Home | History | Annotate | Line # | Download | only in kern
sys_sched.c revision 1.38
      1  1.38     rmind /*	$NetBSD: sys_sched.c,v 1.38 2011/08/07 21:38:32 rmind Exp $	*/
      2   1.1        ad 
      3   1.5     rmind /*
      4  1.36     rmind  * Copyright (c) 2008, 2011 Mindaugas Rasiukevicius <rmind at NetBSD org>
      5   1.1        ad  * All rights reserved.
      6   1.5     rmind  *
      7   1.1        ad  * Redistribution and use in source and binary forms, with or without
      8   1.1        ad  * modification, are permitted provided that the following conditions
      9   1.1        ad  * are met:
     10   1.1        ad  * 1. Redistributions of source code must retain the above copyright
     11   1.1        ad  *    notice, this list of conditions and the following disclaimer.
     12   1.1        ad  * 2. Redistributions in binary form must reproduce the above copyright
     13   1.1        ad  *    notice, this list of conditions and the following disclaimer in the
     14   1.1        ad  *    documentation and/or other materials provided with the distribution.
     15   1.1        ad  *
     16  1.16     rmind  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17  1.16     rmind  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18  1.16     rmind  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19  1.16     rmind  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20  1.16     rmind  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21  1.16     rmind  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22  1.16     rmind  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23  1.16     rmind  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24  1.16     rmind  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  1.16     rmind  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  1.16     rmind  * SUCH DAMAGE.
     27   1.1        ad  */
     28   1.1        ad 
     29   1.5     rmind /*
     30  1.17        ad  * System calls relating to the scheduler.
     31  1.17        ad  *
     32  1.31     rmind  * Lock order:
     33  1.31     rmind  *
     34  1.31     rmind  *	cpu_lock ->
     35  1.31     rmind  *	    proc_lock ->
     36  1.31     rmind  *		proc_t::p_lock ->
     37  1.31     rmind  *		    lwp_t::lwp_lock
     38  1.31     rmind  *
     39   1.5     rmind  * TODO:
     40   1.5     rmind  *  - Handle pthread_setschedprio() as defined by POSIX;
     41   1.5     rmind  *  - Handle sched_yield() case for SCHED_FIFO as defined by POSIX;
     42   1.5     rmind  */
     43   1.5     rmind 
     44   1.1        ad #include <sys/cdefs.h>
     45  1.38     rmind __KERNEL_RCSID(0, "$NetBSD: sys_sched.c,v 1.38 2011/08/07 21:38:32 rmind Exp $");
     46   1.1        ad 
     47   1.1        ad #include <sys/param.h>
     48   1.5     rmind 
     49   1.5     rmind #include <sys/cpu.h>
     50   1.5     rmind #include <sys/kauth.h>
     51   1.5     rmind #include <sys/kmem.h>
     52   1.5     rmind #include <sys/lwp.h>
     53   1.5     rmind #include <sys/mutex.h>
     54   1.1        ad #include <sys/proc.h>
     55   1.5     rmind #include <sys/pset.h>
     56  1.28  wrstuden #include <sys/sa.h>
     57  1.28  wrstuden #include <sys/savar.h>
     58   1.5     rmind #include <sys/sched.h>
     59   1.1        ad #include <sys/syscallargs.h>
     60   1.5     rmind #include <sys/sysctl.h>
     61   1.5     rmind #include <sys/systm.h>
     62   1.5     rmind #include <sys/types.h>
     63   1.5     rmind #include <sys/unistd.h>
     64   1.5     rmind 
     65  1.28  wrstuden #include "opt_sa.h"
     66  1.28  wrstuden 
     67  1.34      elad static struct sysctllog *sched_sysctl_log;
     68  1.34      elad static kauth_listener_t sched_listener;
     69  1.34      elad 
     70   1.5     rmind /*
     71   1.7     rmind  * Convert user priority or the in-kernel priority or convert the current
     72   1.7     rmind  * priority to the appropriate range according to the policy change.
