sys_sched.c revision 1.41 1 1.41 yamt /* $NetBSD: sys_sched.c,v 1.41 2012/04/13 15:27:13 yamt Exp $ */
2 1.1 ad
3 1.5 rmind /*
4 1.36 rmind * Copyright (c) 2008, 2011 Mindaugas Rasiukevicius <rmind at NetBSD org>
5 1.1 ad * All rights reserved.
6 1.5 rmind *
7 1.1 ad * Redistribution and use in source and binary forms, with or without
8 1.1 ad * modification, are permitted provided that the following conditions
9 1.1 ad * are met:
10 1.1 ad * 1. Redistributions of source code must retain the above copyright
11 1.1 ad * notice, this list of conditions and the following disclaimer.
12 1.1 ad * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 ad * notice, this list of conditions and the following disclaimer in the
14 1.1 ad * documentation and/or other materials provided with the distribution.
15 1.1 ad *
16 1.16 rmind * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 1.16 rmind * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 1.16 rmind * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 1.16 rmind * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 1.16 rmind * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 1.16 rmind * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 1.16 rmind * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 1.16 rmind * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 1.16 rmind * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.16 rmind * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.16 rmind * SUCH DAMAGE.
27 1.1 ad */
28 1.1 ad
29 1.5 rmind /*
30 1.17 ad * System calls relating to the scheduler.
31 1.17 ad *
32 1.31 rmind * Lock order:
33 1.31 rmind *
34 1.31 rmind * cpu_lock ->
35 1.31 rmind * proc_lock ->
36 1.31 rmind * proc_t::p_lock ->
37 1.31 rmind * lwp_t::lwp_lock
38 1.31 rmind *
39 1.5 rmind * TODO:
40 1.5 rmind * - Handle pthread_setschedprio() as defined by POSIX;
41 1.5 rmind * - Handle sched_yield() case for SCHED_FIFO as defined by POSIX;
42 1.5 rmind */
43 1.5 rmind
44 1.1 ad #include <sys/cdefs.h>
45 1.41 yamt __KERNEL_RCSID(0, "$NetBSD: sys_sched.c,v 1.41 2012/04/13 15:27:13 yamt Exp $");
46 1.1 ad
47 1.1 ad #include <sys/param.h>
48 1.5 rmind
49 1.5 rmind #include <sys/cpu.h>
50 1.5 rmind #include <sys/kauth.h>
51 1.5 rmind #include <sys/kmem.h>
52 1.5 rmind #include <sys/lwp.h>
53 1.5 rmind #include <sys/mutex.h>
54 1.1 ad #include <sys/proc.h>
55 1.5 rmind #include <sys/pset.h>
56 1.5 rmind #include <sys/sched.h>
57 1.1 ad #include <sys/syscallargs.h>
58 1.5 rmind #include <sys/sysctl.h>
59 1.5 rmind #include <sys/systm.h>
60 1.5 rmind #include <sys/types.h>
61 1.5 rmind #include <sys/unistd.h>
62 1.5 rmind
63 1.34 elad static struct sysctllog *sched_sysctl_log;
64 1.34 elad static kauth_listener_t sched_listener;
65 1.34 elad
66 1.5 rmind /*
67 1.7 rmind * Convert user priority or the in-kernel priority or convert the current
68 1.7 rmind * priority to the appropriate range according to the policy change.
