sys_sched.c revision 1.48 1 1.48 thorpej /* $NetBSD: sys_sched.c,v 1.48 2020/04/29 01:53:48 thorpej Exp $ */
2 1.1 ad
3 1.5 rmind /*
4 1.36 rmind * Copyright (c) 2008, 2011 Mindaugas Rasiukevicius <rmind at NetBSD org>
5 1.1 ad * All rights reserved.
6 1.5 rmind *
7 1.1 ad * Redistribution and use in source and binary forms, with or without
8 1.1 ad * modification, are permitted provided that the following conditions
9 1.1 ad * are met:
10 1.1 ad * 1. Redistributions of source code must retain the above copyright
11 1.1 ad * notice, this list of conditions and the following disclaimer.
12 1.1 ad * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 ad * notice, this list of conditions and the following disclaimer in the
14 1.1 ad * documentation and/or other materials provided with the distribution.
15 1.1 ad *
16 1.16 rmind * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 1.16 rmind * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 1.16 rmind * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 1.16 rmind * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 1.16 rmind * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 1.16 rmind * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 1.16 rmind * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 1.16 rmind * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 1.16 rmind * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.16 rmind * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.16 rmind * SUCH DAMAGE.
27 1.1 ad */
28 1.1 ad
29 1.5 rmind /*
30 1.17 ad * System calls relating to the scheduler.
31 1.17 ad *
32 1.31 rmind * Lock order:
33 1.31 rmind *
34 1.31 rmind * cpu_lock ->
35 1.31 rmind * proc_lock ->
36 1.31 rmind * proc_t::p_lock ->
37 1.31 rmind * lwp_t::lwp_lock
38 1.31 rmind *
39 1.5 rmind * TODO:
40 1.5 rmind * - Handle pthread_setschedprio() as defined by POSIX;
41 1.5 rmind */
42 1.5 rmind
43 1.1 ad #include <sys/cdefs.h>
44 1.48 thorpej __KERNEL_RCSID(0, "$NetBSD: sys_sched.c,v 1.48 2020/04/29 01:53:48 thorpej Exp $");
45 1.1 ad
46 1.1 ad #include <sys/param.h>
47 1.5 rmind
48 1.5 rmind #include <sys/cpu.h>
49 1.5 rmind #include <sys/kauth.h>
50 1.5 rmind #include <sys/kmem.h>
51 1.5 rmind #include <sys/lwp.h>
52 1.5 rmind #include <sys/mutex.h>
53 1.1 ad #include <sys/proc.h>
54 1.5 rmind #include <sys/pset.h>
55 1.5 rmind #include <sys/sched.h>
56 1.1 ad #include <sys/syscallargs.h>
57 1.5 rmind #include <sys/sysctl.h>
58 1.5 rmind #include <sys/systm.h>
59 1.5 rmind #include <sys/types.h>
60 1.5 rmind #include <sys/unistd.h>
61 1.5 rmind
62 1.34 elad static struct sysctllog *sched_sysctl_log;
63 1.34 elad static kauth_listener_t sched_listener;
64 1.34 elad
65 1.5 rmind /*
66 1.7 rmind * Convert user priority or the in-kernel priority or convert the current
67 1.7 rmind * priority to the appropriate range according to the policy change.
68 1.7 rmind */
69 1.7 rmind static pri_t
70 1.7 rmind convert_pri(lwp_t *l, int policy, pri_t pri)
71 1.7 rmind {
72 1.7 rmind
73 1.29 rmind /* Convert user priority to the in-kernel */
74 1.7 rmind if (pri != PRI_NONE) {
75 1.29 rmind /* Only for real-time threads */
76 1.7 rmind KASSERT(pri >= SCHED_PRI_MIN && pri <= SCHED_PRI_MAX);
77 1.29 rmind KASSERT(policy != SCHED_OTHER);
78 1.29 rmind return PRI_USER_RT + pri;
79 1.7 rmind }
80 1.29 rmind
81 1.29 rmind /* Neither policy, nor priority change */
82 1.7 rmind if (l->l_class == policy)
83 1.7 rmind return l->l_priority;
84 1.7 rmind
85 1.29 rmind /* Time-sharing -> real-time */
86 1.7 rmind if (l->l_class == SCHED_OTHER) {
87 1.7 rmind KASSERT(policy == SCHED_FIFO || policy == SCHED_RR);
88 1.29 rmind return PRI_USER_RT;
89 1.7 rmind }
90 1.29 rmind
91 1.29 rmind /* Real-time -> time-sharing */
92 1.7 rmind if (policy == SCHED_OTHER) {
93 1.7 rmind KASSERT(l->l_class == SCHED_FIFO || l->l_class == SCHED_RR);
94 1.41 yamt /*
95 1.41 yamt * this is a bit arbitrary because the priority is dynamic
96 1.41 yamt * for SCHED_OTHER threads and will likely be changed by
97 1.41 yamt * the scheduler soon anyway.
