1283 	/*
   1284 	 * Disconnect from peer
   1285 	 */
   1286 	if ((ppipe = pipe->pipe_peer) != NULL) {
   1287 		pipeselwakeup(ppipe, ppipe, POLL_HUP);
   1288 		ppipe->pipe_state |= PIPE_EOF;
   1289 		cv_broadcast(&ppipe->pipe_rcv);
   1290 		ppipe->pipe_peer = NULL;
   1291 	}
   1292 
   1293 	KASSERT((pipe->pipe_state & PIPE_LOCKFL) == 0);
   1294 
   1295 	mutex = (struct pipe_mutex *)lock;
   1296 	refcnt = --(mutex->pm_refcnt);
   1297 	KASSERT(refcnt == 0 || refcnt == 1);
   1298 	mutex_exit(lock);
   1299 
   1300 	/*
   1301 	 * free resources
   1302 	 */
   1303 	pipe_free_kmem(pipe);
   1304 	cv_destroy(&pipe->pipe_rcv);
   1305 	cv_destroy(&pipe->pipe_wcv);
   1306 	cv_destroy(&pipe->pipe_draincv);
   1307 	cv_destroy(&pipe->pipe_lkcv);
   1308 	seldestroy(&pipe->pipe_sel);
   1309 	pool_cache_put(pipe_cache, pipe);
   1310 	if (refcnt == 0)
   1311 		pool_cache_put(pipe_mutex_cache, mutex);
   1312 }
   1313 
   1314 static void
   1315 filt_pipedetach(struct knote *kn)
   1316 {
   1317 	struct pipe *pipe;
   1318 	kmutex_t *lock;
   1319 
   1320 	pipe = (struct pipe *)kn->kn_fp->f_data;
   1321 	lock = pipe->pipe_lock;
   1322 
   1323 	mutex_enter(lock);
   1324 
   1325 	switch(kn->kn_filter) {
   1326 	case EVFILT_WRITE:
   1327 		/* need the peer structure, not our own */
   1328 		pipe = pipe->pipe_peer;
   1329 
   1330 		/* if reader end already closed, just return */
   1331 		if (pipe == NULL) {
   1332 			mutex_exit(lock);
   1333 			return;
   1334 		}
   1335 
   1336 		break;
   1337 	default:
   1338 		/* nothing to do */
   1339 		break;
   1340 	}
   1341 
   1342 #ifdef DIAGNOSTIC
   1343 	if (kn->kn_hook != pipe)
   1344 		panic("filt_pipedetach: inconsistent knote");
   1345 #endif
   1346 
   1347 	SLIST_REMOVE(&pipe->pipe_sel.sel_klist, kn, knote, kn_selnext);
   1348 	mutex_exit(lock);
   1349 }
   1350 
   1351 /*ARGSUSED*/
   1352 static int
   1353 filt_piperead(struct knote *kn, long hint)
   1354 {
   1355 	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
   1356 	struct pipe *wpipe;
   1357 
   1358 	if ((hint & NOTE_SUBMIT) == 0) {
   1359 		mutex_enter(rpipe->pipe_lock);
   1360 	}
   1361 	wpipe = rpipe->pipe_peer;
   1362 	kn->kn_data = rpipe->pipe_buffer.cnt;
   1363 
   1364 	if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
   1365 		kn->kn_data = rpipe->pipe_map.cnt;
   1366 
   1367 	if ((rpipe->pipe_state & PIPE_EOF) ||
   1368 	    (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
   1369 		kn->kn_flags |= EV_EOF;
   1370 		if ((hint & NOTE_SUBMIT) == 0) {
   1371 			mutex_exit(rpipe->pipe_lock);
   1372 		}
   1373 		return (1);
   1374 	}
   1375 
   1376 	if ((hint & NOTE_SUBMIT) == 0) {
   1377 		mutex_exit(rpipe->pipe_lock);
   1378 	}
   1379 	return (kn->kn_data > 0);
   1380 }
   1381 
   1382 /*ARGSUSED*/
   1383 static int
   1384 filt_pipewrite(struct knote *kn, long hint)
   1385 {
   1386 	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
   1387 	struct pipe *wpipe;
   1388 
   1389 	if ((hint & NOTE_SUBMIT) == 0) {
   1390 		mutex_enter(rpipe->pipe_lock);
   1391 	}
   1392 	wpipe = rpipe->pipe_peer;
   1393 
   1394 	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
   1395 		kn->kn_data = 0;
   1396 		kn->kn_flags |= EV_EOF;
   1397 		if ((hint & NOTE_SUBMIT) == 0) {
   1398 			mutex_exit(rpipe->pipe_lock);
   1399 		}
   1400 		return (1);
   1401 	}
   1402 	kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
   1403 	if (wpipe->pipe_state & PIPE_DIRECTW)
   1404 		kn->kn_data = 0;
   1405 
   1406 	if ((hint & NOTE_SUBMIT) == 0) {
