sys_sched.c revision 1.22 1 1.22 ad /* $NetBSD: sys_sched.c,v 1.22 2008/05/25 23:34:24 ad Exp $ */
2 1.1 ad
3 1.5 rmind /*
4 1.5 rmind * Copyright (c) 2008, Mindaugas Rasiukevicius <rmind at NetBSD org>
5 1.1 ad * All rights reserved.
6 1.5 rmind *
7 1.1 ad * Redistribution and use in source and binary forms, with or without
8 1.1 ad * modification, are permitted provided that the following conditions
9 1.1 ad * are met:
10 1.1 ad * 1. Redistributions of source code must retain the above copyright
11 1.1 ad * notice, this list of conditions and the following disclaimer.
12 1.1 ad * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 ad * notice, this list of conditions and the following disclaimer in the
14 1.1 ad * documentation and/or other materials provided with the distribution.
15 1.1 ad *
16 1.16 rmind * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 1.16 rmind * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 1.16 rmind * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 1.16 rmind * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 1.16 rmind * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 1.16 rmind * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 1.16 rmind * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 1.16 rmind * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 1.16 rmind * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.16 rmind * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.16 rmind * SUCH DAMAGE.
27 1.1 ad */
28 1.1 ad
29 1.5 rmind /*
30 1.17 ad * System calls relating to the scheduler.
31 1.17 ad *
32 1.5 rmind * TODO:
33 1.5 rmind * - Handle pthread_setschedprio() as defined by POSIX;
34 1.5 rmind * - Handle sched_yield() case for SCHED_FIFO as defined by POSIX;
35 1.5 rmind */
36 1.5 rmind
37 1.1 ad #include <sys/cdefs.h>
38 1.22 ad __KERNEL_RCSID(0, "$NetBSD: sys_sched.c,v 1.22 2008/05/25 23:34:24 ad Exp $");
39 1.1 ad
40 1.1 ad #include <sys/param.h>
41 1.5 rmind
42 1.5 rmind #include <sys/cpu.h>
43 1.5 rmind #include <sys/kauth.h>
44 1.5 rmind #include <sys/kmem.h>
45 1.5 rmind #include <sys/lwp.h>
46 1.5 rmind #include <sys/mutex.h>
47 1.1 ad #include <sys/proc.h>
48 1.5 rmind #include <sys/pset.h>
49 1.5 rmind #include <sys/sched.h>
50 1.1 ad #include <sys/syscallargs.h>
51 1.5 rmind #include <sys/sysctl.h>
52 1.5 rmind #include <sys/systm.h>
53 1.5 rmind #include <sys/types.h>
54 1.5 rmind #include <sys/unistd.h>
55 1.5 rmind
56 1.5 rmind /*
57 1.7 rmind * Convert user priority or the in-kernel priority or convert the current
58 1.7 rmind * priority to the appropriate range according to the policy change.
59 1.7 rmind */
60 1.7 rmind static pri_t
61 1.7 rmind convert_pri(lwp_t *l, int policy, pri_t pri)
62 1.7 rmind {
63 1.7 rmind int delta = 0;
64 1.7 rmind
65 1.7 rmind switch (policy) {
66 1.7 rmind case SCHED_OTHER:
67 1.7 rmind delta = PRI_USER;
68 1.7 rmind break;
69 1.7 rmind case SCHED_FIFO:
70 1.7 rmind case SCHED_RR:
71 1.7 rmind delta = PRI_USER_RT;
72 1.7 rmind break;
73 1.7 rmind default:
74 1.7 rmind panic("upri_to_kpri");
75 1.7 rmind }
76 1.7 rmind
