sys_pipe.c revision 1.99 1 /* $NetBSD: sys_pipe.c,v 1.99 2008/03/21 21:55:00 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2003, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1996 John S. Dyson
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice immediately at the beginning of the file, without modification,
48 * this list of conditions, and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. Absolutely no warranty of function or purpose is made by the author
53 * John S. Dyson.
54 * 4. Modifications may be freely made to this file if the above conditions
55 * are met.
56 *
57 * $FreeBSD: src/sys/kern/sys_pipe.c,v 1.95 2002/03/09 22:06:31 alfred Exp $
58 */
59
60 /*
61 * This file contains a high-performance replacement for the socket-based
62 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support
63 * all features of sockets, but does do everything that pipes normally
64 * do.
65 *
66 * Adaption for NetBSD UVM, including uvm_loan() based direct write, was
67 * written by Jaromir Dolecek.
68 */
69
70 /*
71 * This code has two modes of operation, a small write mode and a large
72 * write mode. The small write mode acts like conventional pipes with
73 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
74 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
75 * and PIPE_SIZE in size it is mapped read-only into the kernel address space
76 * using the UVM page loan facility from where the receiving process can copy
77 * the data directly from the pages in the sending process.
78 *
79 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
80 * happen for small transfers so that the system will not spend all of
81 * its time context switching. PIPE_SIZE is constrained by the
82 * amount of kernel virtual memory.
83 */
84
85 #include <sys/cdefs.h>
86 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.99 2008/03/21 21:55:00 ad Exp $");
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/proc.h>
91 #include <sys/fcntl.h>
92 #include <sys/file.h>
93 #include <sys/filedesc.h>
94 #include <sys/filio.h>
95 #include <sys/kernel.h>
96 #include <sys/ttycom.h>
97 #include <sys/stat.h>
98 #include <sys/malloc.h>
99 #include <sys/poll.h>
100 #include <sys/signalvar.h>
101 #include <sys/vnode.h>
102 #include <sys/uio.h>
103 #include <sys/select.h>
104 #include <sys/mount.h>
105 #include <sys/syscallargs.h>
106 #include <sys/sysctl.h>
107 #include <sys/kauth.h>
108 #include <sys/atomic.h>
109 #include <sys/pipe.h>
110
111 #include <uvm/uvm.h>
112
113 /*
114 * Use this define if you want to disable *fancy* VM things. Expect an
115 * approx 30% decrease in transfer rate.
116 */
117 /* #define PIPE_NODIRECT */
118
119 /*
120 * interfaces to the outside world
121 */
122 static int pipe_read(struct file *fp, off_t *offset, struct uio *uio,
123 kauth_cred_t cred, int flags);
124 static int pipe_write(struct file *fp, off_t *offset, struct uio *uio,
125 kauth_cred_t cred, int flags);
126 static int pipe_close(struct file *fp);
127 static int pipe_poll(struct file *fp, int events);
128 static int pipe_kqfilter(struct file *fp, struct knote *kn);
129 static int pipe_stat(struct file *fp, struct stat *sb);
130 static int pipe_ioctl(struct file *fp, u_long cmd, void *data);
131
132 static const struct fileops pipeops = {
133 pipe_read, pipe_write, pipe_ioctl, fnullop_fcntl, pipe_poll,
134 pipe_stat, pipe_close, pipe_kqfilter
135 };
136
137 /*
138 * Single mutex shared between both ends of the pipe.
139 */
140
141 struct pipe_mutex {
142 kmutex_t pm_mutex;
143 u_int pm_refcnt;
144 };
145
146 /*
147 * Default pipe buffer size(s), this can be kind-of large now because pipe
148 * space is pageable. The pipe code will try to maintain locality of
149 * reference for performance reasons, so small amounts of outstanding I/O
150 * will not wipe the cache.
151 */
152 #define MINPIPESIZE (PIPE_SIZE/3)
153 #define MAXPIPESIZE (2*PIPE_SIZE/3)
154
155 /*
156 * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
157 * is there so that on large systems, we don't exhaust it.
158 */
159 #define MAXPIPEKVA (8*1024*1024)
160 static u_int maxpipekva = MAXPIPEKVA;
161
162 /*
163 * Limit for direct transfers, we cannot, of course limit
164 * the amount of kva for pipes in general though.
165 */
166 #define LIMITPIPEKVA (16*1024*1024)
167 static u_int limitpipekva = LIMITPIPEKVA;
168
169 /*
170 * Limit the number of "big" pipes
171 */
172 #define LIMITBIGPIPES 32
173 static u_int maxbigpipes = LIMITBIGPIPES;
174 static u_int nbigpipe = 0;
175
176 /*
177 * Amount of KVA consumed by pipe buffers.