69 1.7 rmind */
70 1.7 rmind static pri_t
71 1.7 rmind convert_pri(lwp_t *l, int policy, pri_t pri)
72 1.7 rmind {
73 1.7 rmind
74 1.29 rmind /* Convert user priority to the in-kernel */
75 1.7 rmind if (pri != PRI_NONE) {
76 1.29 rmind /* Only for real-time threads */
77 1.7 rmind KASSERT(pri >= SCHED_PRI_MIN && pri <= SCHED_PRI_MAX);
78 1.29 rmind KASSERT(policy != SCHED_OTHER);
79 1.29 rmind return PRI_USER_RT + pri;
80 1.7 rmind }
81 1.29 rmind
82 1.29 rmind /* Neither policy, nor priority change */
83 1.7 rmind if (l->l_class == policy)
84 1.7 rmind return l->l_priority;
85 1.7 rmind
86 1.29 rmind /* Time-sharing -> real-time */
87 1.7 rmind if (l->l_class == SCHED_OTHER) {
88 1.7 rmind KASSERT(policy == SCHED_FIFO || policy == SCHED_RR);
89 1.29 rmind return PRI_USER_RT;
90 1.7 rmind }
91 1.29 rmind
92 1.29 rmind /* Real-time -> time-sharing */
93 1.7 rmind if (policy == SCHED_OTHER) {
94 1.7 rmind KASSERT(l->l_class == SCHED_FIFO || l->l_class == SCHED_RR);
95 1.41 yamt /*
96 1.41 yamt * this is a bit arbitrary because the priority is dynamic
97 1.41 yamt * for SCHED_OTHER threads and will likely be changed by
98 1.41 yamt * the scheduler soon anyway.
99 1.41 yamt */
100 1.29 rmind return l->l_priority - PRI_USER_RT;
101 1.7 rmind }
102 1.29 rmind
103 1.29 rmind /* Real-time -> real-time */
104 1.29 rmind return l->l_priority;
105 1.7 rmind }
106 1.7 rmind
107 1.5 rmind int
108 1.18 elad do_sched_setparam(pid_t pid, lwpid_t lid, int policy,
109 1.18 elad const struct sched_param *params)
110 1.5 rmind {
111 1.5 rmind struct proc *p;
112 1.5 rmind struct lwp *t;
113 1.18 elad pri_t pri;
114 1.5 rmind u_int lcnt;
115 1.5 rmind int error;
116 1.5 rmind
117 1.18 elad error = 0;
118 1.18 elad
119 1.18 elad pri = params->sched_priority;
120 1.7 rmind
121 1.7 rmind /* If no parameters specified, just return (this should not happen) */
122 1.7 rmind if (pri == PRI_NONE && policy == SCHED_NONE)
123 1.7 rmind return 0;
124 1.5 rmind
125 1.7 rmind /* Validate scheduling class */
126 1.7 rmind if (policy != SCHED_NONE && (policy < SCHED_OTHER || policy > SCHED_RR))
127 1.7 rmind return EINVAL;
128 1.5 rmind
129 1.7 rmind /* Validate priority */
130 1.7 rmind if (pri != PRI_NONE && (pri < SCHED_PRI_MIN || pri > SCHED_PRI_MAX))
131 1.7 rmind return EINVAL;
132 1.5 rmind
133 1.18 elad if (pid != 0) {
134 1.7 rmind /* Find the process */
135 1.20 ad mutex_enter(proc_lock);
136 1.35 rmind p = proc_find(pid);
137 1.20 ad if (p == NULL) {
138 1.20 ad mutex_exit(proc_lock);
139 1.7 rmind return ESRCH;
140 1.20 ad }
141 1.21 ad mutex_enter(p->p_lock);
142 1.20 ad mutex_exit(proc_lock);
143 1.7 rmind /* Disallow modification of system processes */
144 1.17 ad if ((p->p_flag & PK_SYSTEM) != 0) {
145 1.21 ad mutex_exit(p->p_lock);
146 1.7 rmind return EPERM;
147 1.7 rmind }
148 1.7 rmind } else {
149 1.7 rmind /* Use the calling process */
150 1.18 elad p = curlwp->l_proc;
151 1.21 ad mutex_enter(p->p_lock);
152 1.5 rmind }
153 1.1 ad
154 1.5 rmind /* Find the LWP(s) */
155 1.5 rmind lcnt = 0;
156 1.5 rmind LIST_FOREACH(t, &p->p_lwps, l_sibling) {
157 1.7 rmind pri_t kpri;
158 1.12 elad int lpolicy;
159 1.5 rmind
160 1.5 rmind if (lid && lid != t->l_lid)
161 1.5 rmind continue;