     73   1.7     rmind  */
     74   1.7     rmind static pri_t
     75   1.7     rmind convert_pri(lwp_t *l, int policy, pri_t pri)
     76   1.7     rmind {
     77   1.7     rmind 
     78  1.29     rmind 	/* Convert user priority to the in-kernel */
     79   1.7     rmind 	if (pri != PRI_NONE) {
     80  1.29     rmind 		/* Only for real-time threads */
     81   1.7     rmind 		KASSERT(pri >= SCHED_PRI_MIN && pri <= SCHED_PRI_MAX);
     82  1.29     rmind 		KASSERT(policy != SCHED_OTHER);
     83  1.29     rmind 		return PRI_USER_RT + pri;
     84   1.7     rmind 	}
     85  1.29     rmind 
     86  1.29     rmind 	/* Neither policy, nor priority change */
     87   1.7     rmind 	if (l->l_class == policy)
     88   1.7     rmind 		return l->l_priority;
     89   1.7     rmind 
     90  1.29     rmind 	/* Time-sharing -> real-time */
     91   1.7     rmind 	if (l->l_class == SCHED_OTHER) {
     92   1.7     rmind 		KASSERT(policy == SCHED_FIFO || policy == SCHED_RR);
     93  1.29     rmind 		return PRI_USER_RT;
     94   1.7     rmind 	}
     95  1.29     rmind 
     96  1.29     rmind 	/* Real-time -> time-sharing */
     97   1.7     rmind 	if (policy == SCHED_OTHER) {
     98   1.7     rmind 		KASSERT(l->l_class == SCHED_FIFO || l->l_class == SCHED_RR);
     99  1.29     rmind 		return l->l_priority - PRI_USER_RT;
    100   1.7     rmind 	}
    101  1.29     rmind 
    102  1.29     rmind 	/* Real-time -> real-time */
    103  1.29     rmind 	return l->l_priority;
    104   1.7     rmind }
    105   1.7     rmind 
    106   1.5     rmind int
    107  1.18      elad do_sched_setparam(pid_t pid, lwpid_t lid, int policy,
    108  1.18      elad     const struct sched_param *params)
    109   1.5     rmind {
    110   1.5     rmind 	struct proc *p;
    111   1.5     rmind 	struct lwp *t;
    112  1.18      elad 	pri_t pri;
    113   1.5     rmind 	u_int lcnt;
    114   1.5     rmind 	int error;
    115   1.5     rmind 
    116  1.18      elad 	error = 0;
    117  1.18      elad 
    118  1.18      elad 	pri = params->sched_priority;
    119   1.7     rmind 
    120   1.7     rmind 	/* If no parameters specified, just return (this should not happen) */
    121   1.7     rmind 	if (pri == PRI_NONE && policy == SCHED_NONE)
    122   1.7     rmind 		return 0;
    123   1.5     rmind 
    124   1.7     rmind 	/* Validate scheduling class */
    125   1.7     rmind 	if (policy != SCHED_NONE && (policy < SCHED_OTHER || policy > SCHED_RR))
    126   1.7     rmind 		return EINVAL;
    127   1.5     rmind 
    128   1.7     rmind 	/* Validate priority */
    129   1.7     rmind 	if (pri != PRI_NONE && (pri < SCHED_PRI_MIN || pri > SCHED_PRI_MAX))
    130   1.7     rmind 		return EINVAL;
    131   1.5     rmind 
    132  1.18      elad 	if (pid != 0) {
    133   1.7     rmind 		/* Find the process */
    134  1.20        ad 		mutex_enter(proc_lock);
    135  1.35     rmind 		p = proc_find(pid);
    136  1.20        ad 		if (p == NULL) {
    137  1.20        ad 			mutex_exit(proc_lock);
    138   1.7     rmind 			return ESRCH;
    139  1.20        ad 		}
    140  1.21        ad 		mutex_enter(p->p_lock);
    141  1.20        ad 		mutex_exit(proc_lock);
    142   1.7     rmind 		/* Disallow modification of system processes */
    143  1.17        ad 		if ((p->p_flag & PK_SYSTEM) != 0) {
    144  1.21        ad 			mutex_exit(p->p_lock);
    145   1.7     rmind 			return EPERM;
    146   1.7     rmind 		}
    147   1.7     rmind 	} else {
    148   1.7     rmind 		/* Use the calling process */
    149  1.18      elad 		p = curlwp->l_proc;
    150  1.21        ad 		mutex_enter(p->p_lock);
    151   1.5     rmind 	}
    152   1.1        ad 
    153   1.5     rmind 	/* Find the LWP(s) */
    154   1.5     rmind 	lcnt = 0;
    155   1.5     rmind 	LIST_FOREACH(t, &p->p_lwps, l_sibling) {
    156   1.7     rmind 		pri_t kpri;
    157  1.12      elad 		int lpolicy;
    158   1.5     rmind 
    159   1.5     rmind 		if (lid && lid != t->l_lid)
    160   1.5     rmind 			continue;
    161  1.29     rmind 
    162  1.15  drochner 		lcnt++;
    163   1.7     rmind 		lwp_lock(t);
    164  1.29     rmind 		lpolicy = (policy == SCHED_NONE) ? t->l_class : policy;
    165  1.29     rmind 
    166  1.29     rmind 		/* Disallow setting of priority for SCHED_OTHER threads */
    167  1.30     rmind 		if (lpolicy == SCHED_OTHER && pri != PRI_NONE) {
