Home | History | Annotate | Line # | Download | only in kern
sys_pset.c revision 1.4.8.1
      1  1.4.8.1    mjf /*	$NetBSD: sys_pset.c,v 1.4.8.1 2008/06/02 13:24:12 mjf Exp $	*/
      2      1.1  rmind 
      3      1.1  rmind /*
      4      1.1  rmind  * Copyright (c) 2008, Mindaugas Rasiukevicius <rmind at NetBSD org>
      5      1.1  rmind  * All rights reserved.
      6      1.1  rmind  *
      7      1.1  rmind  * Redistribution and use in source and binary forms, with or without
      8      1.1  rmind  * modification, are permitted provided that the following conditions
      9      1.1  rmind  * are met:
     10      1.1  rmind  * 1. Redistributions of source code must retain the above copyright
     11      1.1  rmind  *    notice, this list of conditions and the following disclaimer.
     12      1.1  rmind  * 2. Redistributions in binary form must reproduce the above copyright
     13      1.1  rmind  *    notice, this list of conditions and the following disclaimer in the
     14      1.1  rmind  *    documentation and/or other materials provided with the distribution.
     15      1.1  rmind  *
     16  1.4.8.1    mjf  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17  1.4.8.1    mjf  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18  1.4.8.1    mjf  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19  1.4.8.1    mjf  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20  1.4.8.1    mjf  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21  1.4.8.1    mjf  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22  1.4.8.1    mjf  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23  1.4.8.1    mjf  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24  1.4.8.1    mjf  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  1.4.8.1    mjf  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  1.4.8.1    mjf  * SUCH DAMAGE.
     27      1.1  rmind  */
     28      1.1  rmind 
     29      1.1  rmind /*
     30      1.1  rmind  * Implementation of the Processor Sets.
     31      1.1  rmind  *
     32      1.1  rmind  * Locking
     33      1.1  rmind  *  The array of the processor-set structures and its members are protected
     34      1.1  rmind  *  by the global psets_lock.  Note that in scheduler, the very l_psid value
     35      1.1  rmind  *  might be used without lock held.
     36      1.1  rmind  */
     37      1.1  rmind 
     38      1.1  rmind #include <sys/cdefs.h>
     39  1.4.8.1    mjf __KERNEL_RCSID(0, "$NetBSD: sys_pset.c,v 1.4.8.1 2008/06/02 13:24:12 mjf Exp $");
     40      1.1  rmind 
     41      1.1  rmind #include <sys/param.h>
     42      1.1  rmind 
     43      1.1  rmind #include <sys/cpu.h>
     44      1.1  rmind #include <sys/kauth.h>
     45      1.1  rmind #include <sys/kmem.h>
     46      1.1  rmind #include <sys/lwp.h>
     47      1.1  rmind #include <sys/mutex.h>
     48      1.1  rmind #include <sys/proc.h>
     49      1.1  rmind #include <sys/pset.h>
     50      1.1  rmind #include <sys/sched.h>
     51      1.1  rmind #include <sys/syscallargs.h>
     52      1.1  rmind #include <sys/sysctl.h>
     53      1.1  rmind #include <sys/systm.h>
     54      1.1  rmind #include <sys/types.h>
     55      1.1  rmind 
     56      1.1  rmind static pset_info_t **	psets;
     57      1.1  rmind static kmutex_t		psets_lock;
     58      1.1  rmind static u_int		psets_max;
     59      1.1  rmind static u_int		psets_count;
     60      1.1  rmind 
     61      1.1  rmind static int	psets_realloc(int);
     62      1.1  rmind static int	psid_validate(psetid_t, bool);
     63      1.1  rmind static int	kern_pset_create(psetid_t *);
     64      1.1  rmind static int	kern_pset_destroy(psetid_t);
     65      1.1  rmind 
     66      1.1  rmind /*
     67      1.1  rmind  * Initialization of the processor-sets.