98 1.41 yamt */
99 1.29 rmind return l->l_priority - PRI_USER_RT;
100 1.7 rmind }
101 1.29 rmind
102 1.29 rmind /* Real-time -> real-time */
103 1.29 rmind return l->l_priority;
104 1.7 rmind }
105 1.7 rmind
106 1.5 rmind int
107 1.18 elad do_sched_setparam(pid_t pid, lwpid_t lid, int policy,
108 1.18 elad const struct sched_param *params)
109 1.5 rmind {
110 1.5 rmind struct proc *p;
111 1.5 rmind struct lwp *t;
112 1.18 elad pri_t pri;
113 1.5 rmind u_int lcnt;
114 1.5 rmind int error;
115 1.5 rmind
116 1.18 elad error = 0;
117 1.18 elad
118 1.18 elad pri = params->sched_priority;
119 1.7 rmind
120 1.7 rmind /* If no parameters specified, just return (this should not happen) */
121 1.7 rmind if (pri == PRI_NONE && policy == SCHED_NONE)
122 1.7 rmind return 0;
123 1.5 rmind
124 1.7 rmind /* Validate scheduling class */
125 1.7 rmind if (policy != SCHED_NONE && (policy < SCHED_OTHER || policy > SCHED_RR))
126 1.7 rmind return EINVAL;
127 1.5 rmind
128 1.7 rmind /* Validate priority */
129 1.7 rmind if (pri != PRI_NONE && (pri < SCHED_PRI_MIN || pri > SCHED_PRI_MAX))
130 1.7 rmind return EINVAL;
131 1.5 rmind
132 1.18 elad if (pid != 0) {
133 1.7 rmind /* Find the process */
134 1.20 ad mutex_enter(proc_lock);
135 1.35 rmind p = proc_find(pid);
136 1.20 ad if (p == NULL) {
137 1.20 ad mutex_exit(proc_lock);
138 1.7 rmind return ESRCH;
139 1.20 ad }
140 1.21 ad mutex_enter(p->p_lock);
141 1.20 ad mutex_exit(proc_lock);
142 1.7 rmind /* Disallow modification of system processes */
143 1.17 ad if ((p->p_flag & PK_SYSTEM) != 0) {
144 1.21 ad mutex_exit(p->p_lock);
145 1.7 rmind return EPERM;
146 1.7 rmind }
147 1.7 rmind } else {
148 1.7 rmind /* Use the calling process */
149 1.18 elad p = curlwp->l_proc;
150 1.21 ad mutex_enter(p->p_lock);
151 1.5 rmind }
152 1.1 ad
153 1.5 rmind /* Find the LWP(s) */
154 1.5 rmind lcnt = 0;
155 1.5 rmind LIST_FOREACH(t, &p->p_lwps, l_sibling) {
156 1.7 rmind pri_t kpri;
157 1.12 elad int lpolicy;
158 1.5 rmind
159 1.5 rmind if (lid && lid != t->l_lid)
160 1.5 rmind continue;
161 1.29 rmind
162 1.15 drochner lcnt++;
163 1.7 rmind lwp_lock(t);
164 1.29 rmind lpolicy = (policy == SCHED_NONE) ? t->l_class : policy;
165 1.29 rmind
166 1.29 rmind /* Disallow setting of priority for SCHED_OTHER threads */
167 1.30 rmind if (lpolicy == SCHED_OTHER && pri != PRI_NONE) {
168 1.29 rmind lwp_unlock(t);
169 1.29 rmind error = EINVAL;
170 1.29 rmind break;
171 1.29 rmind }
172 1.7 rmind
173 1.29 rmind /* Convert priority, if needed */
174 1.12 elad kpri = convert_pri(t, lpolicy, pri);
175 1.12 elad
176 1.12 elad /* Check the permission */
177 1.18 elad error = kauth_authorize_process(kauth_cred_get(),
178 1.12 elad KAUTH_PROCESS_SCHEDULER_SETPARAM, p, t, KAUTH_ARG(lpolicy),
179 1.12 elad KAUTH_ARG(kpri));
180 1.14 yamt if (error) {
181 1.14 yamt lwp_unlock(t);
182 1.12 elad break;
183 1.14 yamt }
184 1.5 rmind
185 1.29 rmind /* Set the scheduling class, change the priority */
186 1.29 rmind t->l_class = lpolicy;
187 1.29 rmind lwp_changepri(t, kpri);
188 1.5 rmind lwp_unlock(t);
189 1.5 rmind }
190 1.21 ad mutex_exit(p->p_lock);
191 1.7 rmind return (lcnt == 0) ? ESRCH : error;
192 1.5 rmind }
193 1.5 rmind
194 1.5 rmind /*
195 1.18 elad * Set scheduling parameters.