    168  1.29     rmind 			lwp_unlock(t);
    169  1.29     rmind 			error = EINVAL;
    170  1.29     rmind 			break;
    171  1.29     rmind 		}
    172   1.7     rmind 
    173  1.29     rmind 		/* Convert priority, if needed */
    174  1.12      elad 		kpri = convert_pri(t, lpolicy, pri);
    175  1.12      elad 
    176  1.12      elad 		/* Check the permission */
    177  1.18      elad 		error = kauth_authorize_process(kauth_cred_get(),
    178  1.12      elad 		    KAUTH_PROCESS_SCHEDULER_SETPARAM, p, t, KAUTH_ARG(lpolicy),
    179  1.12      elad 		    KAUTH_ARG(kpri));
    180  1.14      yamt 		if (error) {
    181  1.14      yamt 			lwp_unlock(t);
    182  1.12      elad 			break;
    183  1.14      yamt 		}
    184   1.5     rmind 
    185  1.29     rmind 		/* Set the scheduling class, change the priority */
    186  1.29     rmind 		t->l_class = lpolicy;
    187  1.29     rmind 		lwp_changepri(t, kpri);
    188   1.5     rmind 		lwp_unlock(t);
    189   1.5     rmind 	}
    190  1.21        ad 	mutex_exit(p->p_lock);
    191   1.7     rmind 	return (lcnt == 0) ? ESRCH : error;
    192   1.5     rmind }
    193   1.5     rmind 
    194   1.5     rmind /*
    195  1.18      elad  * Set scheduling parameters.
    196   1.5     rmind  */
    197   1.5     rmind int
    198  1.18      elad sys__sched_setparam(struct lwp *l, const struct sys__sched_setparam_args *uap,
    199   1.5     rmind     register_t *retval)
    200   1.5     rmind {
    201   1.5     rmind 	/* {
    202   1.5     rmind 		syscallarg(pid_t) pid;
    203   1.5     rmind 		syscallarg(lwpid_t) lid;
    204  1.18      elad 		syscallarg(int) policy;
    205  1.18      elad 		syscallarg(const struct sched_param *) params;
    206   1.5     rmind 	} */
    207  1.18      elad 	struct sched_param params;
    208  1.18      elad 	int error;
    209  1.18      elad 
    210  1.18      elad 	/* Get the parameters from the user-space */
    211  1.18      elad 	error = copyin(SCARG(uap, params), &params, sizeof(params));
    212  1.18      elad 	if (error)
    213  1.18      elad 		goto out;
    214  1.18      elad 
    215  1.18      elad 	error = do_sched_setparam(SCARG(uap, pid), SCARG(uap, lid),
    216  1.18      elad 	    SCARG(uap, policy), &params);
    217  1.31     rmind out:
    218  1.31     rmind 	return error;
    219  1.18      elad }
    220  1.18      elad 
    221  1.18      elad int
    222  1.18      elad do_sched_getparam(pid_t pid, lwpid_t lid, int *policy,
    223  1.18      elad     struct sched_param *params)
    224  1.18      elad {
    225  1.18      elad 	struct sched_param lparams;
    226   1.5     rmind 	struct lwp *t;
    227  1.18      elad 	int error, lpolicy;
    228   1.5     rmind 
    229  1.16     rmind 	/* Locks the LWP */
    230  1.18      elad 	t = lwp_find2(pid, lid);
    231  1.21        ad 	if (t == NULL)
    232  1.21        ad 		return ESRCH;
    233  1.10      yamt 
    234  1.10      yamt 	/* Check the permission */
    235  1.18      elad 	error = kauth_authorize_process(kauth_cred_get(),
    236  1.11      elad 	    KAUTH_PROCESS_SCHEDULER_GETPARAM, t->l_proc, NULL, NULL, NULL);
    237  1.10      yamt 	if (error != 0) {
    238  1.21        ad 		mutex_exit(t->l_proc->p_lock);
    239  1.21        ad 		return error;
    240   1.5     rmind 	}
    241  1.10      yamt 
    242  1.21        ad 	lwp_lock(t);
    243  1.18      elad 	lparams.sched_priority = t->l_priority;
    244  1.18      elad 	lpolicy = t->l_class;
    245   1.5     rmind 
    246  1.18      elad 	switch (lpolicy) {
    247   1.5     rmind 	case SCHED_OTHER:
    248  1.18      elad 		lparams.sched_priority -= PRI_USER;
    249   1.5     rmind 		break;
    250   1.5     rmind 	case SCHED_RR:
    251   1.5     rmind 	case SCHED_FIFO:
    252  1.18      elad 		lparams.sched_priority -= PRI_USER_RT;
    253   1.5     rmind 		break;
    254   1.5     rmind 	}
    255  1.18      elad 
    256  1.18      elad 	if (policy != NULL)
    257  1.18      elad 		*policy = lpolicy;
    258  1.18      elad 
    259  1.18      elad 	if (params != NULL)
    260  1.18      elad 		*params = lparams;
    261  1.18      elad 
    262  1.21        ad 	lwp_unlock(t);
    263  1.21        ad 	mutex_exit(t->l_proc->p_lock);
    264  1.18      elad 	return error;
    265  1.18      elad }
    266  1.18      elad 
    267  1.18      elad /*
    268  1.18      elad  * Get scheduling parameters.