162 1.29 rmind
163 1.15 drochner lcnt++;
164 1.7 rmind lwp_lock(t);
165 1.29 rmind lpolicy = (policy == SCHED_NONE) ? t->l_class : policy;
166 1.29 rmind
167 1.29 rmind /* Disallow setting of priority for SCHED_OTHER threads */
168 1.30 rmind if (lpolicy == SCHED_OTHER && pri != PRI_NONE) {
169 1.29 rmind lwp_unlock(t);
170 1.29 rmind error = EINVAL;
171 1.29 rmind break;
172 1.29 rmind }
173 1.7 rmind
174 1.29 rmind /* Convert priority, if needed */
175 1.12 elad kpri = convert_pri(t, lpolicy, pri);
176 1.12 elad
177 1.12 elad /* Check the permission */
178 1.18 elad error = kauth_authorize_process(kauth_cred_get(),
179 1.12 elad KAUTH_PROCESS_SCHEDULER_SETPARAM, p, t, KAUTH_ARG(lpolicy),
180 1.12 elad KAUTH_ARG(kpri));
181 1.14 yamt if (error) {
182 1.14 yamt lwp_unlock(t);
183 1.12 elad break;
184 1.14 yamt }
185 1.5 rmind
186 1.29 rmind /* Set the scheduling class, change the priority */
187 1.29 rmind t->l_class = lpolicy;
188 1.29 rmind lwp_changepri(t, kpri);
189 1.5 rmind lwp_unlock(t);
190 1.5 rmind }
191 1.21 ad mutex_exit(p->p_lock);
192 1.7 rmind return (lcnt == 0) ? ESRCH : error;
193 1.5 rmind }
194 1.5 rmind
195 1.5 rmind /*
196 1.18 elad * Set scheduling parameters.
197 1.5 rmind */
198 1.5 rmind int
199 1.18 elad sys__sched_setparam(struct lwp *l, const struct sys__sched_setparam_args *uap,
200 1.5 rmind register_t *retval)
201 1.5 rmind {
202 1.5 rmind /* {
203 1.5 rmind syscallarg(pid_t) pid;
204 1.5 rmind syscallarg(lwpid_t) lid;
205 1.18 elad syscallarg(int) policy;
206 1.18 elad syscallarg(const struct sched_param *) params;
207 1.5 rmind } */
208 1.18 elad struct sched_param params;
209 1.18 elad int error;
210 1.18 elad
211 1.18 elad /* Get the parameters from the user-space */
212 1.18 elad error = copyin(SCARG(uap, params), ¶ms, sizeof(params));
213 1.18 elad if (error)
214 1.18 elad goto out;
215 1.18 elad
216 1.18 elad error = do_sched_setparam(SCARG(uap, pid), SCARG(uap, lid),
217 1.18 elad SCARG(uap, policy), ¶ms);
218 1.31 rmind out:
219 1.31 rmind return error;
220 1.18 elad }
221 1.18 elad
222 1.41 yamt /*
223 1.41 yamt * do_sched_getparam:
224 1.41 yamt *
225 1.41 yamt * if lid=0, returns the parameter of the first LWP in the process.
226 1.41 yamt */
227 1.18 elad int
228 1.18 elad do_sched_getparam(pid_t pid, lwpid_t lid, int *policy,
229 1.18 elad struct sched_param *params)
230 1.18 elad {
231 1.18 elad struct sched_param lparams;
232 1.5 rmind struct lwp *t;
233 1.18 elad int error, lpolicy;
234 1.5 rmind
235 1.41 yamt t = lwp_find2(pid, lid); /* acquire p_lock */
236 1.21 ad if (t == NULL)
237 1.21 ad return ESRCH;
238 1.10 yamt
239 1.10 yamt /* Check the permission */
240 1.18 elad error = kauth_authorize_process(kauth_cred_get(),
241 1.11 elad KAUTH_PROCESS_SCHEDULER_GETPARAM, t->l_proc, NULL, NULL, NULL);
242 1.10 yamt if (error != 0) {
243 1.21 ad mutex_exit(t->l_proc->p_lock);
244 1.21 ad return error;
245 1.5 rmind }
246 1.10 yamt
247 1.21 ad lwp_lock(t);
248 1.18 elad lparams.sched_priority = t->l_priority;
249 1.18 elad lpolicy = t->l_class;
250 1.41 yamt lwp_unlock(t);
251 1.41 yamt mutex_exit(t->l_proc->p_lock);
252 1.5 rmind
253 1.41 yamt /*
254 1.41 yamt * convert to the user-visible priority value.