77 1.7 rmind if (pri != PRI_NONE) {
78 1.7 rmind /* Convert user priority to the in-kernel */
79 1.7 rmind KASSERT(pri >= SCHED_PRI_MIN && pri <= SCHED_PRI_MAX);
80 1.7 rmind return pri + delta;
81 1.7 rmind }
82 1.7 rmind if (l->l_class == policy)
83 1.7 rmind return l->l_priority;
84 1.7 rmind
85 1.7 rmind /* Change the current priority to the appropriate range */
86 1.7 rmind if (l->l_class == SCHED_OTHER) {
87 1.7 rmind KASSERT(policy == SCHED_FIFO || policy == SCHED_RR);
88 1.22 ad return delta;
89 1.7 rmind }
90 1.7 rmind if (policy == SCHED_OTHER) {
91 1.7 rmind KASSERT(l->l_class == SCHED_FIFO || l->l_class == SCHED_RR);
92 1.7 rmind return l->l_priority - delta;
93 1.7 rmind }
94 1.7 rmind KASSERT(l->l_class != SCHED_OTHER && policy != SCHED_OTHER);
95 1.7 rmind return l->l_class;
96 1.7 rmind }
97 1.7 rmind
98 1.5 rmind int
99 1.18 elad do_sched_setparam(pid_t pid, lwpid_t lid, int policy,
100 1.18 elad const struct sched_param *params)
101 1.5 rmind {
102 1.5 rmind struct proc *p;
103 1.5 rmind struct lwp *t;
104 1.18 elad pri_t pri;
105 1.5 rmind u_int lcnt;
106 1.5 rmind int error;
107 1.5 rmind
108 1.18 elad error = 0;
109 1.18 elad
110 1.18 elad pri = params->sched_priority;
111 1.7 rmind
112 1.7 rmind /* If no parameters specified, just return (this should not happen) */
113 1.7 rmind if (pri == PRI_NONE && policy == SCHED_NONE)
114 1.7 rmind return 0;
115 1.5 rmind
116 1.7 rmind /* Validate scheduling class */
117 1.7 rmind if (policy != SCHED_NONE && (policy < SCHED_OTHER || policy > SCHED_RR))
118 1.7 rmind return EINVAL;
119 1.5 rmind
120 1.7 rmind /* Validate priority */
121 1.7 rmind if (pri != PRI_NONE && (pri < SCHED_PRI_MIN || pri > SCHED_PRI_MAX))
122 1.7 rmind return EINVAL;
123 1.5 rmind
124 1.18 elad if (pid != 0) {
125 1.7 rmind /* Find the process */
126 1.20 ad mutex_enter(proc_lock);
127 1.20 ad p = p_find(pid, PFIND_LOCKED);
128 1.20 ad if (p == NULL) {
129 1.20 ad mutex_exit(proc_lock);
130 1.7 rmind return ESRCH;
131 1.20 ad }
132 1.21 ad mutex_enter(p->p_lock);
133 1.20 ad mutex_exit(proc_lock);
134 1.7 rmind /* Disallow modification of system processes */
135 1.17 ad if ((p->p_flag & PK_SYSTEM) != 0) {
136 1.21 ad mutex_exit(p->p_lock);
137 1.7 rmind return EPERM;
138 1.7 rmind }
139 1.7 rmind } else {
140 1.7 rmind /* Use the calling process */
141 1.18 elad p = curlwp->l_proc;
142 1.21 ad mutex_enter(p->p_lock);
143 1.5 rmind }
144 1.1 ad
145 1.5 rmind /* Find the LWP(s) */
146 1.5 rmind lcnt = 0;
147 1.5 rmind LIST_FOREACH(t, &p->p_lwps, l_sibling) {
148 1.7 rmind pri_t kpri;
149 1.12 elad int lpolicy;
150 1.5 rmind
151 1.5 rmind if (lid && lid != t->l_lid)
152 1.5 rmind continue;
153 1.15 drochner lcnt++;
154 1.7 rmind KASSERT(pri != PRI_NONE || policy != SCHED_NONE);
155 1.7 rmind lwp_lock(t);
156 1.7 rmind
157 1.12 elad if (policy == SCHED_NONE)
158 1.13 yamt lpolicy = t->l_class;
159 1.12 elad else
160 1.12 elad lpolicy = policy;
161 1.12 elad
162 1.7 rmind /*
163 1.7 rmind * Note that, priority may need to be changed to get into
164 1.7 rmind * the correct priority range of the new scheduling class.