    269  1.18      elad  */
    270  1.18      elad int
    271  1.18      elad sys__sched_getparam(struct lwp *l, const struct sys__sched_getparam_args *uap,
    272  1.18      elad     register_t *retval)
    273  1.18      elad {
    274  1.18      elad 	/* {
    275  1.18      elad 		syscallarg(pid_t) pid;
    276  1.18      elad 		syscallarg(lwpid_t) lid;
    277  1.18      elad 		syscallarg(int *) policy;
    278  1.18      elad 		syscallarg(struct sched_param *) params;
    279  1.18      elad 	} */
    280  1.18      elad 	struct sched_param params;
    281  1.18      elad 	int error, policy;
    282  1.18      elad 
    283  1.18      elad 	error = do_sched_getparam(SCARG(uap, pid), SCARG(uap, lid), &policy,
    284  1.18      elad 	    &params);
    285  1.18      elad 	if (error)
    286  1.18      elad 		goto out;
    287  1.18      elad 
    288  1.18      elad 	error = copyout(&params, SCARG(uap, params), sizeof(params));
    289  1.10      yamt 	if (error == 0 && SCARG(uap, policy) != NULL)
    290  1.10      yamt 		error = copyout(&policy, SCARG(uap, policy), sizeof(int));
    291  1.31     rmind out:
    292  1.31     rmind 	return error;
    293   1.5     rmind }
    294   1.5     rmind 
    295  1.31     rmind /*
    296  1.31     rmind  * Allocate the CPU set, and get it from userspace.
    297  1.31     rmind  */
    298  1.23  christos static int
    299  1.26  christos genkcpuset(kcpuset_t **dset, const cpuset_t *sset, size_t size)
    300  1.23  christos {
    301  1.36     rmind 	kcpuset_t *kset;
    302  1.23  christos 	int error;
    303  1.23  christos 
    304  1.38     rmind 	kcpuset_create(&kset, false);
    305  1.36     rmind 	error = kcpuset_copyin(sset, kset, size);
    306  1.36     rmind 	if (error) {
    307  1.36     rmind 		kcpuset_unuse(kset, NULL);
    308  1.36     rmind 	} else {
    309  1.36     rmind 		*dset = kset;
    310  1.36     rmind 	}
    311  1.23  christos 	return error;
    312  1.23  christos }
    313  1.23  christos 
    314   1.5     rmind /*
    315   1.5     rmind  * Set affinity.
    316   1.5     rmind  */
    317   1.5     rmind int
    318   1.5     rmind sys__sched_setaffinity(struct lwp *l,
    319   1.5     rmind     const struct sys__sched_setaffinity_args *uap, register_t *retval)
    320   1.5     rmind {
    321   1.5     rmind 	/* {
    322   1.5     rmind 		syscallarg(pid_t) pid;
    323   1.5     rmind 		syscallarg(lwpid_t) lid;
    324   1.5     rmind 		syscallarg(size_t) size;
    325  1.23  christos 		syscallarg(const cpuset_t *) cpuset;
    326   1.5     rmind 	} */
    327  1.36     rmind 	kcpuset_t *kcset, *kcpulst = NULL;
    328  1.32     rmind 	struct cpu_info *ici, *ci;
    329   1.5     rmind 	struct proc *p;
    330   1.5     rmind 	struct lwp *t;
    331   1.5     rmind 	CPU_INFO_ITERATOR cii;
    332  1.32     rmind 	bool alloff;
    333   1.5     rmind 	lwpid_t lid;
    334   1.5     rmind 	u_int lcnt;
    335   1.5     rmind 	int error;
    336   1.5     rmind 
    337  1.36     rmind 	error = genkcpuset(&kcset, SCARG(uap, cpuset), SCARG(uap, size));
    338  1.31     rmind 	if (error)
    339  1.23  christos 		return error;
    340   1.5     rmind 
    341  1.31     rmind 	/*
    342  1.32     rmind 	 * Traverse _each_ CPU to:
    343  1.32     rmind 	 *  - Check that CPUs in the mask have no assigned processor set.