255 1.41 yamt * it's an inversion of convert_pri().
256 1.41 yamt *
257 1.41 yamt * the SCHED_OTHER case is a bit arbitrary given that
258 1.41 yamt * - we don't allow setting the priority.
259 1.41 yamt * - the priority is dynamic.
260 1.41 yamt */
261 1.18 elad switch (lpolicy) {
262 1.5 rmind case SCHED_OTHER:
263 1.18 elad lparams.sched_priority -= PRI_USER;
264 1.5 rmind break;
265 1.5 rmind case SCHED_RR:
266 1.5 rmind case SCHED_FIFO:
267 1.18 elad lparams.sched_priority -= PRI_USER_RT;
268 1.5 rmind break;
269 1.5 rmind }
270 1.18 elad
271 1.18 elad if (policy != NULL)
272 1.18 elad *policy = lpolicy;
273 1.18 elad
274 1.18 elad if (params != NULL)
275 1.18 elad *params = lparams;
276 1.18 elad
277 1.18 elad return error;
278 1.18 elad }
279 1.18 elad
280 1.18 elad /*
281 1.18 elad * Get scheduling parameters.
282 1.18 elad */
283 1.18 elad int
284 1.18 elad sys__sched_getparam(struct lwp *l, const struct sys__sched_getparam_args *uap,
285 1.18 elad register_t *retval)
286 1.18 elad {
287 1.18 elad /* {
288 1.18 elad syscallarg(pid_t) pid;
289 1.18 elad syscallarg(lwpid_t) lid;
290 1.18 elad syscallarg(int *) policy;
291 1.18 elad syscallarg(struct sched_param *) params;
292 1.18 elad } */
293 1.18 elad struct sched_param params;
294 1.18 elad int error, policy;
295 1.18 elad
296 1.18 elad error = do_sched_getparam(SCARG(uap, pid), SCARG(uap, lid), &policy,
297 1.18 elad ¶ms);
298 1.18 elad if (error)
299 1.18 elad goto out;
300 1.18 elad
301 1.18 elad error = copyout(¶ms, SCARG(uap, params), sizeof(params));
302 1.10 yamt if (error == 0 && SCARG(uap, policy) != NULL)
303 1.10 yamt error = copyout(&policy, SCARG(uap, policy), sizeof(int));
304 1.31 rmind out:
305 1.31 rmind return error;
306 1.5 rmind }
307 1.5 rmind
308 1.31 rmind /*
309 1.31 rmind * Allocate the CPU set, and get it from userspace.
310 1.31 rmind */
311 1.23 christos static int
312 1.26 christos genkcpuset(kcpuset_t **dset, const cpuset_t *sset, size_t size)
313 1.23 christos {
314 1.36 rmind kcpuset_t *kset;
315 1.23 christos int error;
316 1.23 christos
317 1.38 rmind kcpuset_create(&kset, false);
318 1.36 rmind error = kcpuset_copyin(sset, kset, size);
319 1.36 rmind if (error) {
320 1.36 rmind kcpuset_unuse(kset, NULL);
321 1.36 rmind } else {
322 1.36 rmind *dset = kset;
323 1.36 rmind }
324 1.23 christos return error;
325 1.23 christos }
326 1.23 christos
327 1.5 rmind /*
328 1.5 rmind * Set affinity.