     68      1.1  rmind  */
     69      1.1  rmind void
     70      1.1  rmind psets_init(void)
     71      1.1  rmind {
     72      1.1  rmind 
     73      1.1  rmind 	psets_max = max(MAXCPUS, 32);
     74      1.1  rmind 	psets = kmem_zalloc(psets_max * sizeof(void *), KM_SLEEP);
     75      1.1  rmind 	mutex_init(&psets_lock, MUTEX_DEFAULT, IPL_NONE);
     76      1.1  rmind 	psets_count = 0;
     77      1.1  rmind }
     78      1.1  rmind 
     79      1.1  rmind /*
     80      1.1  rmind  * Reallocate the array of the processor-set structures.
     81      1.1  rmind  */
     82      1.1  rmind static int
     83      1.1  rmind psets_realloc(int new_psets_max)
     84      1.1  rmind {
     85      1.1  rmind 	pset_info_t **new_psets, **old_psets;
     86      1.1  rmind 	const u_int newsize = new_psets_max * sizeof(void *);
     87      1.1  rmind 	u_int i, oldsize;
     88      1.1  rmind 
     89      1.1  rmind 	if (new_psets_max < 1)
     90      1.1  rmind 		return EINVAL;
     91      1.1  rmind 
     92      1.1  rmind 	new_psets = kmem_zalloc(newsize, KM_SLEEP);
     93      1.1  rmind 	mutex_enter(&psets_lock);
     94      1.1  rmind 	old_psets = psets;
     95      1.1  rmind 	oldsize = psets_max * sizeof(void *);
     96      1.1  rmind 
     97      1.1  rmind 	/* Check if we can lower the size of the array */
     98      1.1  rmind 	if (new_psets_max < psets_max) {
     99      1.1  rmind 		for (i = new_psets_max; i < psets_max; i++) {
    100      1.1  rmind 			if (psets[i] == NULL)
    101      1.1  rmind 				continue;
    102      1.1  rmind 			mutex_exit(&psets_lock);
    103      1.1  rmind 			kmem_free(new_psets, newsize);
    104      1.1  rmind 			return EBUSY;
    105      1.1  rmind 		}
    106      1.1  rmind 	}
    107      1.1  rmind 
    108      1.1  rmind 	/* Copy all pointers to the new array */
    109      1.1  rmind 	memcpy(new_psets, psets, newsize);
    110      1.1  rmind 	psets_max = new_psets_max;
    111      1.1  rmind 	psets = new_psets;
    112      1.1  rmind 	mutex_exit(&psets_lock);
    113      1.1  rmind 
    114      1.1  rmind 	kmem_free(old_psets, oldsize);
    115      1.1  rmind 	return 0;
    116      1.1  rmind }
    117      1.1  rmind 
    118      1.1  rmind /*
    119      1.1  rmind  * Validate processor-set ID.
    120      1.1  rmind  */
    121      1.1  rmind static int
    122      1.1  rmind psid_validate(psetid_t psid, bool chkps)
    123      1.1  rmind {
    124      1.1  rmind 
    125      1.1  rmind 	KASSERT(mutex_owned(&psets_lock));
    126      1.1  rmind 
    127      1.1  rmind 	if (chkps && (psid == PS_NONE || psid == PS_QUERY || psid == PS_MYID))
    128      1.1  rmind 		return 0;
    129      1.1  rmind 	if (psid <= 0 || psid > psets_max)
    130      1.1  rmind 		return EINVAL;
    131      1.1  rmind 	if (psets[psid - 1] == NULL)
    132      1.1  rmind 		return EINVAL;
    133      1.1  rmind 	if (psets[psid - 1]->ps_flags & PSET_BUSY)
    134      1.1  rmind 		return EBUSY;
    135      1.1  rmind 
    136      1.1  rmind 	return 0;
    137      1.1  rmind }
    138      1.1  rmind 
    139      1.1  rmind /*
    140      1.1  rmind  * Create a processor-set.