196 1.5 rmind */
197 1.5 rmind int
198 1.18 elad sys__sched_setparam(struct lwp *l, const struct sys__sched_setparam_args *uap,
199 1.5 rmind register_t *retval)
200 1.5 rmind {
201 1.5 rmind /* {
202 1.5 rmind syscallarg(pid_t) pid;
203 1.5 rmind syscallarg(lwpid_t) lid;
204 1.18 elad syscallarg(int) policy;
205 1.18 elad syscallarg(const struct sched_param *) params;
206 1.5 rmind } */
207 1.18 elad struct sched_param params;
208 1.18 elad int error;
209 1.18 elad
210 1.18 elad /* Get the parameters from the user-space */
211 1.18 elad error = copyin(SCARG(uap, params), ¶ms, sizeof(params));
212 1.18 elad if (error)
213 1.18 elad goto out;
214 1.18 elad
215 1.18 elad error = do_sched_setparam(SCARG(uap, pid), SCARG(uap, lid),
216 1.18 elad SCARG(uap, policy), ¶ms);
217 1.31 rmind out:
218 1.31 rmind return error;
219 1.18 elad }
220 1.18 elad
221 1.41 yamt /*
222 1.41 yamt * do_sched_getparam:
223 1.41 yamt *
224 1.41 yamt * if lid=0, returns the parameter of the first LWP in the process.
225 1.41 yamt */
226 1.18 elad int
227 1.18 elad do_sched_getparam(pid_t pid, lwpid_t lid, int *policy,
228 1.18 elad struct sched_param *params)
229 1.18 elad {
230 1.18 elad struct sched_param lparams;
231 1.5 rmind struct lwp *t;
232 1.18 elad int error, lpolicy;
233 1.5 rmind
234 1.48 thorpej if (pid < 0 || lid < 0)
235 1.48 thorpej return EINVAL;
236 1.48 thorpej
237 1.41 yamt t = lwp_find2(pid, lid); /* acquire p_lock */
238 1.21 ad if (t == NULL)
239 1.21 ad return ESRCH;
240 1.10 yamt
241 1.10 yamt /* Check the permission */
242 1.18 elad error = kauth_authorize_process(kauth_cred_get(),
243 1.11 elad KAUTH_PROCESS_SCHEDULER_GETPARAM, t->l_proc, NULL, NULL, NULL);
244 1.10 yamt if (error != 0) {
245 1.21 ad mutex_exit(t->l_proc->p_lock);
246 1.21 ad return error;
247 1.5 rmind }
248 1.10 yamt
249 1.21 ad lwp_lock(t);
250 1.18 elad lparams.sched_priority = t->l_priority;
251 1.18 elad lpolicy = t->l_class;
252 1.41 yamt lwp_unlock(t);
253 1.41 yamt mutex_exit(t->l_proc->p_lock);
254 1.5 rmind
255 1.41 yamt /*
256 1.41 yamt * convert to the user-visible priority value.
257 1.41 yamt * it's an inversion of convert_pri().
258 1.41 yamt *
259 1.41 yamt * the SCHED_OTHER case is a bit arbitrary given that
260 1.41 yamt * - we don't allow setting the priority.
261 1.41 yamt * - the priority is dynamic.