    344  1.32     rmind 	 *  - Check that at least one CPU from the mask is online.
    345  1.32     rmind 	 *  - Find the first target CPU to migrate.
    346  1.31     rmind 	 *
    347  1.32     rmind 	 * To avoid the race with CPU online/offline calls and processor sets,
    348  1.32     rmind 	 * cpu_lock will be locked for the entire operation.
    349  1.31     rmind 	 */
    350  1.32     rmind 	ci = NULL;
    351  1.32     rmind 	alloff = false;
    352  1.31     rmind 	mutex_enter(&cpu_lock);
    353  1.32     rmind 	for (CPU_INFO_FOREACH(cii, ici)) {
    354  1.32     rmind 		struct schedstate_percpu *ispc;
    355  1.31     rmind 
    356  1.36     rmind 		if (kcpuset_isset(kcset, cpu_index(ici)) == 0)
    357  1.31     rmind 			continue;
    358  1.32     rmind 
    359  1.32     rmind 		ispc = &ici->ci_schedstate;
    360  1.32     rmind 		/* Check that CPU is not in the processor-set */
    361  1.32     rmind 		if (ispc->spc_psid != PS_NONE) {
    362  1.32     rmind 			error = EPERM;
    363  1.32     rmind 			goto out;
    364  1.32     rmind 		}
    365  1.32     rmind 		/* Skip offline CPUs */
    366  1.32     rmind 		if (ispc->spc_flags & SPCF_OFFLINE) {
    367  1.32     rmind 			alloff = true;
    368  1.31     rmind 			continue;
    369  1.24     rmind 		}
    370  1.32     rmind 		/* Target CPU to migrate */
    371  1.32     rmind 		if (ci == NULL) {
    372  1.32     rmind 			ci = ici;
    373  1.32     rmind 		}
    374  1.23  christos 	}
    375   1.5     rmind 	if (ci == NULL) {
    376  1.32     rmind 		if (alloff) {
    377  1.31     rmind 			/* All CPUs in the set are offline */
    378  1.31     rmind 			error = EPERM;
    379  1.31     rmind 			goto out;
    380  1.31     rmind 		}
    381   1.5     rmind 		/* Empty set */
    382  1.36     rmind 		kcpuset_unuse(kcset, &kcpulst);
    383  1.36     rmind 		kcset = NULL;
    384   1.5     rmind 	}
    385   1.5     rmind 
    386   1.7     rmind 	if (SCARG(uap, pid) != 0) {
    387   1.7     rmind 		/* Find the process */
    388  1.20        ad 		mutex_enter(proc_lock);
    389  1.35     rmind 		p = proc_find(SCARG(uap, pid));
    390   1.7     rmind 		if (p == NULL) {
    391  1.20        ad 			mutex_exit(proc_lock);
    392   1.7     rmind 			error = ESRCH;
    393  1.23  christos 			goto out;
    394   1.7     rmind 		}
    395  1.21        ad 		mutex_enter(p->p_lock);
    396  1.20        ad 		mutex_exit(proc_lock);
    397  1.17        ad 		/* Disallow modification of system processes. */
    398  1.17        ad 		if ((p->p_flag & PK_SYSTEM) != 0) {
    399  1.21        ad 			mutex_exit(p->p_lock);
    400  1.17        ad 			error = EPERM;
    401  1.23  christos 			goto out;
    402  1.17        ad 		}
    403   1.7     rmind 	} else {
    404   1.7     rmind 		/* Use the calling process */
    405   1.7     rmind 		p = l->l_proc;
    406  1.21        ad 		mutex_enter(p->p_lock);
    407   1.5     rmind 	}
    408   1.5     rmind 
    409  1.10      yamt 	/*
    410  1.10      yamt 	 * Check the permission.