    141      1.1  rmind  */
    142      1.1  rmind static int
    143      1.1  rmind kern_pset_create(psetid_t *psid)
    144      1.1  rmind {
    145      1.1  rmind 	pset_info_t *pi;
    146      1.1  rmind 	u_int i;
    147      1.1  rmind 
    148      1.1  rmind 	if (psets_count == psets_max)
    149      1.1  rmind 		return ENOMEM;
    150      1.1  rmind 
    151      1.1  rmind 	pi = kmem_zalloc(sizeof(pset_info_t), KM_SLEEP);
    152      1.1  rmind 
    153      1.1  rmind 	mutex_enter(&psets_lock);
    154      1.1  rmind 	if (psets_count == psets_max) {
    155      1.1  rmind 		mutex_exit(&psets_lock);
    156      1.1  rmind 		kmem_free(pi, sizeof(pset_info_t));
    157      1.1  rmind 		return ENOMEM;
    158      1.1  rmind 	}
    159      1.1  rmind 
    160      1.1  rmind 	/* Find a free entry in the array */
    161      1.1  rmind 	for (i = 0; i < psets_max; i++)
    162      1.1  rmind 		if (psets[i] == NULL)
    163      1.1  rmind 			break;
    164      1.1  rmind 	KASSERT(i != psets_max);
    165      1.1  rmind 
    166      1.1  rmind 	psets[i] = pi;
    167      1.1  rmind 	psets_count++;
    168      1.1  rmind 	mutex_exit(&psets_lock);
    169      1.1  rmind 
    170      1.1  rmind 	*psid = i + 1;
    171      1.1  rmind 	return 0;
    172      1.1  rmind }
    173      1.1  rmind 
    174      1.1  rmind /*
    175      1.1  rmind  * Destroy a processor-set.
    176      1.1  rmind  */
    177      1.1  rmind static int
    178      1.1  rmind kern_pset_destroy(psetid_t psid)
    179      1.1  rmind {
    180      1.1  rmind 	struct cpu_info *ci;
    181      1.1  rmind 	pset_info_t *pi;
    182      1.1  rmind 	struct lwp *l;
    183      1.1  rmind 	CPU_INFO_ITERATOR cii;
    184      1.1  rmind 	int error;
    185      1.1  rmind 
    186      1.1  rmind 	mutex_enter(&psets_lock);
    187      1.1  rmind 	if (psid == PS_MYID) {
    188      1.1  rmind 		/* Use caller's processor-set ID */
    189      1.1  rmind 		psid = curlwp->l_psid;
    190      1.1  rmind 	}
    191      1.1  rmind 	error = psid_validate(psid, false);
    192      1.1  rmind 	if (error) {
    193      1.1  rmind 		mutex_exit(&psets_lock);
    194      1.1  rmind 		return error;
    195      1.1  rmind 	}
    196      1.1  rmind 
    197      1.1  rmind 	/* Release the processor-set from all CPUs */
    198      1.1  rmind 	for (CPU_INFO_FOREACH(cii, ci)) {
    199      1.1  rmind 		struct schedstate_percpu *spc;
    200      1.1  rmind 
    201      1.1  rmind 		spc = &ci->ci_schedstate;
    202      1.1  rmind 		if (spc->spc_psid != psid)
    203      1.1  rmind 			continue;
    204      1.1  rmind 		spc->spc_psid = PS_NONE;
    205      1.1  rmind 	}
    206      1.1  rmind 	/* Mark that processor-set is going to be destroyed */
    207      1.1  rmind 	pi = psets[psid - 1];
    208      1.1  rmind 	pi->ps_flags |= PSET_BUSY;
    209      1.1  rmind 	mutex_exit(&psets_lock);
    210      1.1  rmind 
    211      1.1  rmind 	/* Unmark the processor-set ID from each thread */
    212  1.4.8.1    mjf 	mutex_enter(proc_lock);
    213      1.1  rmind 	LIST_FOREACH(l, &alllwp, l_list) {
    214      1.1  rmind 		/* Safe to check and set without lock held */
    215      1.1  rmind 		if (l->l_psid != psid)
    216      1.1  rmind 			continue;
    217      1.1  rmind 		l->l_psid = PS_NONE;
    218      1.1  rmind 	}
    219  1.4.8.1    mjf 	mutex_exit(proc_lock);
    220      1.1  rmind 
    221      1.1  rmind 	/* Destroy the processor-set */
    222      1.1  rmind 	mutex_enter(&psets_lock);
    223      1.1  rmind 	psets[psid - 1] = NULL;
    224      1.1  rmind 	psets_count--;
    225      1.1  rmind 	mutex_exit(&psets_lock);
    226      1.1  rmind 
    227      1.1  rmind 	kmem_free(pi, sizeof(pset_info_t));
    228      1.1  rmind 	return 0;
    229      1.1  rmind }
    230      1.1  rmind 
    231      1.1  rmind /*
    232      1.1  rmind  * General system calls for the processor-sets.