262 1.41 yamt */
263 1.18 elad switch (lpolicy) {
264 1.5 rmind case SCHED_OTHER:
265 1.18 elad lparams.sched_priority -= PRI_USER;
266 1.5 rmind break;
267 1.5 rmind case SCHED_RR:
268 1.5 rmind case SCHED_FIFO:
269 1.18 elad lparams.sched_priority -= PRI_USER_RT;
270 1.5 rmind break;
271 1.5 rmind }
272 1.18 elad
273 1.18 elad if (policy != NULL)
274 1.18 elad *policy = lpolicy;
275 1.18 elad
276 1.18 elad if (params != NULL)
277 1.18 elad *params = lparams;
278 1.18 elad
279 1.18 elad return error;
280 1.18 elad }
281 1.18 elad
282 1.18 elad /*
283 1.18 elad * Get scheduling parameters.
284 1.18 elad */
285 1.18 elad int
286 1.18 elad sys__sched_getparam(struct lwp *l, const struct sys__sched_getparam_args *uap,
287 1.18 elad register_t *retval)
288 1.18 elad {
289 1.18 elad /* {
290 1.18 elad syscallarg(pid_t) pid;
291 1.18 elad syscallarg(lwpid_t) lid;
292 1.18 elad syscallarg(int *) policy;
293 1.18 elad syscallarg(struct sched_param *) params;
294 1.18 elad } */
295 1.18 elad struct sched_param params;
296 1.18 elad int error, policy;
297 1.18 elad
298 1.18 elad error = do_sched_getparam(SCARG(uap, pid), SCARG(uap, lid), &policy,
299 1.18 elad ¶ms);
300 1.18 elad if (error)
301 1.18 elad goto out;
302 1.18 elad
303 1.18 elad error = copyout(¶ms, SCARG(uap, params), sizeof(params));
304 1.10 yamt if (error == 0 && SCARG(uap, policy) != NULL)
305 1.10 yamt error = copyout(&policy, SCARG(uap, policy), sizeof(int));
306 1.31 rmind out:
307 1.31 rmind return error;
308 1.5 rmind }
309 1.5 rmind
310 1.31 rmind /*
311 1.31 rmind * Allocate the CPU set, and get it from userspace.
312 1.31 rmind */
313 1.23 christos static int
314 1.26 christos genkcpuset(kcpuset_t **dset, const cpuset_t *sset, size_t size)
315 1.23 christos {
316 1.36 rmind kcpuset_t *kset;
317 1.23 christos int error;
318 1.23 christos
319 1.42 rmind kcpuset_create(&kset, true);
320 1.36 rmind error = kcpuset_copyin(sset, kset, size);
321 1.36 rmind if (error) {
322 1.36 rmind kcpuset_unuse(kset, NULL);
323 1.36 rmind } else {
324 1.36 rmind *dset = kset;
325 1.36 rmind }
326 1.23 christos return error;
327 1.23 christos }
328 1.23 christos
329 1.5 rmind /*
330 1.5 rmind * Set affinity.
331 1.5 rmind */
332 1.5 rmind int
333 1.5 rmind sys__sched_setaffinity(struct lwp *l,
334 1.5 rmind const struct sys__sched_setaffinity_args *uap, register_t *retval)
335 1.5 rmind {
336 1.5 rmind /* {
337 1.5 rmind syscallarg(pid_t) pid;
338 1.5 rmind syscallarg(lwpid_t) lid;
339 1.5 rmind syscallarg(size_t) size;
340 1.23 christos syscallarg(const cpuset_t *) cpuset;
341 1.5 rmind } */
342 1.36 rmind kcpuset_t *kcset, *kcpulst = NULL;
343 1.32 rmind struct cpu_info *ici, *ci;
344 1.5 rmind struct proc *p;
345 1.5 rmind struct lwp *t;
346 1.5 rmind CPU_INFO_ITERATOR cii;
347 1.32 rmind bool alloff;
348 1.5 rmind lwpid_t lid;
349 1.5 rmind u_int lcnt;
350 1.5 rmind int error;
351 1.5 rmind
352 1.36 rmind error = genkcpuset(&kcset, SCARG(uap, cpuset), SCARG(uap, size));
353 1.31 rmind if (error)
354 1.23 christos return error;
355 1.5 rmind
356 1.31 rmind /*
357 1.32 rmind * Traverse _each_ CPU to:
358 1.32 rmind * - Check that CPUs in the mask have no assigned processor set.