178 */
179 static u_int amountpipekva = 0;
180
181 MALLOC_DEFINE(M_PIPE, "pipe", "Pipe structures");
182
183 static void pipeclose(struct file *fp, struct pipe *pipe);
184 static void pipe_free_kmem(struct pipe *pipe);
185 static int pipe_create(struct pipe **pipep, int allockva, struct pipe_mutex *);
186 static int pipelock(struct pipe *pipe, int catch);
187 static inline void pipeunlock(struct pipe *pipe);
188 static void pipeselwakeup(struct pipe *pipe, struct pipe *sigp, int code);
189 #ifndef PIPE_NODIRECT
190 static int pipe_direct_write(struct file *fp, struct pipe *wpipe,
191 struct uio *uio);
192 #endif
193 static int pipespace(struct pipe *pipe, int size);
194
195 #ifndef PIPE_NODIRECT
196 static int pipe_loan_alloc(struct pipe *, int);
197 static void pipe_loan_free(struct pipe *);
198 #endif /* PIPE_NODIRECT */
199
200 static int pipe_mutex_ctor(void *, void *, int);
201 static void pipe_mutex_dtor(void *, void *);
202
203 static pool_cache_t pipe_cache;
204 static pool_cache_t pipe_mutex_cache;
205
206 void
207 pipe_init(void)
208 {
209 size_t size;
210
211 pipe_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "pipepl",
212 NULL, IPL_NONE, NULL, NULL, NULL);
213 KASSERT(pipe_cache != NULL);
214
215 size = (sizeof(struct pipe_mutex) + (CACHE_LINE_SIZE - 1)) &
216 (CACHE_LINE_SIZE - 1);
217 pipe_mutex_cache = pool_cache_init(size, CACHE_LINE_SIZE,
218 0, 0, "pipemtxpl", NULL, IPL_NONE, pipe_mutex_ctor,
219 pipe_mutex_dtor, NULL);
220 KASSERT(pipe_cache != NULL);
221 }
222
223 static int
224 pipe_mutex_ctor(void *arg, void *obj, int flag)
225 {
226 struct pipe_mutex *pm = obj;
227
228 mutex_init(&pm->pm_mutex, MUTEX_DEFAULT, IPL_NONE);
229 pm->pm_refcnt = 0;
230
231 return 0;
232 }
233
234 static void
235 pipe_mutex_dtor(void *arg, void *obj)
236 {
237 struct pipe_mutex *pm = obj;
238
239 KASSERT(pm->pm_refcnt == 0);
240
241 mutex_destroy(&pm->pm_mutex);
242 }
243
244 /*
245 * The pipe system call for the DTYPE_PIPE type of pipes
246 */
247
248 /* ARGSUSED */
249 int
250 sys_pipe(struct lwp *l, const void *v, register_t *retval)
251 {
252 struct file *rf, *wf;
253 struct pipe *rpipe, *wpipe;
254 struct pipe_mutex *mutex;
255 int fd, error;
256 proc_t *p;
257
258 p = curproc;
259 rpipe = wpipe = NULL;
260 mutex = pool_cache_get(pipe_mutex_cache, PR_WAITOK);
261 if (mutex == NULL)
262 return (ENOMEM);
263 if (pipe_create(&rpipe, 1, mutex) || pipe_create(&wpipe, 0, mutex)) {
264 pipeclose(NULL, rpipe);
265 pipeclose(NULL, wpipe);
266 return (ENFILE);
267 }
268
269 error = fd_allocfile(&rf, &fd);
270 if (error)
271 goto free2;
272 retval[0] = fd;
273 rf->f_flag = FREAD;
274 rf->f_type = DTYPE_PIPE;
275 rf->f_data = (void *)rpipe;
276 rf->f_ops = &pipeops;
277
278 error = fd_allocfile(&wf, &fd);
279 if (error)
280 goto free3;
281 retval[1] = fd;
282 wf->f_flag = FWRITE;
283 wf->f_type = DTYPE_PIPE;
284 wf->f_data = (void *)wpipe;
285 wf->f_ops = &pipeops;
286
287 rpipe->pipe_peer = wpipe;
288 wpipe->pipe_peer = rpipe;
289
290 fd_affix(p, rf, (int)retval[0]);
291 fd_affix(p, wf, (int)retval[1]);
292 return (0);
293 free3:
294 fd_abort(p, rf, (int)retval[0]);
295 free2:
296 pipeclose(NULL, wpipe);
297 pipeclose(NULL, rpipe);
298
299 return (error);
300 }
301
302 /*
303 * Allocate kva for pipe circular buffer, the space is pageable
304 * This routine will 'realloc' the size of a pipe safely, if it fails
305 * it will retain the old buffer.
306 * If it fails it will return ENOMEM.
307 */
308 static int
309 pipespace(struct pipe *pipe, int size)
310 {
311 void *buffer;
312 /*
313 * Allocate pageable virtual address space. Physical memory is
314 * allocated on demand.
315 */
316 buffer = (void *) uvm_km_alloc(kernel_map, round_page(size), 0,
317 UVM_KMF_PAGEABLE);
318 if (buffer == NULL)
319 return (ENOMEM);
320
321 /* free old resources if we're resizing */
322 pipe_free_kmem(pipe);
323 pipe->pipe_buffer.buffer = buffer;
324 pipe->pipe_buffer.size = size;
325 pipe->pipe_buffer.in = 0;
326 pipe->pipe_buffer.out = 0;
327 pipe->pipe_buffer.cnt = 0;
328 atomic_add_int(&amountpipekva, pipe->pipe_buffer.size);
329 return (0);
330 }
331
332 /*
333 * Initialize and allocate VM and memory for pipe.
334 */
335 static int
336 pipe_create(struct pipe **pipep, int allockva, struct pipe_mutex *mutex)
337 {
338 struct pipe *pipe;
339 int error;
340
341 pipe = *pipep = pool_cache_get(pipe_cache, PR_WAITOK);
342 mutex->pm_refcnt++;
343
344 /* Initialize */
345 memset(pipe, 0, sizeof(struct pipe));
346 pipe->pipe_state = PIPE_SIGNALR;
347
348 getmicrotime(&pipe->pipe_ctime);
349 pipe->pipe_atime = pipe->pipe_ctime;
350 pipe->pipe_mtime = pipe->pipe_ctime;
351 pipe->pipe_lock = &mutex->pm_mutex;
352 cv_init(&pipe->pipe_rcv, "piperd");
353 cv_init(&pipe->pipe_wcv, "pipewr");
354 cv_init(&pipe->pipe_draincv, "pipedrain");
355 cv_init(&pipe->pipe_lkcv, "pipelk");
356 selinit(&pipe->pipe_sel);
357
358 if (allockva && (error = pipespace(pipe, PIPE_SIZE)))
359 return (error);
360
361 return (0);
362 }
363
364
365 /*
366 * Lock a pipe for I/O, blocking other access
367 * Called with pipe spin lock held.
368 * Return with pipe spin lock released on success.
369 */
370 static int
371 pipelock(struct pipe *pipe, int catch)
372 {
373 int error;
374
375 KASSERT(mutex_owned(pipe->pipe_lock));
376
377 while (pipe->pipe_state & PIPE_LOCKFL) {
378 pipe->pipe_state |= PIPE_LWANT;
379 if (catch) {
380 error = cv_wait_sig(&pipe->pipe_lkcv, pipe->pipe_lock);
381 if (error != 0)
382 return error;
383 } else
384 cv_wait(&pipe->pipe_lkcv, pipe->pipe_lock);
385 }
386
387 pipe->pipe_state |= PIPE_LOCKFL;
388
389 return 0;
390 }
391
392 /*
393 * unlock a pipe I/O lock
394 */
395 static inline void
396 pipeunlock(struct pipe *pipe)
397 {
398
399 KASSERT(pipe->pipe_state & PIPE_LOCKFL);
400
401 pipe->pipe_state &= ~PIPE_LOCKFL;
402 if (pipe->pipe_state & PIPE_LWANT) {
403 pipe->pipe_state &= ~PIPE_LWANT;
404 cv_broadcast(&pipe->pipe_lkcv);
405 }
406 }
407
408 /*
409 * Select/poll wakup. This also sends SIGIO to peer connected to
410 * 'sigpipe' side of pipe.