329 1.5 rmind */
330 1.5 rmind int
331 1.5 rmind sys__sched_setaffinity(struct lwp *l,
332 1.5 rmind const struct sys__sched_setaffinity_args *uap, register_t *retval)
333 1.5 rmind {
334 1.5 rmind /* {
335 1.5 rmind syscallarg(pid_t) pid;
336 1.5 rmind syscallarg(lwpid_t) lid;
337 1.5 rmind syscallarg(size_t) size;
338 1.23 christos syscallarg(const cpuset_t *) cpuset;
339 1.5 rmind } */
340 1.36 rmind kcpuset_t *kcset, *kcpulst = NULL;
341 1.32 rmind struct cpu_info *ici, *ci;
342 1.5 rmind struct proc *p;
343 1.5 rmind struct lwp *t;
344 1.5 rmind CPU_INFO_ITERATOR cii;
345 1.32 rmind bool alloff;
346 1.5 rmind lwpid_t lid;
347 1.5 rmind u_int lcnt;
348 1.5 rmind int error;
349 1.5 rmind
350 1.36 rmind error = genkcpuset(&kcset, SCARG(uap, cpuset), SCARG(uap, size));
351 1.31 rmind if (error)
352 1.23 christos return error;
353 1.5 rmind
354 1.31 rmind /*
355 1.32 rmind * Traverse _each_ CPU to:
356 1.32 rmind * - Check that CPUs in the mask have no assigned processor set.
357 1.32 rmind * - Check that at least one CPU from the mask is online.
358 1.32 rmind * - Find the first target CPU to migrate.
359 1.31 rmind *
360 1.32 rmind * To avoid the race with CPU online/offline calls and processor sets,
361 1.32 rmind * cpu_lock will be locked for the entire operation.
362 1.31 rmind */
363 1.32 rmind ci = NULL;
364 1.32 rmind alloff = false;
365 1.31 rmind mutex_enter(&cpu_lock);
366 1.32 rmind for (CPU_INFO_FOREACH(cii, ici)) {
367 1.32 rmind struct schedstate_percpu *ispc;
368 1.31 rmind
369 1.39 rmind if (!kcpuset_isset(kcset, cpu_index(ici))) {
370 1.31 rmind continue;
371 1.39 rmind }
372 1.32 rmind
373 1.32 rmind ispc = &ici->ci_schedstate;
374 1.32 rmind /* Check that CPU is not in the processor-set */
375 1.32 rmind if (ispc->spc_psid != PS_NONE) {
376 1.32 rmind error = EPERM;
377 1.32 rmind goto out;
378 1.32 rmind }
379 1.32 rmind /* Skip offline CPUs */
380 1.32 rmind if (ispc->spc_flags & SPCF_OFFLINE) {
381 1.32 rmind alloff = true;
382 1.31 rmind continue;
383 1.24 rmind }
384 1.32 rmind /* Target CPU to migrate */
385 1.32 rmind if (ci == NULL) {
386 1.32 rmind ci = ici;
387 1.32 rmind }
388 1.23 christos }
389 1.5 rmind if (ci == NULL) {
390 1.32 rmind if (alloff) {
391 1.31 rmind /* All CPUs in the set are offline */
392 1.31 rmind error = EPERM;
393 1.31 rmind goto out;
394 1.31 rmind }
395 1.5 rmind /* Empty set */
396 1.36 rmind kcpuset_unuse(kcset, &kcpulst);
397 1.36 rmind kcset = NULL;
398 1.5 rmind }
399 1.5 rmind
400 1.7 rmind if (SCARG(uap, pid) != 0) {
401 1.7 rmind /* Find the process */
402 1.20 ad mutex_enter(proc_lock);
403 1.35 rmind p = proc_find(SCARG(uap, pid));
404 1.7 rmind if (p == NULL) {
405 1.20 ad mutex_exit(proc_lock);
406 1.7 rmind error = ESRCH;
407 1.23 christos goto out;
408 1.7 rmind }
409 1.21 ad mutex_enter(p->p_lock);
410 1.20 ad mutex_exit(proc_lock);
411 1.17 ad /* Disallow modification of system processes. */
412 1.17 ad if ((p->p_flag & PK_SYSTEM) != 0) {
413 1.21 ad mutex_exit(p->p_lock);
414 1.17 ad error = EPERM;
415 1.23 christos goto out;
416 1.17 ad }
417 1.7 rmind } else {
418 1.7 rmind /* Use the calling process */
419 1.7 rmind p = l->l_proc;
420 1.21 ad mutex_enter(p->p_lock);
421 1.5 rmind }
422 1.5 rmind
423 1.10 yamt /*
424 1.10 yamt * Check the permission.