359 1.32 rmind * - Check that at least one CPU from the mask is online.
360 1.32 rmind * - Find the first target CPU to migrate.
361 1.31 rmind *
362 1.32 rmind * To avoid the race with CPU online/offline calls and processor sets,
363 1.32 rmind * cpu_lock will be locked for the entire operation.
364 1.31 rmind */
365 1.32 rmind ci = NULL;
366 1.32 rmind alloff = false;
367 1.31 rmind mutex_enter(&cpu_lock);
368 1.32 rmind for (CPU_INFO_FOREACH(cii, ici)) {
369 1.32 rmind struct schedstate_percpu *ispc;
370 1.31 rmind
371 1.39 rmind if (!kcpuset_isset(kcset, cpu_index(ici))) {
372 1.31 rmind continue;
373 1.39 rmind }
374 1.32 rmind
375 1.32 rmind ispc = &ici->ci_schedstate;
376 1.32 rmind /* Check that CPU is not in the processor-set */
377 1.32 rmind if (ispc->spc_psid != PS_NONE) {
378 1.32 rmind error = EPERM;
379 1.32 rmind goto out;
380 1.32 rmind }
381 1.32 rmind /* Skip offline CPUs */
382 1.32 rmind if (ispc->spc_flags & SPCF_OFFLINE) {
383 1.32 rmind alloff = true;
384 1.31 rmind continue;
385 1.24 rmind }
386 1.32 rmind /* Target CPU to migrate */
387 1.32 rmind if (ci == NULL) {
388 1.32 rmind ci = ici;
389 1.32 rmind }
390 1.23 christos }
391 1.5 rmind if (ci == NULL) {
392 1.32 rmind if (alloff) {
393 1.31 rmind /* All CPUs in the set are offline */
394 1.31 rmind error = EPERM;
395 1.31 rmind goto out;
396 1.31 rmind }
397 1.5 rmind /* Empty set */
398 1.36 rmind kcpuset_unuse(kcset, &kcpulst);
399 1.45 msaitoh kcset = NULL;
400 1.5 rmind }
401 1.5 rmind
402 1.7 rmind if (SCARG(uap, pid) != 0) {
403 1.7 rmind /* Find the process */
404 1.20 ad mutex_enter(proc_lock);
405 1.35 rmind p = proc_find(SCARG(uap, pid));
406 1.7 rmind if (p == NULL) {
407 1.20 ad mutex_exit(proc_lock);
408 1.7 rmind error = ESRCH;
409 1.23 christos goto out;
410 1.7 rmind }
411 1.21 ad mutex_enter(p->p_lock);
412 1.20 ad mutex_exit(proc_lock);
413 1.17 ad /* Disallow modification of system processes. */
414 1.17 ad if ((p->p_flag & PK_SYSTEM) != 0) {
415 1.21 ad mutex_exit(p->p_lock);
416 1.17 ad error = EPERM;
417 1.23 christos goto out;
418 1.17 ad }
419 1.7 rmind } else {
420 1.7 rmind /* Use the calling process */
421 1.7 rmind p = l->l_proc;
422 1.21 ad mutex_enter(p->p_lock);
423 1.5 rmind }
424 1.5 rmind
425 1.10 yamt /*
426 1.10 yamt * Check the permission.
427 1.10 yamt */
428 1.11 elad error = kauth_authorize_process(l->l_cred,
429 1.11 elad KAUTH_PROCESS_SCHEDULER_SETAFFINITY, p, NULL, NULL, NULL);
430 1.10 yamt if (error != 0) {
431 1.21 ad mutex_exit(p->p_lock);
432 1.23 christos goto out;
433 1.10 yamt }
434 1.5 rmind
435 1.37 rmind /* Iterate through LWP(s). */
436 1.5 rmind lcnt = 0;
437 1.5 rmind lid = SCARG(uap, lid);
438 1.5 rmind LIST_FOREACH(t, &p->p_lwps, l_sibling) {
439 1.37 rmind if (lid && lid != t->l_lid) {
440 1.5 rmind continue;
441 1.37 rmind }
442 1.5 rmind lwp_lock(t);
443 1.37 rmind /* No affinity for zombie LWPs. */
444 1.27 rmind if (t->l_stat == LSZOMB) {
445 1.27 rmind lwp_unlock(t);
446 1.27 rmind continue;
447 1.27 rmind }
448 1.37 rmind /* First, release existing affinity, if any. */
449 1.37 rmind if (t->l_affinity) {
450 1.37 rmind kcpuset_unuse(t->l_affinity, &kcpulst);
451 1.37 rmind }
452 1.36 rmind if (kcset) {
453 1.37 rmind /*
454 1.37 rmind * Hold a reference on affinity mask, assign mask to
455 1.37 rmind * LWP and migrate it to another CPU (unlocks LWP).