411 */
412 static void
413 pipeselwakeup(struct pipe *selp, struct pipe *sigp, int code)
414 {
415 int band;
416
417 switch (code) {
418 case POLL_IN:
419 band = POLLIN|POLLRDNORM;
420 break;
421 case POLL_OUT:
422 band = POLLOUT|POLLWRNORM;
423 break;
424 case POLL_HUP:
425 band = POLLHUP;
426 break;
427 #if POLL_HUP != POLL_ERR
428 case POLL_ERR:
429 band = POLLERR;
430 break;
431 #endif
432 default:
433 band = 0;
434 #ifdef DIAGNOSTIC
435 printf("bad siginfo code %d in pipe notification.\n", code);
436 #endif
437 break;
438 }
439
440 selnotify(&selp->pipe_sel, band, NOTE_SUBMIT);
441
442 if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0)
443 return;
444
445 fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp);
446 }
447
448 /* ARGSUSED */
449 static int
450 pipe_read(struct file *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
451 int flags)
452 {
453 struct pipe *rpipe = (struct pipe *) fp->f_data;
454 struct pipebuf *bp = &rpipe->pipe_buffer;
455 kmutex_t *lock = rpipe->pipe_lock;
456 int error;
457 size_t nread = 0;
458 size_t size;
459 size_t ocnt;
460
461 mutex_enter(lock);
462 ++rpipe->pipe_busy;
463 ocnt = bp->cnt;
464
465 again:
466 error = pipelock(rpipe, 1);
467 if (error)
468 goto unlocked_error;
469
470 while (uio->uio_resid) {
471 /*
472 * normal pipe buffer receive
473 */
474 if (bp->cnt > 0) {
475 size = bp->size - bp->out;
476 if (size > bp->cnt)
477 size = bp->cnt;
478 if (size > uio->uio_resid)
479 size = uio->uio_resid;
480
481 mutex_exit(lock);
482 error = uiomove((char *)bp->buffer + bp->out, size, uio);
483 mutex_enter(lock);
484 if (error)
485 break;
486
487 bp->out += size;
488 if (bp->out >= bp->size)
489 bp->out = 0;
490
491 bp->cnt -= size;
492
493 /*
494 * If there is no more to read in the pipe, reset
495 * its pointers to the beginning. This improves
496 * cache hit stats.
497 */
498 if (bp->cnt == 0) {
499 bp->in = 0;
500 bp->out = 0;
501 }
502 nread += size;
503 continue;
504 }
505
506 #ifndef PIPE_NODIRECT
507 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) {
508 /*
509 * Direct copy, bypassing a kernel buffer.
510 */
511 void * va;
512
513 KASSERT(rpipe->pipe_state & PIPE_DIRECTW);
514
515 size = rpipe->pipe_map.cnt;
516 if (size > uio->uio_resid)
517 size = uio->uio_resid;
518
519 va = (char *)rpipe->pipe_map.kva + rpipe->pipe_map.pos;
520 mutex_exit(lock);
521 error = uiomove(va, size, uio);
522 mutex_enter(lock);
523 if (error)
524 break;
525 nread += size;
526 rpipe->pipe_map.pos += size;
527 rpipe->pipe_map.cnt -= size;
528 if (rpipe->pipe_map.cnt == 0) {
529 rpipe->pipe_state &= ~PIPE_DIRECTR;
530 cv_broadcast(&rpipe->pipe_wcv);
531 }
532 continue;
533 }
534 #endif
535 /*
536 * Break if some data was read.
537 */
538 if (nread > 0)
539 break;
540
541 /*
542 * detect EOF condition
543 * read returns 0 on EOF, no need to set error
544 */
545 if (rpipe->pipe_state & PIPE_EOF)
546 break;
547
548 /*
549 * don't block on non-blocking I/O
550 */
551 if (fp->f_flag & FNONBLOCK) {
552 error = EAGAIN;
553 break;
554 }
555
556 /*
557 * Unlock the pipe buffer for our remaining processing.
558 * We will either break out with an error or we will
559 * sleep and relock to loop.
560 */
561 pipeunlock(rpipe);
562
563 /*
564 * Re-check to see if more direct writes are pending.
565 */
566 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0)
567 goto again;
568
569 /*
570 * We want to read more, wake up select/poll.
571 */
572 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_IN);
573
574 /*
575 * If the "write-side" is blocked, wake it up now.
576 */
577 cv_broadcast(&rpipe->pipe_wcv);
578
579 /* Now wait until the pipe is filled */
580 error = cv_wait_sig(&rpipe->pipe_rcv, lock);
581 if (error != 0)
582 goto unlocked_error;
583 goto again;
584 }
585
586 if (error == 0)
587 getmicrotime(&rpipe->pipe_atime);
588 pipeunlock(rpipe);
589
590 unlocked_error:
591 --rpipe->pipe_busy;
592 if (rpipe->pipe_busy == 0) {
593 cv_broadcast(&rpipe->pipe_draincv);
594 }
595 if (bp->cnt < MINPIPESIZE) {
596 cv_broadcast(&rpipe->pipe_wcv);
597 }
598
599 /*
600 * If anything was read off the buffer, signal to the writer it's
601 * possible to write more data. Also send signal if we are here for the
602 * first time after last write.
603 */
604 if ((bp->size - bp->cnt) >= PIPE_BUF
605 && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
606 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
607 rpipe->pipe_state &= ~PIPE_SIGNALR;
608 }
609
610 mutex_exit(lock);
611 return (error);
612 }
613
614 #ifndef PIPE_NODIRECT
615 /*
616 * Allocate structure for loan transfer.