165 1.7 rmind */
166 1.12 elad kpri = convert_pri(t, lpolicy, pri);
167 1.12 elad
168 1.12 elad /* Check the permission */
169 1.18 elad error = kauth_authorize_process(kauth_cred_get(),
170 1.12 elad KAUTH_PROCESS_SCHEDULER_SETPARAM, p, t, KAUTH_ARG(lpolicy),
171 1.12 elad KAUTH_ARG(kpri));
172 1.14 yamt if (error) {
173 1.14 yamt lwp_unlock(t);
174 1.12 elad break;
175 1.14 yamt }
176 1.5 rmind
177 1.5 rmind /* Set the scheduling class */
178 1.7 rmind if (policy != SCHED_NONE)
179 1.7 rmind t->l_class = policy;
180 1.5 rmind
181 1.5 rmind /* Change the priority */
182 1.7 rmind if (t->l_priority != kpri)
183 1.7 rmind lwp_changepri(t, kpri);
184 1.5 rmind
185 1.5 rmind lwp_unlock(t);
186 1.5 rmind }
187 1.21 ad mutex_exit(p->p_lock);
188 1.7 rmind return (lcnt == 0) ? ESRCH : error;
189 1.5 rmind }
190 1.5 rmind
191 1.5 rmind /*
192 1.18 elad * Set scheduling parameters.
193 1.5 rmind */
194 1.5 rmind int
195 1.18 elad sys__sched_setparam(struct lwp *l, const struct sys__sched_setparam_args *uap,
196 1.5 rmind register_t *retval)
197 1.5 rmind {
198 1.5 rmind /* {
199 1.5 rmind syscallarg(pid_t) pid;
200 1.5 rmind syscallarg(lwpid_t) lid;
201 1.18 elad syscallarg(int) policy;
202 1.18 elad syscallarg(const struct sched_param *) params;
203 1.5 rmind } */
204 1.18 elad struct sched_param params;
205 1.18 elad int error;
206 1.18 elad
207 1.18 elad /* Get the parameters from the user-space */
208 1.18 elad error = copyin(SCARG(uap, params), ¶ms, sizeof(params));
209 1.18 elad if (error)
210 1.18 elad goto out;
211 1.18 elad
212 1.18 elad error = do_sched_setparam(SCARG(uap, pid), SCARG(uap, lid),
213 1.18 elad SCARG(uap, policy), ¶ms);
214 1.18 elad
215 1.18 elad out:
216 1.18 elad return (error);
217 1.18 elad }
218 1.18 elad
219 1.18 elad int
220 1.18 elad do_sched_getparam(pid_t pid, lwpid_t lid, int *policy,
221 1.18 elad struct sched_param *params)
222 1.18 elad {
223 1.18 elad struct sched_param lparams;
224 1.5 rmind struct lwp *t;
225 1.18 elad int error, lpolicy;
226 1.5 rmind
227 1.16 rmind /* Locks the LWP */
228 1.18 elad t = lwp_find2(pid, lid);
229 1.21 ad if (t == NULL)
230 1.21 ad return ESRCH;
231 1.10 yamt
232 1.10 yamt /* Check the permission */
233 1.18 elad error = kauth_authorize_process(kauth_cred_get(),
234 1.11 elad KAUTH_PROCESS_SCHEDULER_GETPARAM, t->l_proc, NULL, NULL, NULL);
235 1.10 yamt if (error != 0) {
236 1.21 ad mutex_exit(t->l_proc->p_lock);
237 1.21 ad return error;
238 1.5 rmind }
239 1.10 yamt
240 1.21 ad lwp_lock(t);
241 1.18 elad lparams.sched_priority = t->l_priority;
242 1.18 elad lpolicy = t->l_class;
243 1.5 rmind
244 1.18 elad switch (lpolicy) {
245 1.5 rmind case SCHED_OTHER:
246 1.18 elad lparams.sched_priority -= PRI_USER;
247 1.5 rmind break;
248 1.5 rmind case SCHED_RR:
249 1.5 rmind case SCHED_FIFO:
250 1.18 elad lparams.sched_priority -= PRI_USER_RT;
251 1.5 rmind break;
252 1.5 rmind }
253 1.18 elad
254 1.18 elad if (policy != NULL)
255 1.18 elad *policy = lpolicy;
256 1.18 elad
257 1.18 elad if (params != NULL)
258 1.18 elad *params = lparams;
259 1.18 elad
260 1.21 ad lwp_unlock(t);
261 1.21 ad mutex_exit(t->l_proc->p_lock);
262 1.18 elad return error;
263 1.18 elad }
264 1.18 elad
265 1.18 elad /*
266 1.18 elad * Get scheduling parameters.