425 1.10 yamt */
426 1.11 elad error = kauth_authorize_process(l->l_cred,
427 1.11 elad KAUTH_PROCESS_SCHEDULER_SETAFFINITY, p, NULL, NULL, NULL);
428 1.10 yamt if (error != 0) {
429 1.21 ad mutex_exit(p->p_lock);
430 1.23 christos goto out;
431 1.10 yamt }
432 1.5 rmind
433 1.37 rmind /* Iterate through LWP(s). */
434 1.5 rmind lcnt = 0;
435 1.5 rmind lid = SCARG(uap, lid);
436 1.5 rmind LIST_FOREACH(t, &p->p_lwps, l_sibling) {
437 1.37 rmind if (lid && lid != t->l_lid) {
438 1.5 rmind continue;
439 1.37 rmind }
440 1.5 rmind lwp_lock(t);
441 1.37 rmind /* No affinity for zombie LWPs. */
442 1.27 rmind if (t->l_stat == LSZOMB) {
443 1.27 rmind lwp_unlock(t);
444 1.27 rmind continue;
445 1.27 rmind }
446 1.37 rmind /* First, release existing affinity, if any. */
447 1.37 rmind if (t->l_affinity) {
448 1.37 rmind kcpuset_unuse(t->l_affinity, &kcpulst);
449 1.37 rmind }
450 1.36 rmind if (kcset) {
451 1.37 rmind /*
452 1.37 rmind * Hold a reference on affinity mask, assign mask to
453 1.37 rmind * LWP and migrate it to another CPU (unlocks LWP).
454 1.37 rmind */
455 1.36 rmind kcpuset_use(kcset);
456 1.36 rmind t->l_affinity = kcset;
457 1.5 rmind lwp_migrate(t, ci);
458 1.5 rmind } else {
459 1.37 rmind /* Old affinity mask is released, just clear. */
460 1.23 christos t->l_affinity = NULL;
461 1.5 rmind lwp_unlock(t);
462 1.5 rmind }
463 1.5 rmind lcnt++;
464 1.5 rmind }
465 1.21 ad mutex_exit(p->p_lock);
466 1.36 rmind if (lcnt == 0) {
467 1.5 rmind error = ESRCH;
468 1.36 rmind }
469 1.23 christos out:
470 1.31 rmind mutex_exit(&cpu_lock);
471 1.36 rmind
472 1.36 rmind /*
473 1.36 rmind * Drop the initial reference (LWPs, if any, have the ownership now),
474 1.36 rmind * and destroy whatever is in the G/C list, if filled.
475 1.36 rmind */
476 1.36 rmind if (kcset) {
477 1.36 rmind kcpuset_unuse(kcset, &kcpulst);
478 1.36 rmind }
479 1.36 rmind if (kcpulst) {
480 1.36 rmind kcpuset_destroy(kcpulst);
481 1.36 rmind }
482 1.5 rmind return error;
483 1.5 rmind }
484 1.5 rmind
485 1.5 rmind /*
486 1.5 rmind * Get affinity.