    411  1.10      yamt 	 */
    412  1.11      elad 	error = kauth_authorize_process(l->l_cred,
    413  1.11      elad 	    KAUTH_PROCESS_SCHEDULER_SETAFFINITY, p, NULL, NULL, NULL);
    414  1.10      yamt 	if (error != 0) {
    415  1.21        ad 		mutex_exit(p->p_lock);
    416  1.23  christos 		goto out;
    417  1.10      yamt 	}
    418   1.5     rmind 
    419  1.28  wrstuden #ifdef KERN_SA
    420  1.31     rmind 	/* Changing the affinity of a SA process is not supported */
    421  1.28  wrstuden 	if ((p->p_sflag & (PS_SA | PS_WEXIT)) != 0 || p->p_sa != NULL) {
    422  1.28  wrstuden 		mutex_exit(p->p_lock);
    423  1.28  wrstuden 		error = EINVAL;
    424  1.28  wrstuden 		goto out;
    425  1.28  wrstuden 	}
    426  1.28  wrstuden #endif
    427  1.28  wrstuden 
    428  1.37     rmind 	/* Iterate through LWP(s). */
    429   1.5     rmind 	lcnt = 0;
    430   1.5     rmind 	lid = SCARG(uap, lid);
    431   1.5     rmind 	LIST_FOREACH(t, &p->p_lwps, l_sibling) {
    432  1.37     rmind 		if (lid && lid != t->l_lid) {
    433   1.5     rmind 			continue;
    434  1.37     rmind 		}
    435   1.5     rmind 		lwp_lock(t);
    436  1.37     rmind 		/* No affinity for zombie LWPs. */
    437  1.27     rmind 		if (t->l_stat == LSZOMB) {
    438  1.27     rmind 			lwp_unlock(t);
    439  1.27     rmind 			continue;
    440  1.27     rmind 		}
    441  1.37     rmind 		/* First, release existing affinity, if any. */
    442  1.37     rmind 		if (t->l_affinity) {
    443  1.37     rmind 			kcpuset_unuse(t->l_affinity, &kcpulst);
    444  1.37     rmind 		}
    445  1.36     rmind 		if (kcset) {
    446  1.37     rmind 			/*
    447  1.37     rmind 			 * Hold a reference on affinity mask, assign mask to
    448  1.37     rmind 			 * LWP and migrate it to another CPU (unlocks LWP).
    449  1.37     rmind 			 */
    450  1.36     rmind 			kcpuset_use(kcset);
    451  1.36     rmind 			t->l_affinity = kcset;
    452   1.5     rmind 			lwp_migrate(t, ci);
    453   1.5     rmind 		} else {
    454  1.37     rmind 			/* Old affinity mask is released, just clear. */
    455  1.23  christos 			t->l_affinity = NULL;
    456   1.5     rmind 			lwp_unlock(t);
    457   1.5     rmind 		}
    458   1.5     rmind 		lcnt++;
    459   1.5     rmind 	}
    460  1.21        ad 	mutex_exit(p->p_lock);
    461  1.36     rmind 	if (lcnt == 0) {
    462   1.5     rmind 		error = ESRCH;
    463  1.36     rmind 	}
    464  1.23  christos out:
    465  1.31     rmind 	mutex_exit(&cpu_lock);
    466  1.36     rmind 
    467  1.36     rmind 	/*
    468  1.36     rmind 	 * Drop the initial reference (LWPs, if any, have the ownership now),
    469  1.36     rmind 	 * and destroy whatever is in the G/C list, if filled.
    470  1.36     rmind 	 */
    471  1.36     rmind 	if (kcset) {
    472  1.36     rmind 		kcpuset_unuse(kcset, &kcpulst);
    473  1.36     rmind 	}
    474  1.36     rmind 	if (kcpulst) {
    475  1.36     rmind 		kcpuset_destroy(kcpulst);
    476  1.36     rmind 	}
    477   1.5     rmind 	return error;
    478   1.5     rmind }
    479   1.5     rmind 
    480   1.5     rmind /*
    481   1.5     rmind  * Get affinity.