617 */
618 static int
619 pipe_loan_alloc(struct pipe *wpipe, int npages)
620 {
621 vsize_t len;
622
623 len = (vsize_t)npages << PAGE_SHIFT;
624 atomic_add_int(&amountpipekva, len);
625 wpipe->pipe_map.kva = uvm_km_alloc(kernel_map, len, 0,
626 UVM_KMF_VAONLY | UVM_KMF_WAITVA);
627 if (wpipe->pipe_map.kva == 0) {
628 atomic_add_int(&amountpipekva, -len);
629 return (ENOMEM);
630 }
631
632 wpipe->pipe_map.npages = npages;
633 wpipe->pipe_map.pgs = malloc(npages * sizeof(struct vm_page *), M_PIPE,
634 M_WAITOK);
635 return (0);
636 }
637
638 /*
639 * Free resources allocated for loan transfer.
640 */
641 static void
642 pipe_loan_free(struct pipe *wpipe)
643 {
644 vsize_t len;
645
646 len = (vsize_t)wpipe->pipe_map.npages << PAGE_SHIFT;
647 uvm_km_free(kernel_map, wpipe->pipe_map.kva, len, UVM_KMF_VAONLY);
648 wpipe->pipe_map.kva = 0;
649 atomic_add_int(&amountpipekva, -len);
650 free(wpipe->pipe_map.pgs, M_PIPE);
651 wpipe->pipe_map.pgs = NULL;
652 }
653
654 /*
655 * NetBSD direct write, using uvm_loan() mechanism.
656 * This implements the pipe buffer write mechanism. Note that only
657 * a direct write OR a normal pipe write can be pending at any given time.
658 * If there are any characters in the pipe buffer, the direct write will
659 * be deferred until the receiving process grabs all of the bytes from
660 * the pipe buffer. Then the direct mapping write is set-up.
661 *
662 * Called with the long-term pipe lock held.
663 */
664 static int
665 pipe_direct_write(struct file *fp, struct pipe *wpipe, struct uio *uio)
666 {
667 int error, npages, j;
668 struct vm_page **pgs;
669 vaddr_t bbase, kva, base, bend;
670 vsize_t blen, bcnt;
671 voff_t bpos;
672 kmutex_t *lock = wpipe->pipe_lock;
673
674 KASSERT(mutex_owned(wpipe->pipe_lock));
675 KASSERT(wpipe->pipe_map.cnt == 0);
676
677 mutex_exit(lock);
678
679 /*
680 * Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers
681 * not aligned to PAGE_SIZE.
682 */
683 bbase = (vaddr_t)uio->uio_iov->iov_base;
684 base = trunc_page(bbase);
685 bend = round_page(bbase + uio->uio_iov->iov_len);
686 blen = bend - base;
687 bpos = bbase - base;
688
689 if (blen > PIPE_DIRECT_CHUNK) {
690 blen = PIPE_DIRECT_CHUNK;
691 bend = base + blen;
692 bcnt = PIPE_DIRECT_CHUNK - bpos;
693 } else {
694 bcnt = uio->uio_iov->iov_len;
695 }
696 npages = blen >> PAGE_SHIFT;
697
698 /*
699 * Free the old kva if we need more pages than we have
700 * allocated.
701 */
702 if (wpipe->pipe_map.kva != 0 && npages > wpipe->pipe_map.npages)
703 pipe_loan_free(wpipe);
704
705 /* Allocate new kva. */
706 if (wpipe->pipe_map.kva == 0) {
707 error = pipe_loan_alloc(wpipe, npages);
708 if (error) {
709 mutex_enter(lock);
710 return (error);
711 }
712 }
713
714 /* Loan the write buffer memory from writer process */
715 pgs = wpipe->pipe_map.pgs;
716 error = uvm_loan(&uio->uio_vmspace->vm_map, base, blen,
717 pgs, UVM_LOAN_TOPAGE);
718 if (error) {
719 pipe_loan_free(wpipe);
720 mutex_enter(lock);
721 return (ENOMEM); /* so that caller fallback to ordinary write */
722 }
723
724 /* Enter the loaned pages to kva */
725 kva = wpipe->pipe_map.kva;
726 for (j = 0; j < npages; j++, kva += PAGE_SIZE) {
727 pmap_kenter_pa(kva, VM_PAGE_TO_PHYS(pgs[j]), VM_PROT_READ);
728 }
729 pmap_update(pmap_kernel());
730
731 /* Now we can put the pipe in direct write mode */
732 wpipe->pipe_map.pos = bpos;
733 wpipe->pipe_map.cnt = bcnt;
734
735 /*
736 * But before we can let someone do a direct read, we
737 * have to wait until the pipe is drained. Release the
738 * pipe lock while we wait.
739 */
740 mutex_enter(lock);
741 wpipe->pipe_state |= PIPE_DIRECTW;
742 pipeunlock(wpipe);
743
744 while (error == 0 && wpipe->pipe_buffer.cnt > 0) {
745 cv_broadcast(&wpipe->pipe_rcv);
746 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
747 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
748 error = EPIPE;
749 }
750
751 /* Pipe is drained; next read will off the direct buffer */
752 wpipe->pipe_state |= PIPE_DIRECTR;
753
754 /* Wait until the reader is done */
755 while (error == 0 && (wpipe->pipe_state & PIPE_DIRECTR)) {
756 cv_broadcast(&wpipe->pipe_rcv);
757 pipeselwakeup(wpipe, wpipe, POLL_IN);
758 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
759 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
760 error = EPIPE;
761 }
762
763 /* Take pipe out of direct write mode */
764 wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTR);
765
766 /* Acquire the pipe lock and cleanup */
767 (void)pipelock(wpipe, 0);
768 mutex_exit(lock);
769
770 if (pgs != NULL) {
771 pmap_kremove(wpipe->pipe_map.kva, blen);
772 pmap_update(pmap_kernel());
773 uvm_unloan(pgs, npages, UVM_LOAN_TOPAGE);
774 }
775 if (error || amountpipekva > maxpipekva)
776 pipe_loan_free(wpipe);
777
778 mutex_enter(lock);
779 if (error) {
780 pipeselwakeup(wpipe, wpipe, POLL_ERR);
781
782 /*
783 * If nothing was read from what we offered, return error
784 * straight on. Otherwise update uio resid first. Caller
785 * will deal with the error condition, returning short
786 * write, error, or restarting the write(2) as appropriate.