    233      1.1  rmind  */
    234      1.1  rmind 
    235      1.1  rmind int
    236      1.1  rmind sys_pset_create(struct lwp *l, const struct sys_pset_create_args *uap,
    237      1.1  rmind     register_t *retval)
    238      1.1  rmind {
    239      1.1  rmind 	/* {
    240      1.1  rmind 		syscallarg(psetid_t) *psid;
    241      1.1  rmind 	} */
    242      1.1  rmind 	psetid_t psid;
    243      1.1  rmind 	int error;
    244      1.1  rmind 
    245      1.1  rmind 	/* Available only for super-user */
    246      1.4   elad 	if (kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_PSET,
    247      1.4   elad 	    KAUTH_REQ_SYSTEM_PSET_CREATE, NULL, NULL, NULL))
    248      1.1  rmind 		return EPERM;
    249      1.1  rmind 
    250      1.1  rmind 	error = kern_pset_create(&psid);
    251      1.1  rmind 	if (error)
    252      1.1  rmind 		return error;
    253      1.1  rmind 
    254      1.1  rmind 	error = copyout(&psid, SCARG(uap, psid), sizeof(psetid_t));
    255      1.1  rmind 	if (error)
    256      1.1  rmind 		(void)kern_pset_destroy(psid);
    257      1.1  rmind 
    258      1.1  rmind 	return error;
    259      1.1  rmind }
    260      1.1  rmind 
    261      1.1  rmind int
    262      1.1  rmind sys_pset_destroy(struct lwp *l, const struct sys_pset_destroy_args *uap,
    263      1.1  rmind     register_t *retval)
    264      1.1  rmind {
    265      1.1  rmind 	/* {
    266      1.1  rmind 		syscallarg(psetid_t) psid;
    267      1.1  rmind 	} */
    268      1.1  rmind 
    269      1.1  rmind 	/* Available only for super-user */
    270      1.4   elad 	if (kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_PSET,
    271      1.4   elad 	    KAUTH_REQ_SYSTEM_PSET_DESTROY,
    272      1.4   elad 	    KAUTH_ARG(SCARG(uap, psid)), NULL, NULL))
    273      1.1  rmind 		return EPERM;
    274      1.1  rmind 
    275      1.1  rmind 	return kern_pset_destroy(SCARG(uap, psid));
    276      1.1  rmind }
    277      1.1  rmind 
    278      1.1  rmind int
    279      1.1  rmind sys_pset_assign(struct lwp *l, const struct sys_pset_assign_args *uap,
    280      1.1  rmind     register_t *retval)
    281      1.1  rmind {
    282      1.1  rmind 	/* {
    283      1.1  rmind 		syscallarg(psetid_t) psid;
    284      1.1  rmind 		syscallarg(cpuid_t) cpuid;
    285      1.1  rmind 		syscallarg(psetid_t) *opsid;
    286      1.1  rmind 	} */
    287      1.1  rmind 	struct cpu_info *ci;
    288      1.1  rmind 	struct schedstate_percpu *spc;
    289      1.1  rmind 	psetid_t psid = SCARG(uap, psid), opsid = 0;
    290      1.1  rmind 	CPU_INFO_ITERATOR cii;
    291      1.1  rmind 	int error = 0;
    292      1.1  rmind 
    293      1.1  rmind 	/* Available only for super-user, except the case of PS_QUERY */
    294      1.4   elad 	if (kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_PSET,
    295      1.4   elad 	    KAUTH_REQ_SYSTEM_PSET_ASSIGN, KAUTH_ARG(SCARG(uap, psid)), NULL,
    296      1.4   elad 	    NULL))
    297      1.1  rmind 		return EPERM;
    298      1.1  rmind 
    299      1.1  rmind 	/* Find the target CPU */
    300      1.1  rmind 	for (CPU_INFO_FOREACH(cii, ci))