487 1.5 rmind */
488 1.5 rmind int
489 1.5 rmind sys__sched_getaffinity(struct lwp *l,
490 1.5 rmind const struct sys__sched_getaffinity_args *uap, register_t *retval)
491 1.5 rmind {
492 1.5 rmind /* {
493 1.5 rmind syscallarg(pid_t) pid;
494 1.5 rmind syscallarg(lwpid_t) lid;
495 1.5 rmind syscallarg(size_t) size;
496 1.23 christos syscallarg(cpuset_t *) cpuset;
497 1.5 rmind } */
498 1.5 rmind struct lwp *t;
499 1.36 rmind kcpuset_t *kcset;
500 1.5 rmind int error;
501 1.5 rmind
502 1.36 rmind error = genkcpuset(&kcset, SCARG(uap, cpuset), SCARG(uap, size));
503 1.31 rmind if (error)
504 1.23 christos return error;
505 1.5 rmind
506 1.16 rmind /* Locks the LWP */
507 1.16 rmind t = lwp_find2(SCARG(uap, pid), SCARG(uap, lid));
508 1.5 rmind if (t == NULL) {
509 1.23 christos error = ESRCH;
510 1.23 christos goto out;
511 1.5 rmind }
512 1.10 yamt /* Check the permission */
513 1.11 elad if (kauth_authorize_process(l->l_cred,
514 1.11 elad KAUTH_PROCESS_SCHEDULER_GETAFFINITY, t->l_proc, NULL, NULL, NULL)) {
515 1.21 ad mutex_exit(t->l_proc->p_lock);
516 1.23 christos error = EPERM;
517 1.23 christos goto out;
518 1.10 yamt }
519 1.21 ad lwp_lock(t);
520 1.37 rmind if (t->l_affinity) {
521 1.36 rmind kcpuset_copy(kcset, t->l_affinity);
522 1.36 rmind } else {
523 1.36 rmind kcpuset_zero(kcset);
524 1.36 rmind }
525 1.5 rmind lwp_unlock(t);
526 1.21 ad mutex_exit(t->l_proc->p_lock);
527 1.5 rmind
528 1.36 rmind error = kcpuset_copyout(kcset, SCARG(uap, cpuset), SCARG(uap, size));
529 1.23 christos out:
530 1.36 rmind kcpuset_unuse(kcset, NULL);
531 1.5 rmind return error;
532 1.5 rmind }
533 1.5 rmind
534 1.5 rmind /*
535 1.5 rmind * Yield.
536 1.5 rmind */
537 1.1 ad int
538 1.4 dsl sys_sched_yield(struct lwp *l, const void *v, register_t *retval)
539 1.1 ad {
540 1.1 ad
541 1.1 ad yield();
542 1.1 ad return 0;
543 1.1 ad }
544 1.5 rmind
545 1.5 rmind /*
546 1.5 rmind * Sysctl nodes and initialization.
547 1.5 rmind */
548 1.34 elad static void
549 1.34 elad sysctl_sched_setup(struct sysctllog **clog)
550 1.5 rmind {
551 1.5 rmind const struct sysctlnode *node = NULL;
552 1.5 rmind
553 1.5 rmind sysctl_createv(clog, 0, NULL, NULL,
554 1.5 rmind CTLFLAG_PERMANENT,
555 1.5 rmind CTLTYPE_NODE, "kern", NULL,
556 1.5 rmind NULL, 0, NULL, 0,
557 1.5 rmind CTL_KERN, CTL_EOL);
558 1.5 rmind sysctl_createv(clog, 0, NULL, NULL,
559 1.5 rmind CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
560 1.5 rmind CTLTYPE_INT, "posix_sched",
561 1.5 rmind SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
562 1.5 rmind "Process Scheduling option to which the "
563 1.5 rmind "system attempts to conform"),
564 1.5 rmind NULL, _POSIX_PRIORITY_SCHEDULING, NULL, 0,
565 1.5 rmind CTL_KERN, CTL_CREATE, CTL_EOL);