787 */
788 if (wpipe->pipe_map.cnt == bcnt) {
789 wpipe->pipe_map.cnt = 0;
790 cv_broadcast(&wpipe->pipe_wcv);
791 return (error);
792 }
793
794 bcnt -= wpipe->pipe_map.cnt;
795 }
796
797 uio->uio_resid -= bcnt;
798 /* uio_offset not updated, not set/used for write(2) */
799 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt;
800 uio->uio_iov->iov_len -= bcnt;
801 if (uio->uio_iov->iov_len == 0) {
802 uio->uio_iov++;
803 uio->uio_iovcnt--;
804 }
805
806 wpipe->pipe_map.cnt = 0;
807 return (error);
808 }
809 #endif /* !PIPE_NODIRECT */
810
811 static int
812 pipe_write(struct file *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
813 int flags)
814 {
815 struct pipe *wpipe, *rpipe;
816 struct pipebuf *bp;
817 kmutex_t *lock;
818 int error;
819
820 /* We want to write to our peer */
821 rpipe = (struct pipe *) fp->f_data;
822 lock = rpipe->pipe_lock;
823 error = 0;
824
825 mutex_enter(lock);
826 wpipe = rpipe->pipe_peer;
827
828 /*
829 * Detect loss of pipe read side, issue SIGPIPE if lost.
830 */
831 if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) != 0) {
832 mutex_exit(lock);
833 return EPIPE;
834 }
835 ++wpipe->pipe_busy;
836
837 /* Aquire the long-term pipe lock */
838 if ((error = pipelock(wpipe, 1)) != 0) {
839 --wpipe->pipe_busy;
840 if (wpipe->pipe_busy == 0) {
841 cv_broadcast(&wpipe->pipe_draincv);
842 }
843 mutex_exit(lock);
844 return (error);
845 }
846
847 bp = &wpipe->pipe_buffer;
848
849 /*
850 * If it is advantageous to resize the pipe buffer, do so.
851 */
852 if ((uio->uio_resid > PIPE_SIZE) &&
853 (nbigpipe < maxbigpipes) &&
854 #ifndef PIPE_NODIRECT
855 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
856 #endif
857 (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) {
858
859 if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
860 atomic_inc_uint(&nbigpipe);
861 }
862
863 while (uio->uio_resid) {
864 size_t space;
865
866 #ifndef PIPE_NODIRECT
867 /*
868 * Pipe buffered writes cannot be coincidental with
869 * direct writes. Also, only one direct write can be
870 * in progress at any one time. We wait until the currently
871 * executing direct write is completed before continuing.
872 *
873 * We break out if a signal occurs or the reader goes away.
874 */
875 while (error == 0 && wpipe->pipe_state & PIPE_DIRECTW) {
876 cv_broadcast(&wpipe->pipe_rcv);
877 pipeunlock(wpipe);
878 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
879 (void)pipelock(wpipe, 0);
880 if (wpipe->pipe_state & PIPE_EOF)
881 error = EPIPE;
882 }
883 if (error)
884 break;
885
886 /*
887 * If the transfer is large, we can gain performance if
888 * we do process-to-process copies directly.
889 * If the write is non-blocking, we don't use the
890 * direct write mechanism.
891 *
892 * The direct write mechanism will detect the reader going
893 * away on us.
894 */
895 if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
896 (fp->f_flag & FNONBLOCK) == 0 &&
897 (wpipe->pipe_map.kva || (amountpipekva < limitpipekva))) {
898 error = pipe_direct_write(fp, wpipe, uio);
899
900 /*
901 * Break out if error occurred, unless it's ENOMEM.
902 * ENOMEM means we failed to allocate some resources
903 * for direct write, so we just fallback to ordinary
904 * write. If the direct write was successful,
905 * process rest of data via ordinary write.
906 */
907 if (error == 0)
908 continue;
909
910 if (error != ENOMEM)
911 break;
912 }
913 #endif /* PIPE_NODIRECT */
914
915 space = bp->size - bp->cnt;
916
917 /* Writes of size <= PIPE_BUF must be atomic. */
918 if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
919 space = 0;
920
921 if (space > 0) {
922 int size; /* Transfer size */
923 int segsize; /* first segment to transfer */
924
925 /*
926 * Transfer size is minimum of uio transfer
927 * and free space in pipe buffer.
928 */
929 if (space > uio->uio_resid)
930 size = uio->uio_resid;
931 else
932 size = space;
933 /*
934 * First segment to transfer is minimum of
935 * transfer size and contiguous space in
936 * pipe buffer. If first segment to transfer
937 * is less than the transfer size, we've got
938 * a wraparound in the buffer.
939 */
940 segsize = bp->size - bp->in;
941 if (segsize > size)
942 segsize = size;
943
944 /* Transfer first segment */
945 mutex_exit(lock);
946 error = uiomove((char *)bp->buffer + bp->in, segsize,
947 uio);
948
949 if (error == 0 && segsize < size) {
950 /*
951 * Transfer remaining part now, to
952 * support atomic writes. Wraparound
953 * happened.
954 */
955 #ifdef DEBUG
956 if (bp->in + segsize != bp->size)
957 panic("Expected pipe buffer wraparound disappeared");
958 #endif
959
960 error = uiomove(bp->buffer,
961 size - segsize, uio);
962 }
963 mutex_enter(lock);
964 if (error)
965 break;
966
967 bp->in += size;
968 if (bp->in >= bp->size) {
969 #ifdef DEBUG
970 if (bp->in != size - segsize + bp->size)
971 panic("Expected wraparound bad");
972 #endif
973 bp->in = size - segsize;
974 }
975
976 bp->cnt += size;
977 #ifdef DEBUG
978 if (bp->cnt > bp->size)
979 panic("Pipe buffer overflow");
980 #endif
981 } else {
982 /*
983 * If the "read-side" has been blocked, wake it up now.
984 */
985 cv_broadcast(&wpipe->pipe_rcv);
986
987 /*
988 * don't block on non-blocking I/O
989 */
990 if (fp->f_flag & FNONBLOCK) {
991 error = EAGAIN;
992 break;
993 }
994
995 /*
996 * We have no more space and have something to offer,
997 * wake up select/poll.