    301      1.1  rmind 		if (cpu_index(ci) == SCARG(uap, cpuid))
    302      1.1  rmind 			break;
    303      1.1  rmind 	if (ci == NULL)
    304      1.1  rmind 		return EINVAL;
    305      1.1  rmind 	spc = &ci->ci_schedstate;
    306      1.1  rmind 
    307      1.1  rmind 	mutex_enter(&psets_lock);
    308      1.1  rmind 	error = psid_validate(psid, true);
    309      1.1  rmind 	if (error) {
    310      1.1  rmind 		mutex_exit(&psets_lock);
    311      1.1  rmind 		return error;
    312      1.1  rmind 	}
    313      1.1  rmind 	opsid = spc->spc_psid;
    314      1.1  rmind 	switch (psid) {
    315      1.1  rmind 	case PS_QUERY:
    316      1.1  rmind 		break;
    317      1.1  rmind 	case PS_MYID:
    318      1.1  rmind 		psid = curlwp->l_psid;
    319      1.1  rmind 	default:
    320      1.1  rmind 		spc->spc_psid = psid;
    321      1.1  rmind 	}
    322      1.1  rmind 	mutex_exit(&psets_lock);
    323      1.1  rmind 
    324      1.1  rmind 	if (SCARG(uap, opsid) != NULL)
    325      1.1  rmind 		error = copyout(&opsid, SCARG(uap, opsid), sizeof(psetid_t));
    326      1.1  rmind 
    327      1.1  rmind 	return error;
    328      1.1  rmind }
    329      1.1  rmind 
    330      1.1  rmind int
    331      1.1  rmind sys__pset_bind(struct lwp *l, const struct sys__pset_bind_args *uap,
    332      1.1  rmind     register_t *retval)
    333      1.1  rmind {
    334      1.1  rmind 	/* {
    335      1.1  rmind 		syscallarg(idtype_t) idtype;
    336      1.1  rmind 		syscallarg(id_t) first_id;
    337      1.1  rmind 		syscallarg(id_t) second_id;
    338      1.1  rmind 		syscallarg(psetid_t) psid;
    339      1.1  rmind 		syscallarg(psetid_t) *opsid;
    340      1.1  rmind 	} */
    341      1.1  rmind 	struct cpu_info *ci;
    342      1.1  rmind 	struct proc *p;
    343      1.1  rmind 	struct lwp *t;
    344      1.1  rmind 	id_t id1, id2;
    345      1.1  rmind 	pid_t pid = 0;
    346      1.1  rmind 	lwpid_t lid = 0;
    347      1.1  rmind 	psetid_t psid, opsid;
    348      1.1  rmind 	int error = 0, lcnt;
    349      1.1  rmind 
    350      1.1  rmind 	psid = SCARG(uap, psid);
    351      1.1  rmind 
    352      1.1  rmind 	/* Available only for super-user, except the case of PS_QUERY */
    353      1.4   elad 	if (kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_PSET,
    354      1.4   elad 	    KAUTH_REQ_SYSTEM_PSET_BIND, KAUTH_ARG(SCARG(uap, psid)), NULL,
    355      1.4   elad 	    NULL))
    356      1.1  rmind 		return EPERM;
    357      1.1  rmind 
    358      1.1  rmind 	mutex_enter(&psets_lock);
    359      1.1  rmind 	error = psid_validate(psid, true);
    360      1.1  rmind 	if (error) {
    361      1.1  rmind 		mutex_exit(&psets_lock);
    362      1.1  rmind 		return error;
    363      1.1  rmind 	}
    364      1.1  rmind 	if (psid == PS_MYID)
    365      1.1  rmind 		psid = curlwp->l_psid;
    366      1.1  rmind 	if (psid != PS_QUERY && psid != PS_NONE)
    367      1.1  rmind 		psets[psid - 1]->ps_flags |= PSET_BUSY;
    368      1.1  rmind 	mutex_exit(&psets_lock);
    369      1.1  rmind 
    370      1.1  rmind 	/*
    371      1.1  rmind 	 * Get PID and LID from the ID.