   1407 		mutex_exit(rpipe->pipe_lock);
   1408 	}
   1409 	return (kn->kn_data >= PIPE_BUF);
   1410 }
   1411 
   1412 static const struct filterops pipe_rfiltops =
   1413 	{ 1, NULL, filt_pipedetach, filt_piperead };
   1414 static const struct filterops pipe_wfiltops =
   1415 	{ 1, NULL, filt_pipedetach, filt_pipewrite };
   1416 
   1417 /*ARGSUSED*/
   1418 static int
   1419 pipe_kqfilter(struct file *fp, struct knote *kn)
   1420 {
   1421 	struct pipe *pipe;
   1422 	kmutex_t *lock;
   1423 
   1424 	pipe = (struct pipe *)kn->kn_fp->f_data;
   1425 	lock = pipe->pipe_lock;
   1426 
   1427 	mutex_enter(lock);
   1428 
   1429 	switch (kn->kn_filter) {
   1430 	case EVFILT_READ:
   1431 		kn->kn_fop = &pipe_rfiltops;
   1432 		break;
   1433 	case EVFILT_WRITE:
   1434 		kn->kn_fop = &pipe_wfiltops;
   1435 		pipe = pipe->pipe_peer;
   1436 		if (pipe == NULL) {
   1437 			/* other end of pipe has been closed */
   1438 			mutex_exit(lock);
   1439 			return (EBADF);
   1440 		}
   1441 		break;
   1442 	default:
   1443 		mutex_exit(lock);
   1444 		return (EINVAL);
   1445 	}
   1446 
   1447 	kn->kn_hook = pipe;
   1448 	SLIST_INSERT_HEAD(&pipe->pipe_sel.sel_klist, kn, kn_selnext);
   1449 	mutex_exit(lock);
   1450 
   1451 	return (0);
   1452 }
   1453 
   1454 /*
   1455  * Handle pipe sysctls.
   1456  */
   1457 SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup")
   1458 {
   1459 
   1460 	sysctl_createv(clog, 0, NULL, NULL,
   1461 		       CTLFLAG_PERMANENT,
   1462 		       CTLTYPE_NODE, "kern", NULL,
   1463 		       NULL, 0, NULL, 0,
   1464 		       CTL_KERN, CTL_EOL);
   1465 	sysctl_createv(clog, 0, NULL, NULL,
   1466 		       CTLFLAG_PERMANENT,
   1467 		       CTLTYPE_NODE, "pipe",
   1468 		       SYSCTL_DESCR("Pipe settings"),
   1469 		       NULL, 0, NULL, 0,
   1470 		       CTL_KERN, KERN_PIPE, CTL_EOL);
   1471 
   1472 	sysctl_createv(clog, 0, NULL, NULL,
   1473 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1474 		       CTLTYPE_INT, "maxkvasz",
   1475 		       SYSCTL_DESCR("Maximum amount of kernel memory to be "
   1476 				    "used for pipes"),
   1477 		       NULL, 0, &maxpipekva, 0,
   1478 		       CTL_KERN, KERN_PIPE, KERN_PIPE_MAXKVASZ, CTL_EOL);
   1479 	sysctl_createv(clog, 0, NULL, NULL,
   1480 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1481 		       CTLTYPE_INT, "maxloankvasz",
   1482 		       SYSCTL_DESCR("Limit for direct transfers via page loan"),
   1483 		       NULL, 0, &limitpipekva, 0,
   1484 		       CTL_KERN, KERN_PIPE, KERN_PIPE_LIMITKVA, CTL_EOL);
   1485 	sysctl_createv(clog, 0, NULL, NULL,
   1486 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1487 		       CTLTYPE_INT, "maxbigpipes",
   1488 		       SYSCTL_DESCR("Maximum number of \"big\" pipes"),
   1489 		       NULL, 0, &maxbigpipes, 0,
   1490 		       CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL);
   1491 	sysctl_createv(clog, 0, NULL, NULL,
   1492 		       CTLFLAG_PERMANENT,
   1493 		       CTLTYPE_INT, "nbigpipes",
   1494 		       SYSCTL_DESCR("Number of \"big\" pipes"),
   1495 		       NULL, 0, &nbigpipe, 0,
   1496 		       CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL);
   1497 	sysctl_createv(clog, 0, NULL, NULL,
   1498 		       CTLFLAG_PERMANENT,
   1499 		       CTLTYPE_INT, "kvasize",
   1500 		       SYSCTL_DESCR("Amount of kernel memory consumed by pipe "
   1501 				    "buffers"),
   1502 		       NULL, 0, &amountpipekva, 0,
   1503 		       CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL);
   1504 }
   1505