998 */
999 if (bp->cnt)
1000 pipeselwakeup(wpipe, wpipe, POLL_OUT);
1001
1002 pipeunlock(wpipe);
1003 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
1004 (void)pipelock(wpipe, 0);
1005 if (error != 0)
1006 break;
1007 /*
1008 * If read side wants to go away, we just issue a signal
1009 * to ourselves.
1010 */
1011 if (wpipe->pipe_state & PIPE_EOF) {
1012 error = EPIPE;
1013 break;
1014 }
1015 }
1016 }
1017
1018 --wpipe->pipe_busy;
1019 if (wpipe->pipe_busy == 0) {
1020 cv_broadcast(&wpipe->pipe_draincv);
1021 }
1022 if (bp->cnt > 0) {
1023 cv_broadcast(&wpipe->pipe_rcv);
1024 }
1025
1026 /*
1027 * Don't return EPIPE if I/O was successful
1028 */
1029 if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0)
1030 error = 0;
1031
1032 if (error == 0)
1033 getmicrotime(&wpipe->pipe_mtime);
1034
1035 /*
1036 * We have something to offer, wake up select/poll.
1037 * wpipe->pipe_map.cnt is always 0 in this point (direct write
1038 * is only done synchronously), so check only wpipe->pipe_buffer.cnt
1039 */
1040 if (bp->cnt)
1041 pipeselwakeup(wpipe, wpipe, POLL_OUT);
1042
1043 /*
1044 * Arrange for next read(2) to do a signal.
1045 */
1046 wpipe->pipe_state |= PIPE_SIGNALR;
1047
1048 pipeunlock(wpipe);
1049 mutex_exit(lock);
1050 return (error);
1051 }
1052
1053 /*
1054 * we implement a very minimal set of ioctls for compatibility with sockets.
1055 */
1056 int
1057 pipe_ioctl(struct file *fp, u_long cmd, void *data)
1058 {
1059 struct pipe *pipe = fp->f_data;
1060 kmutex_t *lock = pipe->pipe_lock;
1061
1062 switch (cmd) {
1063
1064 case FIONBIO:
1065 return (0);
1066
1067 case FIOASYNC:
1068 mutex_enter(lock);
1069 if (*(int *)data) {
1070 pipe->pipe_state |= PIPE_ASYNC;
1071 } else {
1072 pipe->pipe_state &= ~PIPE_ASYNC;
1073 }
1074 mutex_exit(lock);
1075 return (0);
1076
1077 case FIONREAD:
1078 mutex_enter(lock);
1079 #ifndef PIPE_NODIRECT
1080 if (pipe->pipe_state & PIPE_DIRECTW)
1081 *(int *)data = pipe->pipe_map.cnt;
1082 else
1083 #endif
1084 *(int *)data = pipe->pipe_buffer.cnt;
1085 mutex_exit(lock);
1086 return (0);
1087
1088 case FIONWRITE:
1089 /* Look at other side */
1090 pipe = pipe->pipe_peer;
1091 mutex_enter(lock);
1092 #ifndef PIPE_NODIRECT
1093 if (pipe->pipe_state & PIPE_DIRECTW)
1094 *(int *)data = pipe->pipe_map.cnt;
1095 else
1096 #endif
1097 *(int *)data = pipe->pipe_buffer.cnt;
1098 mutex_exit(lock);
1099 return (0);
1100
1101 case FIONSPACE:
1102 /* Look at other side */
1103 pipe = pipe->pipe_peer;
1104 mutex_enter(lock);
1105 #ifndef PIPE_NODIRECT
1106 /*
1107 * If we're in direct-mode, we don't really have a
1108 * send queue, and any other write will block. Thus
1109 * zero seems like the best answer.
1110 */
1111 if (pipe->pipe_state & PIPE_DIRECTW)
1112 *(int *)data = 0;
1113 else
1114 #endif
1115 *(int *)data = pipe->pipe_buffer.size -
1116 pipe->pipe_buffer.cnt;
1117 mutex_exit(lock);
1118 return (0);
1119
1120 case TIOCSPGRP:
1121 case FIOSETOWN:
1122 return fsetown(&pipe->pipe_pgid, cmd, data);
1123
1124 case TIOCGPGRP:
1125 case FIOGETOWN:
1126 return fgetown(pipe->pipe_pgid, cmd, data);
1127
1128 }
1129 return (EPASSTHROUGH);
1130 }
1131
1132 int
1133 pipe_poll(struct file *fp, int events)
1134 {
1135 struct pipe *rpipe = fp->f_data;
1136 struct pipe *wpipe;
1137 int eof = 0;
1138 int revents = 0;
1139
1140 mutex_enter(rpipe->pipe_lock);
1141 wpipe = rpipe->pipe_peer;
1142
1143 if (events & (POLLIN | POLLRDNORM))
1144 if ((rpipe->pipe_buffer.cnt > 0) ||
1145 #ifndef PIPE_NODIRECT
1146 (rpipe->pipe_state & PIPE_DIRECTR) ||
1147 #endif
1148 (rpipe->pipe_state & PIPE_EOF))
1149 revents |= events & (POLLIN | POLLRDNORM);
1150
1151 eof |= (rpipe->pipe_state & PIPE_EOF);
1152
1153 if (wpipe == NULL)
1154 revents |= events & (POLLOUT | POLLWRNORM);
1155 else {
1156 if (events & (POLLOUT | POLLWRNORM))
1157 if ((wpipe->pipe_state & PIPE_EOF) || (
1158 #ifndef PIPE_NODIRECT
1159 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
1160 #endif
1161 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1162 revents |= events & (POLLOUT | POLLWRNORM);
1163
1164 eof |= (wpipe->pipe_state & PIPE_EOF);
1165 }
1166
1167 if (wpipe == NULL || eof)
1168 revents |= POLLHUP;
1169
1170 if (revents == 0) {
1171 if (events & (POLLIN | POLLRDNORM))
1172 selrecord(curlwp, &rpipe->pipe_sel);
1173
1174 if (events & (POLLOUT | POLLWRNORM))
1175 selrecord(curlwp, &wpipe->pipe_sel);
1176 }
1177 mutex_exit(rpipe->pipe_lock);
1178
1179 return (revents);
1180 }
1181
1182 static int
1183 pipe_stat(struct file *fp, struct stat *ub)
1184 {
1185 struct pipe *pipe = fp->f_data;
1186
1187 memset((void *)ub, 0, sizeof(*ub));
1188 ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
1189 ub->st_blksize = pipe->pipe_buffer.size;
1190 if (ub->st_blksize == 0 && pipe->pipe_peer)
1191 ub->st_blksize = pipe->pipe_peer->pipe_buffer.size;
1192 ub->st_size = pipe->pipe_buffer.cnt;
1193 ub->st_blocks = (ub->st_size) ? 1 : 0;
1194 TIMEVAL_TO_TIMESPEC(&pipe->pipe_atime, &ub->st_atimespec);
1195 TIMEVAL_TO_TIMESPEC(&pipe->pipe_mtime, &ub->st_mtimespec);
1196 TIMEVAL_TO_TIMESPEC(&pipe->pipe_ctime, &ub->st_ctimespec);
1197 ub->st_uid = kauth_cred_geteuid(fp->f_cred);
1198 ub->st_gid = kauth_cred_getegid(fp->f_cred);
1199
1200 /*
1201 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1202 * XXX (st_dev, st_ino) should be unique.