267 1.18 elad */
268 1.18 elad int
269 1.18 elad sys__sched_getparam(struct lwp *l, const struct sys__sched_getparam_args *uap,
270 1.18 elad register_t *retval)
271 1.18 elad {
272 1.18 elad /* {
273 1.18 elad syscallarg(pid_t) pid;
274 1.18 elad syscallarg(lwpid_t) lid;
275 1.18 elad syscallarg(int *) policy;
276 1.18 elad syscallarg(struct sched_param *) params;
277 1.18 elad } */
278 1.18 elad struct sched_param params;
279 1.18 elad int error, policy;
280 1.18 elad
281 1.18 elad error = do_sched_getparam(SCARG(uap, pid), SCARG(uap, lid), &policy,
282 1.18 elad ¶ms);
283 1.18 elad if (error)
284 1.18 elad goto out;
285 1.18 elad
286 1.18 elad error = copyout(¶ms, SCARG(uap, params), sizeof(params));
287 1.10 yamt if (error == 0 && SCARG(uap, policy) != NULL)
288 1.10 yamt error = copyout(&policy, SCARG(uap, policy), sizeof(int));
289 1.18 elad
290 1.18 elad out:
291 1.18 elad return (error);
292 1.5 rmind }
293 1.5 rmind
294 1.5 rmind /*
295 1.5 rmind * Set affinity.
296 1.5 rmind */
297 1.5 rmind int
298 1.5 rmind sys__sched_setaffinity(struct lwp *l,
299 1.5 rmind const struct sys__sched_setaffinity_args *uap, register_t *retval)
300 1.5 rmind {
301 1.5 rmind /* {
302 1.5 rmind syscallarg(pid_t) pid;
303 1.5 rmind syscallarg(lwpid_t) lid;
304 1.5 rmind syscallarg(size_t) size;
305 1.5 rmind syscallarg(void *) cpuset;
306 1.5 rmind } */
307 1.5 rmind cpuset_t *cpuset;
308 1.5 rmind struct cpu_info *ci = NULL;
309 1.5 rmind struct proc *p;
310 1.5 rmind struct lwp *t;
311 1.5 rmind CPU_INFO_ITERATOR cii;
312 1.5 rmind lwpid_t lid;
313 1.5 rmind u_int lcnt;
314 1.5 rmind int error;
315 1.5 rmind
316 1.5 rmind /* Allocate the CPU set, and get it from userspace */
317 1.5 rmind cpuset = kmem_zalloc(sizeof(cpuset_t), KM_SLEEP);
318 1.5 rmind error = copyin(SCARG(uap, cpuset), cpuset,
319 1.5 rmind min(SCARG(uap, size), sizeof(cpuset_t)));
320 1.5 rmind if (error)
321 1.5 rmind goto error;
322 1.5 rmind
323 1.5 rmind /* Look for a CPU in the set */
324 1.5 rmind for (CPU_INFO_FOREACH(cii, ci))
325 1.5 rmind if (CPU_ISSET(cpu_index(ci), cpuset))
326 1.5 rmind break;
327 1.5 rmind if (ci == NULL) {
328 1.5 rmind /* Empty set */
329 1.5 rmind kmem_free(cpuset, sizeof(cpuset_t));
330 1.5 rmind cpuset = NULL;
331 1.5 rmind }
332 1.5 rmind
333 1.7 rmind if (SCARG(uap, pid) != 0) {
334 1.7 rmind /* Find the process */
335 1.20 ad mutex_enter(proc_lock);
336 1.20 ad p = p_find(SCARG(uap, pid), PFIND_LOCKED);
337 1.7 rmind if (p == NULL) {
338 1.20 ad mutex_exit(proc_lock);
339 1.7 rmind error = ESRCH;
340 1.7 rmind goto error;
341 1.7 rmind }
342 1.21 ad mutex_enter(p->p_lock);
343 1.20 ad mutex_exit(proc_lock);
344 1.17 ad /* Disallow modification of system processes. */
345 1.17 ad if ((p->p_flag & PK_SYSTEM) != 0) {
346 1.21 ad mutex_exit(p->p_lock);
347 1.17 ad error = EPERM;
348 1.17 ad goto error;
349 1.17 ad }
350 1.7 rmind } else {
351 1.7 rmind /* Use the calling process */
352 1.7 rmind p = l->l_proc;
353 1.21 ad mutex_enter(p->p_lock);
354 1.5 rmind }
355 1.5 rmind
356 1.10 yamt /*
357 1.10 yamt * Check the permission.