456 1.37 rmind */
457 1.36 rmind kcpuset_use(kcset);
458 1.36 rmind t->l_affinity = kcset;
459 1.5 rmind lwp_migrate(t, ci);
460 1.5 rmind } else {
461 1.37 rmind /* Old affinity mask is released, just clear. */
462 1.23 christos t->l_affinity = NULL;
463 1.5 rmind lwp_unlock(t);
464 1.5 rmind }
465 1.5 rmind lcnt++;
466 1.5 rmind }
467 1.21 ad mutex_exit(p->p_lock);
468 1.36 rmind if (lcnt == 0) {
469 1.5 rmind error = ESRCH;
470 1.36 rmind }
471 1.23 christos out:
472 1.31 rmind mutex_exit(&cpu_lock);
473 1.36 rmind
474 1.36 rmind /*
475 1.36 rmind * Drop the initial reference (LWPs, if any, have the ownership now),
476 1.36 rmind * and destroy whatever is in the G/C list, if filled.
477 1.36 rmind */
478 1.36 rmind if (kcset) {
479 1.36 rmind kcpuset_unuse(kcset, &kcpulst);
480 1.36 rmind }
481 1.36 rmind if (kcpulst) {
482 1.36 rmind kcpuset_destroy(kcpulst);
483 1.36 rmind }
484 1.5 rmind return error;
485 1.5 rmind }
486 1.5 rmind
487 1.5 rmind /*
488 1.5 rmind * Get affinity.
489 1.5 rmind */
490 1.5 rmind int
491 1.5 rmind sys__sched_getaffinity(struct lwp *l,
492 1.5 rmind const struct sys__sched_getaffinity_args *uap, register_t *retval)
493 1.5 rmind {
494 1.5 rmind /* {
495 1.5 rmind syscallarg(pid_t) pid;
496 1.5 rmind syscallarg(lwpid_t) lid;
497 1.5 rmind syscallarg(size_t) size;
498 1.23 christos syscallarg(cpuset_t *) cpuset;
499 1.5 rmind } */
500 1.5 rmind struct lwp *t;
501 1.36 rmind kcpuset_t *kcset;
502 1.5 rmind int error;
503 1.5 rmind
504 1.48 thorpej if (SCARG(uap, pid) < 0 || SCARG(uap, lid) < 0)
505 1.48 thorpej return EINVAL;
506 1.48 thorpej
507 1.36 rmind error = genkcpuset(&kcset, SCARG(uap, cpuset), SCARG(uap, size));
508 1.31 rmind if (error)
509 1.23 christos return error;
510 1.5 rmind
511 1.16 rmind /* Locks the LWP */
512 1.16 rmind t = lwp_find2(SCARG(uap, pid), SCARG(uap, lid));
513 1.5 rmind if (t == NULL) {
514 1.23 christos error = ESRCH;
515 1.23 christos goto out;
516 1.5 rmind }
517 1.10 yamt /* Check the permission */
518 1.11 elad if (kauth_authorize_process(l->l_cred,
519 1.11 elad KAUTH_PROCESS_SCHEDULER_GETAFFINITY, t->l_proc, NULL, NULL, NULL)) {
520 1.21 ad mutex_exit(t->l_proc->p_lock);
521 1.23 christos error = EPERM;
522 1.23 christos goto out;
523 1.10 yamt }
524 1.21 ad lwp_lock(t);
525 1.37 rmind if (t->l_affinity) {
526 1.36 rmind kcpuset_copy(kcset, t->l_affinity);
527 1.36 rmind } else {
528 1.36 rmind kcpuset_zero(kcset);
529 1.36 rmind }
530 1.5 rmind lwp_unlock(t);
531 1.21 ad mutex_exit(t->l_proc->p_lock);
532 1.5 rmind
533 1.36 rmind error = kcpuset_copyout(kcset, SCARG(uap, cpuset), SCARG(uap, size));
534 1.23 christos out:
535 1.36 rmind kcpuset_unuse(kcset, NULL);
536 1.5 rmind return error;
537 1.5 rmind }
538 1.5 rmind
539 1.5 rmind /*
540 1.44 christos * Priority protection for PTHREAD_PRIO_PROTECT. This is a weak
541 1.44 christos * analogue of priority inheritance: temp raise the priority
542 1.44 christos * of the caller when accessing a protected resource.