1203 */
1204 return (0);
1205 }
1206
1207 /* ARGSUSED */
1208 static int
1209 pipe_close(struct file *fp)
1210 {
1211 struct pipe *pipe = fp->f_data;
1212
1213 fp->f_data = NULL;
1214 pipeclose(fp, pipe);
1215 return (0);
1216 }
1217
1218 static void
1219 pipe_free_kmem(struct pipe *pipe)
1220 {
1221
1222 if (pipe->pipe_buffer.buffer != NULL) {
1223 if (pipe->pipe_buffer.size > PIPE_SIZE)
1224 atomic_dec_uint(&nbigpipe);
1225 uvm_km_free(kernel_map,
1226 (vaddr_t)pipe->pipe_buffer.buffer,
1227 pipe->pipe_buffer.size, UVM_KMF_PAGEABLE);
1228 atomic_add_int(&amountpipekva, -pipe->pipe_buffer.size);
1229 pipe->pipe_buffer.buffer = NULL;
1230 }
1231 #ifndef PIPE_NODIRECT
1232 if (pipe->pipe_map.kva != 0) {
1233 pipe_loan_free(pipe);
1234 pipe->pipe_map.cnt = 0;
1235 pipe->pipe_map.kva = 0;
1236 pipe->pipe_map.pos = 0;
1237 pipe->pipe_map.npages = 0;
1238 }
1239 #endif /* !PIPE_NODIRECT */
1240 }
1241
1242 /*
1243 * shutdown the pipe
1244 */
1245 static void
1246 pipeclose(struct file *fp, struct pipe *pipe)
1247 {
1248 struct pipe_mutex *mutex;
1249 kmutex_t *lock;
1250 struct pipe *ppipe;
1251 u_int refcnt;
1252
1253 if (pipe == NULL)
1254 return;
1255
1256 KASSERT(cv_is_valid(&pipe->pipe_rcv));
1257 KASSERT(cv_is_valid(&pipe->pipe_wcv));
1258 KASSERT(cv_is_valid(&pipe->pipe_draincv));
1259 KASSERT(cv_is_valid(&pipe->pipe_lkcv));
1260
1261 lock = pipe->pipe_lock;
1262 mutex_enter(lock);
1263 pipeselwakeup(pipe, pipe, POLL_HUP);
1264
1265 /*
1266 * If the other side is blocked, wake it up saying that
1267 * we want to close it down.
1268 */
1269 pipe->pipe_state |= PIPE_EOF;
1270 if (pipe->pipe_busy) {
1271 while (pipe->pipe_busy) {
1272 cv_broadcast(&pipe->pipe_wcv);
1273 cv_wait_sig(&pipe->pipe_draincv, lock);
1274 }
1275 }
1276
1277 /*
1278 * Disconnect from peer
1279 */
1280 if ((ppipe = pipe->pipe_peer) != NULL) {
1281 pipeselwakeup(ppipe, ppipe, POLL_HUP);
1282 ppipe->pipe_state |= PIPE_EOF;
1283 cv_broadcast(&ppipe->pipe_rcv);
1284 ppipe->pipe_peer = NULL;
1285 }
1286
1287 KASSERT((pipe->pipe_state & PIPE_LOCKFL) == 0);
1288
1289 mutex = (struct pipe_mutex *)lock;
1290 refcnt = --(mutex->pm_refcnt);
1291 KASSERT(refcnt == 0 || refcnt == 1);
1292 mutex_exit(lock);
1293
1294 /*
1295 * free resources
1296 */
1297 pipe_free_kmem(pipe);
1298 cv_destroy(&pipe->pipe_rcv);
1299 cv_destroy(&pipe->pipe_wcv);
1300 cv_destroy(&pipe->pipe_draincv);
1301 cv_destroy(&pipe->pipe_lkcv);
1302 seldestroy(&pipe->pipe_sel);
1303 pool_cache_put(pipe_cache, pipe);
1304 if (refcnt == 0)
1305 pool_cache_put(pipe_mutex_cache, mutex);
1306 }
1307
1308 static void
1309 filt_pipedetach(struct knote *kn)
1310 {
1311 struct pipe *pipe;
1312 kmutex_t *lock;
1313
1314 pipe = ((file_t *)kn->kn_obj)->f_data;
1315 lock = pipe->pipe_lock;
1316
1317 mutex_enter(lock);
1318
1319 switch(kn->kn_filter) {
1320 case EVFILT_WRITE:
1321 /* need the peer structure, not our own */
1322 pipe = pipe->pipe_peer;
1323
1324 /* if reader end already closed, just return */
1325 if (pipe == NULL) {
1326 mutex_exit(lock);
1327 return;
1328 }
1329
1330 break;
1331 default:
1332 /* nothing to do */
1333 break;
1334 }
1335
1336 #ifdef DIAGNOSTIC
1337 if (kn->kn_hook != pipe)
1338 panic("filt_pipedetach: inconsistent knote");
1339 #endif
1340
1341 SLIST_REMOVE(&pipe->pipe_sel.sel_klist, kn, knote, kn_selnext);
1342 mutex_exit(lock);
1343 }
1344
1345 /*ARGSUSED*/
1346 static int
1347 filt_piperead(struct knote *kn, long hint)
1348 {
1349 struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_data;
1350 struct pipe *wpipe;
1351
1352 if ((hint & NOTE_SUBMIT) == 0) {
1353 mutex_enter(rpipe->pipe_lock);
1354 }
1355 wpipe = rpipe->pipe_peer;
1356 kn->kn_data = rpipe->pipe_buffer.cnt;
1357
1358 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1359 kn->kn_data = rpipe->pipe_map.cnt;
1360
1361 if ((rpipe->pipe_state & PIPE_EOF) ||
1362 (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1363 kn->kn_flags |= EV_EOF;