358 1.10 yamt */
359 1.11 elad error = kauth_authorize_process(l->l_cred,
360 1.11 elad KAUTH_PROCESS_SCHEDULER_SETAFFINITY, p, NULL, NULL, NULL);
361 1.10 yamt if (error != 0) {
362 1.21 ad mutex_exit(p->p_lock);
363 1.10 yamt goto error;
364 1.10 yamt }
365 1.5 rmind
366 1.5 rmind /* Find the LWP(s) */
367 1.5 rmind lcnt = 0;
368 1.5 rmind lid = SCARG(uap, lid);
369 1.5 rmind LIST_FOREACH(t, &p->p_lwps, l_sibling) {
370 1.5 rmind if (lid && lid != t->l_lid)
371 1.5 rmind continue;
372 1.5 rmind lwp_lock(t);
373 1.5 rmind if (cpuset) {
374 1.5 rmind /* Set the affinity flag and new CPU set */
375 1.5 rmind t->l_flag |= LW_AFFINITY;
376 1.5 rmind memcpy(&t->l_affinity, cpuset, sizeof(cpuset_t));
377 1.5 rmind /* Migrate to another CPU, unlocks LWP */
378 1.5 rmind lwp_migrate(t, ci);
379 1.5 rmind } else {
380 1.5 rmind /* Unset the affinity flag */
381 1.5 rmind t->l_flag &= ~LW_AFFINITY;
382 1.5 rmind lwp_unlock(t);
383 1.5 rmind }
384 1.5 rmind lcnt++;
385 1.5 rmind }
386 1.21 ad mutex_exit(p->p_lock);
387 1.5 rmind if (lcnt == 0)
388 1.5 rmind error = ESRCH;
389 1.5 rmind error:
390 1.5 rmind if (cpuset != NULL)
391 1.5 rmind kmem_free(cpuset, sizeof(cpuset_t));
392 1.5 rmind return error;
393 1.5 rmind }
394 1.5 rmind
395 1.5 rmind /*
396 1.5 rmind * Get affinity.
397 1.5 rmind */
398 1.5 rmind int
399 1.5 rmind sys__sched_getaffinity(struct lwp *l,
400 1.5 rmind const struct sys__sched_getaffinity_args *uap, register_t *retval)
401 1.5 rmind {
402 1.5 rmind /* {
403 1.5 rmind syscallarg(pid_t) pid;
404 1.5 rmind syscallarg(lwpid_t) lid;
405 1.5 rmind syscallarg(size_t) size;
406 1.5 rmind syscallarg(void *) cpuset;
407 1.5 rmind } */
408 1.5 rmind struct lwp *t;
409 1.5 rmind void *cpuset;
410 1.5 rmind int error;
411 1.5 rmind
412 1.5 rmind if (SCARG(uap, size) <= 0)
413 1.5 rmind return EINVAL;
414 1.5 rmind cpuset = kmem_zalloc(sizeof(cpuset_t), KM_SLEEP);
415 1.5 rmind
416 1.16 rmind /* Locks the LWP */
417 1.16 rmind t = lwp_find2(SCARG(uap, pid), SCARG(uap, lid));
418 1.5 rmind if (t == NULL) {
419 1.5 rmind kmem_free(cpuset, sizeof(cpuset_t));
420 1.5 rmind return ESRCH;
421 1.5 rmind }
422 1.10 yamt /* Check the permission */
423 1.11 elad if (kauth_authorize_process(l->l_cred,
424 1.11 elad KAUTH_PROCESS_SCHEDULER_GETAFFINITY, t->l_proc, NULL, NULL, NULL)) {
425 1.21 ad mutex_exit(t->l_proc->p_lock);
426 1.10 yamt kmem_free(cpuset, sizeof(cpuset_t));
427 1.10 yamt return EPERM;
428 1.10 yamt }
429 1.21 ad lwp_lock(t);
430 1.5 rmind if (t->l_flag & LW_AFFINITY)
431 1.5 rmind memcpy(cpuset, &t->l_affinity, sizeof(cpuset_t));
432 1.5 rmind lwp_unlock(t);
433 1.21 ad mutex_exit(t->l_proc->p_lock);
434 1.5 rmind
435 1.5 rmind error = copyout(cpuset, SCARG(uap, cpuset),
436 1.5 rmind min(SCARG(uap, size), sizeof(cpuset_t)));
437 1.5 rmind
438 1.5 rmind kmem_free(cpuset, sizeof(cpuset_t));
439 1.5 rmind return error;
440 1.5 rmind }
441 1.5 rmind
442 1.5 rmind /*
443 1.5 rmind * Yield.