566 1.5 rmind sysctl_createv(clog, 0, NULL, &node,
567 1.5 rmind CTLFLAG_PERMANENT,
568 1.5 rmind CTLTYPE_NODE, "sched",
569 1.5 rmind SYSCTL_DESCR("Scheduler options"),
570 1.5 rmind NULL, 0, NULL, 0,
571 1.5 rmind CTL_KERN, CTL_CREATE, CTL_EOL);
572 1.5 rmind
573 1.5 rmind if (node == NULL)
574 1.5 rmind return;
575 1.5 rmind
576 1.5 rmind sysctl_createv(clog, 0, &node, NULL,
577 1.5 rmind CTLFLAG_PERMANENT | CTLFLAG_IMMEDIATE,
578 1.5 rmind CTLTYPE_INT, "pri_min",
579 1.5 rmind SYSCTL_DESCR("Minimal POSIX real-time priority"),
580 1.5 rmind NULL, SCHED_PRI_MIN, NULL, 0,
581 1.5 rmind CTL_CREATE, CTL_EOL);
582 1.5 rmind sysctl_createv(clog, 0, &node, NULL,
583 1.5 rmind CTLFLAG_PERMANENT | CTLFLAG_IMMEDIATE,
584 1.5 rmind CTLTYPE_INT, "pri_max",
585 1.19 njoly SYSCTL_DESCR("Maximal POSIX real-time priority"),
586 1.5 rmind NULL, SCHED_PRI_MAX, NULL, 0,
587 1.5 rmind CTL_CREATE, CTL_EOL);
588 1.5 rmind }
589 1.34 elad
590 1.34 elad static int
591 1.34 elad sched_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
592 1.34 elad void *arg0, void *arg1, void *arg2, void *arg3)
593 1.34 elad {
594 1.34 elad struct proc *p;
595 1.34 elad int result;
596 1.34 elad
597 1.34 elad result = KAUTH_RESULT_DEFER;
598 1.34 elad p = arg0;
599 1.34 elad
600 1.34 elad switch (action) {
601 1.34 elad case KAUTH_PROCESS_SCHEDULER_GETPARAM:
602 1.34 elad if (kauth_cred_uidmatch(cred, p->p_cred))
603 1.34 elad result = KAUTH_RESULT_ALLOW;
604 1.34 elad break;
605 1.34 elad
606 1.34 elad case KAUTH_PROCESS_SCHEDULER_SETPARAM:
607 1.34 elad if (kauth_cred_uidmatch(cred, p->p_cred)) {
608 1.34 elad struct lwp *l;
609 1.34 elad int policy;
610 1.34 elad pri_t priority;
611 1.34 elad
612 1.34 elad l = arg1;
613 1.34 elad policy = (int)(unsigned long)arg2;
614 1.34 elad priority = (pri_t)(unsigned long)arg3;
615 1.34 elad
616 1.34 elad if ((policy == l->l_class ||
617 1.34 elad (policy != SCHED_FIFO && policy != SCHED_RR)) &&
618 1.34 elad priority <= l->l_priority)
619 1.34 elad result = KAUTH_RESULT_ALLOW;
620 1.34 elad }
621 1.34 elad
622 1.34 elad break;
623 1.34 elad
624 1.34 elad case KAUTH_PROCESS_SCHEDULER_GETAFFINITY:
625 1.34 elad result = KAUTH_RESULT_ALLOW;
626 1.34 elad break;
627 1.34 elad
628 1.34 elad case KAUTH_PROCESS_SCHEDULER_SETAFFINITY:
629 1.34 elad /* Privileged; we let the secmodel handle this. */
630 1.34 elad break;
631 1.34 elad
632 1.34 elad default:
633 1.34 elad break;
634 1.34 elad }
635 1.34 elad
636 1.34 elad return result;
637 1.34 elad }
638 1.34 elad
639 1.34 elad void
640 1.34 elad sched_init(void)
641 1.34 elad {
642 1.34 elad
643 1.34 elad sysctl_sched_setup(&sched_sysctl_log);
644 1.34 elad
645 1.34 elad sched_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
646 1.34 elad sched_listener_cb, NULL);
647 1.34 elad }
648