    482   1.5     rmind  */
    483   1.5     rmind int
    484   1.5     rmind sys__sched_getaffinity(struct lwp *l,
    485   1.5     rmind     const struct sys__sched_getaffinity_args *uap, register_t *retval)
    486   1.5     rmind {
    487   1.5     rmind 	/* {
    488   1.5     rmind 		syscallarg(pid_t) pid;
    489   1.5     rmind 		syscallarg(lwpid_t) lid;
    490   1.5     rmind 		syscallarg(size_t) size;
    491  1.23  christos 		syscallarg(cpuset_t *) cpuset;
    492   1.5     rmind 	} */
    493   1.5     rmind 	struct lwp *t;
    494  1.36     rmind 	kcpuset_t *kcset;
    495   1.5     rmind 	int error;
    496   1.5     rmind 
    497  1.36     rmind 	error = genkcpuset(&kcset, SCARG(uap, cpuset), SCARG(uap, size));
    498  1.31     rmind 	if (error)
    499  1.23  christos 		return error;
    500   1.5     rmind 
    501  1.16     rmind 	/* Locks the LWP */
    502  1.16     rmind 	t = lwp_find2(SCARG(uap, pid), SCARG(uap, lid));
    503   1.5     rmind 	if (t == NULL) {
    504  1.23  christos 		error = ESRCH;
    505  1.23  christos 		goto out;
    506   1.5     rmind 	}
    507  1.10      yamt 	/* Check the permission */
    508  1.11      elad 	if (kauth_authorize_process(l->l_cred,
    509  1.11      elad 	    KAUTH_PROCESS_SCHEDULER_GETAFFINITY, t->l_proc, NULL, NULL, NULL)) {
    510  1.21        ad 		mutex_exit(t->l_proc->p_lock);
    511  1.23  christos 		error = EPERM;
    512  1.23  christos 		goto out;
    513  1.10      yamt 	}
    514  1.21        ad 	lwp_lock(t);
    515  1.37     rmind 	if (t->l_affinity) {
    516  1.36     rmind 		kcpuset_copy(kcset, t->l_affinity);
    517  1.36     rmind 	} else {
    518  1.36     rmind 		kcpuset_zero(kcset);
    519  1.36     rmind 	}
    520   1.5     rmind 	lwp_unlock(t);
    521  1.21        ad 	mutex_exit(t->l_proc->p_lock);
    522   1.5     rmind 
    523  1.36     rmind 	error = kcpuset_copyout(kcset, SCARG(uap, cpuset), SCARG(uap, size));
    524  1.23  christos out:
    525  1.36     rmind 	kcpuset_unuse(kcset, NULL);
    526   1.5     rmind 	return error;
    527   1.5     rmind }
    528   1.5     rmind 
    529   1.5     rmind /*
    530   1.5     rmind  * Yield.
    531   1.5     rmind  */
    532   1.1        ad int
    533   1.4       dsl sys_sched_yield(struct lwp *l, const void *v, register_t *retval)
    534   1.1        ad {
    535   1.1        ad 
    536   1.1        ad 	yield();
    537  1.28  wrstuden #ifdef KERN_SA
    538  1.28  wrstuden 	if (l->l_flag & LW_SA) {
    539  1.28  wrstuden 		sa_preempt(l);
    540  1.28  wrstuden 	}
    541  1.28  wrstuden #endif
    542   1.1        ad 	return 0;
    543   1.1        ad }
    544   1.5     rmind 
    545   1.5     rmind /*
    546   1.5     rmind  * Sysctl nodes and initialization.
    547   1.5     rmind  */
    548  1.34      elad static void
    549  1.34      elad sysctl_sched_setup(struct sysctllog **clog)
    550   1.5     rmind {
    551   1.5     rmind 	const struct sysctlnode *node = NULL;
    552   1.5     rmind 
    553   1.5     rmind 	sysctl_createv(clog, 0, NULL, NULL,
    554   1.5     rmind 		CTLFLAG_PERMANENT,
    555   1.5     rmind 		CTLTYPE_NODE, "kern", NULL,
    556   1.5     rmind 		NULL, 0, NULL, 0,
    557   1.5     rmind 		CTL_KERN, CTL_EOL);
    558   1.5     rmind 	sysctl_createv(clog, 0, NULL, NULL,
    559   1.5     rmind 		CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
    560   1.5     rmind 		CTLTYPE_INT, "posix_sched",
    561   1.5     rmind 		SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
    562   1.5     rmind 			     "Process Scheduling option to which the "
    563   1.5     rmind 			     "system attempts to conform"),
    564   1.5     rmind 		NULL, _POSIX_PRIORITY_SCHEDULING, NULL, 0,