    372      1.1  rmind 	 */
    373      1.1  rmind 	p = l->l_proc;
    374      1.1  rmind 	id1 = SCARG(uap, first_id);
    375      1.1  rmind 	id2 = SCARG(uap, second_id);
    376      1.1  rmind 
    377      1.1  rmind 	switch (SCARG(uap, idtype)) {
    378      1.1  rmind 	case P_PID:
    379      1.1  rmind 		/*
    380      1.1  rmind 		 * Process:
    381      1.1  rmind 		 *  First ID	- PID;
    382      1.1  rmind 		 *  Second ID	- ignored;
    383      1.1  rmind 		 */
    384      1.1  rmind 		pid = (id1 == P_MYID) ? p->p_pid : id1;
    385      1.1  rmind 		lid = 0;
    386      1.1  rmind 		break;
    387      1.1  rmind 	case P_LWPID:
    388      1.1  rmind 		/*
    389      1.1  rmind 		 * Thread (LWP):
    390      1.1  rmind 		 *  First ID	- LID;
    391      1.1  rmind 		 *  Second ID	- PID;
    392      1.1  rmind 		 */
    393      1.1  rmind 		if (id1 == P_MYID) {
    394      1.1  rmind 			pid = p->p_pid;
    395      1.1  rmind 			lid = l->l_lid;
    396      1.1  rmind 			break;
    397      1.1  rmind 		}
    398      1.1  rmind 		lid = id1;
    399      1.1  rmind 		pid = (id2 == P_MYID) ? p->p_pid : id2;
    400      1.1  rmind 		break;
    401      1.1  rmind 	default:
    402      1.2   yamt 		error = EINVAL;
    403      1.2   yamt 		goto error;
    404      1.1  rmind 	}
    405      1.1  rmind 
    406      1.1  rmind 	/* Find the process */
    407  1.4.8.1    mjf 	mutex_enter(proc_lock);
    408  1.4.8.1    mjf 	p = p_find(pid, PFIND_LOCKED);
    409      1.1  rmind 	if (p == NULL) {
    410  1.4.8.1    mjf 		mutex_exit(proc_lock);
    411      1.1  rmind 		error = ESRCH;
    412      1.1  rmind 		goto error;
    413      1.1  rmind 	}
    414  1.4.8.1    mjf 	mutex_enter(p->p_lock);
    415  1.4.8.1    mjf 	mutex_exit(proc_lock);
    416      1.1  rmind 
    417      1.1  rmind 	/* Disallow modification of the system processes */
    418      1.1  rmind 	if (p->p_flag & PK_SYSTEM) {
    419  1.4.8.1    mjf 		mutex_exit(p->p_lock);
    420      1.1  rmind 		error = EPERM;
    421      1.1  rmind 		goto error;
    422      1.1  rmind 	}
    423      1.1  rmind 
    424      1.1  rmind 	/* Find the LWP(s) */
    425      1.1  rmind 	lcnt = 0;
    426      1.1  rmind 	ci = NULL;
    427      1.1  rmind 	LIST_FOREACH(t, &p->p_lwps, l_sibling) {
    428      1.1  rmind 		if (lid && lid != t->l_lid)
    429      1.1  rmind 			continue;
    430      1.1  rmind 		/*
    431      1.1  rmind 		 * Bind the thread to the processor-set,
    432      1.1  rmind 		 * take some CPU and migrate.