1364 if ((hint & NOTE_SUBMIT) == 0) {
1365 mutex_exit(rpipe->pipe_lock);
1366 }
1367 return (1);
1368 }
1369
1370 if ((hint & NOTE_SUBMIT) == 0) {
1371 mutex_exit(rpipe->pipe_lock);
1372 }
1373 return (kn->kn_data > 0);
1374 }
1375
1376 /*ARGSUSED*/
1377 static int
1378 filt_pipewrite(struct knote *kn, long hint)
1379 {
1380 struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_data;
1381 struct pipe *wpipe;
1382
1383 if ((hint & NOTE_SUBMIT) == 0) {
1384 mutex_enter(rpipe->pipe_lock);
1385 }
1386 wpipe = rpipe->pipe_peer;
1387
1388 if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1389 kn->kn_data = 0;
1390 kn->kn_flags |= EV_EOF;
1391 if ((hint & NOTE_SUBMIT) == 0) {
1392 mutex_exit(rpipe->pipe_lock);
1393 }
1394 return (1);
1395 }
1396 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1397 if (wpipe->pipe_state & PIPE_DIRECTW)
1398 kn->kn_data = 0;
1399
1400 if ((hint & NOTE_SUBMIT) == 0) {
1401 mutex_exit(rpipe->pipe_lock);
1402 }
1403 return (kn->kn_data >= PIPE_BUF);
1404 }
1405
1406 static const struct filterops pipe_rfiltops =
1407 { 1, NULL, filt_pipedetach, filt_piperead };
1408 static const struct filterops pipe_wfiltops =
1409 { 1, NULL, filt_pipedetach, filt_pipewrite };
1410
1411 /*ARGSUSED*/
1412 static int
1413 pipe_kqfilter(struct file *fp, struct knote *kn)
1414 {
1415 struct pipe *pipe;
1416 kmutex_t *lock;
1417
1418 pipe = ((file_t *)kn->kn_obj)->f_data;
1419 lock = pipe->pipe_lock;
1420
1421 mutex_enter(lock);
1422
1423 switch (kn->kn_filter) {
1424 case EVFILT_READ:
1425 kn->kn_fop = &pipe_rfiltops;
1426 break;
1427 case EVFILT_WRITE:
1428 kn->kn_fop = &pipe_wfiltops;
1429 pipe = pipe->pipe_peer;
1430 if (pipe == NULL) {
1431 /* other end of pipe has been closed */
1432 mutex_exit(lock);
1433 return (EBADF);
1434 }
1435 break;
1436 default:
1437 mutex_exit(lock);
1438 return (EINVAL);
1439 }
1440
1441 kn->kn_hook = pipe;
1442 SLIST_INSERT_HEAD(&pipe->pipe_sel.sel_klist, kn, kn_selnext);
1443 mutex_exit(lock);
1444
1445 return (0);
1446 }
1447
1448 /*
1449 * Handle pipe sysctls.
1450 */
1451 SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup")
1452 {
1453
1454 sysctl_createv(clog, 0, NULL, NULL,
1455 CTLFLAG_PERMANENT,
1456 CTLTYPE_NODE, "kern", NULL,
1457 NULL, 0, NULL, 0,
1458 CTL_KERN, CTL_EOL);
1459 sysctl_createv(clog, 0, NULL, NULL,
1460 CTLFLAG_PERMANENT,
1461 CTLTYPE_NODE, "pipe",
1462 SYSCTL_DESCR("Pipe settings"),
1463 NULL, 0, NULL, 0,
1464 CTL_KERN, KERN_PIPE, CTL_EOL);
1465
1466 sysctl_createv(clog, 0, NULL, NULL,
1467 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1468 CTLTYPE_INT, "maxkvasz",
1469 SYSCTL_DESCR("Maximum amount of kernel memory to be "
1470 "used for pipes"),
1471 NULL, 0, &maxpipekva, 0,
1472 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXKVASZ, CTL_EOL);
1473 sysctl_createv(clog, 0, NULL, NULL,
1474 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1475 CTLTYPE_INT, "maxloankvasz",
1476 SYSCTL_DESCR("Limit for direct transfers via page loan"),
1477 NULL, 0, &limitpipekva, 0,
1478 CTL_KERN, KERN_PIPE, KERN_PIPE_LIMITKVA, CTL_EOL);
1479 sysctl_createv(clog, 0, NULL, NULL,
1480 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1481 CTLTYPE_INT, "maxbigpipes",
1482 SYSCTL_DESCR("Maximum number of \"big\" pipes"),
1483 NULL, 0, &maxbigpipes, 0,
1484 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL);
1485 sysctl_createv(clog, 0, NULL, NULL,
1486 CTLFLAG_PERMANENT,
1487 CTLTYPE_INT, "nbigpipes",
1488 SYSCTL_DESCR("Number of \"big\" pipes"),
1489 NULL, 0, &nbigpipe, 0,
1490 CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL);
1491 sysctl_createv(clog, 0, NULL, NULL,
1492 CTLFLAG_PERMANENT,
1493 CTLTYPE_INT, "kvasize",
1494 SYSCTL_DESCR("Amount of kernel memory consumed by pipe "
1495 "buffers"),
1496 NULL, 0, &amountpipekva, 0,
1497 CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL);
1498 }
1499