    565   1.5     rmind 		CTL_KERN, CTL_CREATE, CTL_EOL);
    566   1.5     rmind 	sysctl_createv(clog, 0, NULL, &node,
    567   1.5     rmind 		CTLFLAG_PERMANENT,
    568   1.5     rmind 		CTLTYPE_NODE, "sched",
    569   1.5     rmind 		SYSCTL_DESCR("Scheduler options"),
    570   1.5     rmind 		NULL, 0, NULL, 0,
    571   1.5     rmind 		CTL_KERN, CTL_CREATE, CTL_EOL);
    572   1.5     rmind 
    573   1.5     rmind 	if (node == NULL)
    574   1.5     rmind 		return;
    575   1.5     rmind 
    576   1.5     rmind 	sysctl_createv(clog, 0, &node, NULL,
    577   1.5     rmind 		CTLFLAG_PERMANENT | CTLFLAG_IMMEDIATE,
    578   1.5     rmind 		CTLTYPE_INT, "pri_min",
    579   1.5     rmind 		SYSCTL_DESCR("Minimal POSIX real-time priority"),
    580   1.5     rmind 		NULL, SCHED_PRI_MIN, NULL, 0,
    581   1.5     rmind 		CTL_CREATE, CTL_EOL);
    582   1.5     rmind 	sysctl_createv(clog, 0, &node, NULL,
    583   1.5     rmind 		CTLFLAG_PERMANENT | CTLFLAG_IMMEDIATE,
    584   1.5     rmind 		CTLTYPE_INT, "pri_max",
    585  1.19     njoly 		SYSCTL_DESCR("Maximal POSIX real-time priority"),
    586   1.5     rmind 		NULL, SCHED_PRI_MAX, NULL, 0,
    587   1.5     rmind 		CTL_CREATE, CTL_EOL);
    588   1.5     rmind }
    589  1.34      elad 
    590  1.34      elad static int
    591  1.34      elad sched_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    592  1.34      elad     void *arg0, void *arg1, void *arg2, void *arg3)
    593  1.34      elad {
    594  1.34      elad 	struct proc *p;
    595  1.34      elad 	int result;
    596  1.34      elad 
    597  1.34      elad 	result = KAUTH_RESULT_DEFER;
    598  1.34      elad 	p = arg0;
    599  1.34      elad 
    600  1.34      elad 	switch (action) {
    601  1.34      elad 	case KAUTH_PROCESS_SCHEDULER_GETPARAM:
    602  1.34      elad 		if (kauth_cred_uidmatch(cred, p->p_cred))
    603  1.34      elad 			result = KAUTH_RESULT_ALLOW;
    604  1.34      elad 		break;
    605  1.34      elad 
    606  1.34      elad 	case KAUTH_PROCESS_SCHEDULER_SETPARAM:
    607  1.34      elad 		if (kauth_cred_uidmatch(cred, p->p_cred)) {
    608  1.34      elad 			struct lwp *l;
    609  1.34      elad 			int policy;
    610  1.34      elad 			pri_t priority;
    611  1.34      elad 
    612  1.34      elad 			l = arg1;
    613  1.34      elad 			policy = (int)(unsigned long)arg2;
    614  1.34      elad 			priority = (pri_t)(unsigned long)arg3;
    615  1.34      elad 
    616  1.34      elad 			if ((policy == l->l_class ||
    617  1.34      elad 			    (policy != SCHED_FIFO && policy != SCHED_RR)) &&
    618  1.34      elad 			    priority <= l->l_priority)
    619  1.34      elad 				result = KAUTH_RESULT_ALLOW;
    620  1.34      elad 		}
    621  1.34      elad 
    622  1.34      elad 		break;
    623  1.34      elad 
    624  1.34      elad 	case KAUTH_PROCESS_SCHEDULER_GETAFFINITY:
    625  1.34      elad 		result = KAUTH_RESULT_ALLOW;
    626  1.34      elad 		break;
    627  1.34      elad 
    628  1.34      elad 	case KAUTH_PROCESS_SCHEDULER_SETAFFINITY:
    629  1.34      elad 		/* Privileged; we let the secmodel handle this. */
    630  1.34      elad 		break;
    631  1.34      elad 
    632  1.34      elad 	default:
    633  1.34      elad 		break;
    634  1.34      elad 	}
    635  1.34      elad 
    636  1.34      elad 	return result;
    637  1.34      elad }
    638  1.34      elad 
    639  1.34      elad void
    640  1.34      elad sched_init(void)
    641  1.34      elad {
    642  1.34      elad 
    643  1.34      elad 	sysctl_sched_setup(&sched_sysctl_log);
    644  1.34      elad 
    645  1.34      elad 	sched_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
    646  1.34      elad 	    sched_listener_cb, NULL);
    647  1.34      elad }
    648