    433      1.1  rmind 		 */
    434      1.1  rmind 		lwp_lock(t);
    435      1.1  rmind 		opsid = t->l_psid;
    436      1.1  rmind 		t->l_psid = psid;
    437      1.1  rmind 		ci = sched_takecpu(l);
    438      1.1  rmind 		/* Unlocks LWP */
    439      1.1  rmind 		lwp_migrate(t, ci);
    440      1.1  rmind 		lcnt++;
    441      1.1  rmind 	}
    442  1.4.8.1    mjf 	mutex_exit(p->p_lock);
    443      1.1  rmind 	if (lcnt == 0) {
    444      1.1  rmind 		error = ESRCH;
    445      1.1  rmind 		goto error;
    446      1.1  rmind 	}
    447      1.1  rmind 	if (SCARG(uap, opsid))
    448      1.1  rmind 		error = copyout(&opsid, SCARG(uap, opsid), sizeof(psetid_t));
    449      1.1  rmind error:
    450      1.1  rmind 	if (psid != PS_QUERY && psid != PS_NONE) {
    451      1.1  rmind 		mutex_enter(&psets_lock);
    452      1.1  rmind 		psets[psid - 1]->ps_flags &= ~PSET_BUSY;
    453      1.1  rmind 		mutex_exit(&psets_lock);
    454      1.1  rmind 	}
    455      1.1  rmind 	return error;
    456      1.1  rmind }
    457      1.1  rmind 
    458      1.1  rmind /*
    459      1.1  rmind  * Sysctl nodes and initialization.
    460      1.1  rmind  */
    461      1.1  rmind 
    462      1.1  rmind static int
    463      1.1  rmind sysctl_psets_max(SYSCTLFN_ARGS)
    464      1.1  rmind {
    465      1.1  rmind 	struct sysctlnode node;
    466      1.1  rmind 	int error, newsize;
    467      1.1  rmind 
    468      1.1  rmind 	node = *rnode;
    469      1.1  rmind 	node.sysctl_data = &newsize;
    470      1.1  rmind 
    471      1.1  rmind 	newsize = psets_max;
    472      1.1  rmind 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    473      1.1  rmind 	if (error || newp == NULL)
    474      1.1  rmind 		return error;
    475      1.1  rmind 
    476      1.1  rmind 	if (newsize <= 0)
    477      1.1  rmind 		return EINVAL;
    478      1.1  rmind 
    479      1.1  rmind 	sysctl_unlock();
    480      1.1  rmind 	error = psets_realloc(newsize);
    481      1.1  rmind 	sysctl_relock();
    482      1.1  rmind 	return error;
    483      1.1  rmind }
    484      1.1  rmind 
    485      1.1  rmind SYSCTL_SETUP(sysctl_pset_setup, "sysctl kern.pset subtree setup")
    486      1.1  rmind {
    487      1.1  rmind 	const struct sysctlnode *node = NULL;
    488      1.1  rmind 
    489      1.1  rmind 	sysctl_createv(clog, 0, NULL, NULL,
    490      1.1  rmind 		CTLFLAG_PERMANENT,
    491      1.1  rmind 		CTLTYPE_NODE, "kern", NULL,
    492      1.1  rmind 		NULL, 0, NULL, 0,
    493      1.1  rmind 		CTL_KERN, CTL_EOL);
    494      1.1  rmind 	sysctl_createv(clog, 0, NULL, &node,
    495      1.1  rmind 		CTLFLAG_PERMANENT,
    496      1.1  rmind 		CTLTYPE_NODE, "pset",
    497      1.1  rmind 		SYSCTL_DESCR("Processor-set options"),
    498      1.1  rmind 		NULL, 0, NULL, 0,
    499      1.1  rmind 		CTL_KERN, CTL_CREATE, CTL_EOL);
    500      1.1  rmind 
    501      1.1  rmind 	if (node == NULL)
    502      1.1  rmind 		return;
    503      1.1  rmind 
    504      1.1  rmind 	sysctl_createv(clog, 0, &node, NULL,
    505      1.1  rmind 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
    506      1.1  rmind 		CTLTYPE_INT, "psets_max",
    507      1.1  rmind 		SYSCTL_DESCR("Maximal count of the processor-sets"),
    508      1.1  rmind 		sysctl_psets_max, 0, &psets_max, 0,
    509      1.1  rmind 		CTL_CREATE, CTL_EOL);
    510      1.1  rmind }
    511