543 1.44 christos */
544 1.44 christos int
545 1.44 christos sys__sched_protect(struct lwp *l,
546 1.44 christos const struct sys__sched_protect_args *uap, register_t *retval)
547 1.44 christos {
548 1.44 christos /* {
549 1.44 christos syscallarg(int) priority;
550 1.44 christos syscallarg(int *) opriority;
551 1.44 christos } */
552 1.44 christos int error;
553 1.44 christos pri_t pri;
554 1.44 christos
555 1.44 christos KASSERT(l->l_inheritedprio == -1);
556 1.44 christos KASSERT(l->l_auxprio == -1 || l->l_auxprio == l->l_protectprio);
557 1.44 christos
558 1.44 christos pri = SCARG(uap, priority);
559 1.44 christos error = 0;
560 1.44 christos lwp_lock(l);
561 1.44 christos if (pri == -1) {
562 1.44 christos /* back out priority changes */
563 1.44 christos switch(l->l_protectdepth) {
564 1.44 christos case 0:
565 1.44 christos error = EINVAL;
566 1.44 christos break;
567 1.44 christos case 1:
568 1.44 christos l->l_protectdepth = 0;
569 1.44 christos l->l_protectprio = -1;
570 1.44 christos l->l_auxprio = -1;
571 1.44 christos break;
572 1.44 christos default:
573 1.44 christos l->l_protectdepth--;
574 1.45 msaitoh break;
575 1.44 christos }
576 1.44 christos } else if (pri < 0) {
577 1.44 christos /* Just retrieve the current value, for debugging */
578 1.46 christos if (l->l_protectprio == -1)
579 1.44 christos error = ENOENT;
580 1.44 christos else
581 1.44 christos *retval = l->l_protectprio - PRI_USER_RT;
582 1.44 christos } else if (__predict_false(pri < SCHED_PRI_MIN ||
583 1.44 christos pri > SCHED_PRI_MAX || l->l_priority > pri + PRI_USER_RT)) {
584 1.44 christos /* must fail if existing priority is higher */
585 1.44 christos error = EPERM;
586 1.44 christos } else {
587 1.44 christos /* play along but make no changes if not a realtime LWP. */
588 1.44 christos l->l_protectdepth++;
589 1.44 christos pri += PRI_USER_RT;
590 1.44 christos if (__predict_true(l->l_class != SCHED_OTHER &&
591 1.44 christos pri > l->l_protectprio)) {
592 1.44 christos l->l_protectprio = pri;
593 1.44 christos l->l_auxprio = pri;
594 1.44 christos }
595 1.44 christos }
596 1.44 christos lwp_unlock(l);
597 1.44 christos
598 1.44 christos return error;
599 1.44 christos }
600 1.44 christos
601 1.44 christos /*
602 1.5 rmind * Yield.
603 1.5 rmind */
604 1.1 ad int
605 1.4 dsl sys_sched_yield(struct lwp *l, const void *v, register_t *retval)
606 1.1 ad {
607 1.1 ad
608 1.1 ad yield();
609 1.1 ad return 0;
610 1.1 ad }
611 1.5 rmind
612 1.5 rmind /*
613 1.5 rmind * Sysctl nodes and initialization.