444 1.5 rmind */
445 1.1 ad int
446 1.4 dsl sys_sched_yield(struct lwp *l, const void *v, register_t *retval)
447 1.1 ad {
448 1.1 ad
449 1.1 ad yield();
450 1.1 ad return 0;
451 1.1 ad }
452 1.5 rmind
453 1.5 rmind /*
454 1.5 rmind * Sysctl nodes and initialization.
455 1.5 rmind */
456 1.5 rmind SYSCTL_SETUP(sysctl_sched_setup, "sysctl sched setup")
457 1.5 rmind {
458 1.5 rmind const struct sysctlnode *node = NULL;
459 1.5 rmind
460 1.5 rmind sysctl_createv(clog, 0, NULL, NULL,
461 1.5 rmind CTLFLAG_PERMANENT,
462 1.5 rmind CTLTYPE_NODE, "kern", NULL,
463 1.5 rmind NULL, 0, NULL, 0,
464 1.5 rmind CTL_KERN, CTL_EOL);
465 1.5 rmind sysctl_createv(clog, 0, NULL, NULL,
466 1.5 rmind CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
467 1.5 rmind CTLTYPE_INT, "posix_sched",
468 1.5 rmind SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
469 1.5 rmind "Process Scheduling option to which the "
470 1.5 rmind "system attempts to conform"),
471 1.5 rmind NULL, _POSIX_PRIORITY_SCHEDULING, NULL, 0,
472 1.5 rmind CTL_KERN, CTL_CREATE, CTL_EOL);
473 1.5 rmind sysctl_createv(clog, 0, NULL, &node,
474 1.5 rmind CTLFLAG_PERMANENT,
475 1.5 rmind CTLTYPE_NODE, "sched",
476 1.5 rmind SYSCTL_DESCR("Scheduler options"),
477 1.5 rmind NULL, 0, NULL, 0,
478 1.5 rmind CTL_KERN, CTL_CREATE, CTL_EOL);
479 1.5 rmind
480 1.5 rmind if (node == NULL)
481 1.5 rmind return;
482 1.5 rmind
483 1.5 rmind sysctl_createv(clog, 0, &node, NULL,
484 1.5 rmind CTLFLAG_PERMANENT | CTLFLAG_IMMEDIATE,
485 1.5 rmind CTLTYPE_INT, "pri_min",
486 1.5 rmind SYSCTL_DESCR("Minimal POSIX real-time priority"),
487 1.5 rmind NULL, SCHED_PRI_MIN, NULL, 0,
488 1.5 rmind CTL_CREATE, CTL_EOL);
489 1.5 rmind sysctl_createv(clog, 0, &node, NULL,
490 1.5 rmind CTLFLAG_PERMANENT | CTLFLAG_IMMEDIATE,
491 1.5 rmind CTLTYPE_INT, "pri_max",
492 1.19 njoly SYSCTL_DESCR("Maximal POSIX real-time priority"),
493 1.5 rmind NULL, SCHED_PRI_MAX, NULL, 0,
494 1.5 rmind CTL_CREATE, CTL_EOL);
495 1.5 rmind }
496