614 1.5 rmind */
615 1.34 elad static void
616 1.34 elad sysctl_sched_setup(struct sysctllog **clog)
617 1.5 rmind {
618 1.5 rmind const struct sysctlnode *node = NULL;
619 1.5 rmind
620 1.5 rmind sysctl_createv(clog, 0, NULL, NULL,
621 1.5 rmind CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
622 1.5 rmind CTLTYPE_INT, "posix_sched",
623 1.5 rmind SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
624 1.5 rmind "Process Scheduling option to which the "
625 1.5 rmind "system attempts to conform"),
626 1.5 rmind NULL, _POSIX_PRIORITY_SCHEDULING, NULL, 0,
627 1.5 rmind CTL_KERN, CTL_CREATE, CTL_EOL);
628 1.5 rmind sysctl_createv(clog, 0, NULL, &node,
629 1.5 rmind CTLFLAG_PERMANENT,
630 1.5 rmind CTLTYPE_NODE, "sched",
631 1.5 rmind SYSCTL_DESCR("Scheduler options"),
632 1.5 rmind NULL, 0, NULL, 0,
633 1.5 rmind CTL_KERN, CTL_CREATE, CTL_EOL);
634 1.5 rmind
635 1.5 rmind if (node == NULL)
636 1.5 rmind return;
637 1.5 rmind
638 1.5 rmind sysctl_createv(clog, 0, &node, NULL,
639 1.5 rmind CTLFLAG_PERMANENT | CTLFLAG_IMMEDIATE,
640 1.5 rmind CTLTYPE_INT, "pri_min",
641 1.5 rmind SYSCTL_DESCR("Minimal POSIX real-time priority"),
642 1.5 rmind NULL, SCHED_PRI_MIN, NULL, 0,
643 1.5 rmind CTL_CREATE, CTL_EOL);
644 1.5 rmind sysctl_createv(clog, 0, &node, NULL,
645 1.5 rmind CTLFLAG_PERMANENT | CTLFLAG_IMMEDIATE,
646 1.5 rmind CTLTYPE_INT, "pri_max",
647 1.19 njoly SYSCTL_DESCR("Maximal POSIX real-time priority"),
648 1.5 rmind NULL, SCHED_PRI_MAX, NULL, 0,
649 1.5 rmind CTL_CREATE, CTL_EOL);
650 1.5 rmind }
651 1.34 elad
652 1.34 elad static int
653 1.34 elad sched_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
654 1.34 elad void *arg0, void *arg1, void *arg2, void *arg3)
655 1.34 elad {
656 1.34 elad struct proc *p;
657 1.34 elad int result;
658 1.34 elad
659 1.34 elad result = KAUTH_RESULT_DEFER;
660 1.34 elad p = arg0;
661 1.34 elad
662 1.34 elad switch (action) {
663 1.34 elad case KAUTH_PROCESS_SCHEDULER_GETPARAM:
664 1.34 elad if (kauth_cred_uidmatch(cred, p->p_cred))
665 1.34 elad result = KAUTH_RESULT_ALLOW;
666 1.34 elad break;
667 1.34 elad
668 1.34 elad case KAUTH_PROCESS_SCHEDULER_SETPARAM:
669 1.34 elad if (kauth_cred_uidmatch(cred, p->p_cred)) {
670 1.34 elad struct lwp *l;
671 1.34 elad int policy;
672 1.34 elad pri_t priority;
673 1.34 elad
674 1.34 elad l = arg1;
675 1.34 elad policy = (int)(unsigned long)arg2;
676 1.34 elad priority = (pri_t)(unsigned long)arg3;
677 1.34 elad
678 1.34 elad if ((policy == l->l_class ||
679 1.34 elad (policy != SCHED_FIFO && policy != SCHED_RR)) &&
680 1.34 elad priority <= l->l_priority)
681 1.34 elad result = KAUTH_RESULT_ALLOW;
682 1.34 elad }
683 1.34 elad
684 1.34 elad break;
685 1.34 elad
686 1.34 elad case KAUTH_PROCESS_SCHEDULER_GETAFFINITY:
687 1.34 elad result = KAUTH_RESULT_ALLOW;
688 1.34 elad break;
689 1.34 elad
690 1.34 elad case KAUTH_PROCESS_SCHEDULER_SETAFFINITY:
691 1.34 elad /* Privileged; we let the secmodel handle this. */
692 1.34 elad break;
693 1.34 elad
694 1.34 elad default:
695 1.34 elad break;
696 1.34 elad }
697 1.34 elad
698 1.34 elad return result;
699 1.34 elad }
700 1.34 elad
701 1.34 elad void
702 1.34 elad sched_init(void)
703 1.34 elad {
704 1.34 elad
705 1.34 elad sysctl_sched_setup(&sched_sysctl_log);
706 1.34 elad
707 1.34 elad sched_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
708 1.34 elad sched_listener_cb, NULL);
709 1.34 elad }
710