sys_sched.c revision 1.50 1 1.50 riastrad /* $NetBSD: sys_sched.c,v 1.50 2023/04/09 09:18:09 riastradh Exp $ */
2 1.1 ad
3 1.5 rmind /*
4 1.36 rmind * Copyright (c) 2008, 2011 Mindaugas Rasiukevicius <rmind at NetBSD org>
5 1.1 ad * All rights reserved.
6 1.5 rmind *
7 1.1 ad * Redistribution and use in source and binary forms, with or without
8 1.1 ad * modification, are permitted provided that the following conditions
9 1.1 ad * are met:
10 1.1 ad * 1. Redistributions of source code must retain the above copyright
11 1.1 ad * notice, this list of conditions and the following disclaimer.
12 1.1 ad * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 ad * notice, this list of conditions and the following disclaimer in the
14 1.1 ad * documentation and/or other materials provided with the distribution.
15 1.1 ad *
16 1.16 rmind * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 1.16 rmind * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 1.16 rmind * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 1.16 rmind * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 1.16 rmind * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 1.16 rmind * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 1.16 rmind * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 1.16 rmind * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 1.16 rmind * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.16 rmind * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.16 rmind * SUCH DAMAGE.
27 1.1 ad */
28 1.1 ad
29 1.5 rmind /*
30 1.17 ad * System calls relating to the scheduler.
31 1.17 ad *
32 1.31 rmind * Lock order:
33 1.31 rmind *
34 1.31 rmind * cpu_lock ->
35 1.31 rmind * proc_lock ->
36 1.31 rmind * proc_t::p_lock ->
37 1.31 rmind * lwp_t::lwp_lock
38 1.31 rmind *
39 1.5 rmind * TODO:
40 1.5 rmind * - Handle pthread_setschedprio() as defined by POSIX;
41 1.5 rmind */
42 1.5 rmind
43 1.1 ad #include <sys/cdefs.h>
44 1.50 riastrad __KERNEL_RCSID(0, "$NetBSD: sys_sched.c,v 1.50 2023/04/09 09:18:09 riastradh Exp $");
45 1.1 ad
46 1.1 ad #include <sys/param.h>
47 1.5 rmind
48 1.5 rmind #include <sys/cpu.h>
49 1.5 rmind #include <sys/kauth.h>
50 1.5 rmind #include <sys/kmem.h>
51 1.5 rmind #include <sys/lwp.h>
52 1.5 rmind #include <sys/mutex.h>
53 1.1 ad #include <sys/proc.h>
54 1.5 rmind #include <sys/pset.h>
55 1.5 rmind #include <sys/sched.h>
56 1.1 ad #include <sys/syscallargs.h>
57 1.5 rmind #include <sys/sysctl.h>
58 1.5 rmind #include <sys/systm.h>
59 1.5 rmind #include <sys/types.h>
60 1.5 rmind #include <sys/unistd.h>
61 1.5 rmind
62 1.34 elad static struct sysctllog *sched_sysctl_log;
63 1.34 elad static kauth_listener_t sched_listener;
64 1.34 elad
65 1.5 rmind /*
66 1.7 rmind * Convert user priority or the in-kernel priority or convert the current
67 1.7 rmind * priority to the appropriate range according to the policy change.
68 1.7 rmind */
69 1.7 rmind static pri_t
70 1.7 rmind convert_pri(lwp_t *l, int policy, pri_t pri)
71 1.7 rmind {
72 1.7 rmind
73 1.29 rmind /* Convert user priority to the in-kernel */
74 1.7 rmind if (pri != PRI_NONE) {
75 1.29 rmind /* Only for real-time threads */
76 1.50 riastrad KASSERT(pri >= SCHED_PRI_MIN);
77 1.50 riastrad KASSERT(pri <= SCHED_PRI_MAX);
78 1.29 rmind KASSERT(policy != SCHED_OTHER);
79 1.29 rmind return PRI_USER_RT + pri;
80 1.7 rmind }
81 1.29 rmind
82 1.29 rmind /* Neither policy, nor priority change */
83 1.7 rmind if (l->l_class == policy)
84 1.7 rmind return l->l_priority;
85 1.7 rmind
86 1.29 rmind /* Time-sharing -> real-time */
87 1.7 rmind if (l->l_class == SCHED_OTHER) {
88 1.7 rmind KASSERT(policy == SCHED_FIFO || policy == SCHED_RR);
89 1.29 rmind return PRI_USER_RT;
90 1.7 rmind }
91 1.29 rmind
92 1.29 rmind /* Real-time -> time-sharing */
93 1.7 rmind if (policy == SCHED_OTHER) {
94 1.7 rmind KASSERT(l->l_class == SCHED_FIFO || l->l_class == SCHED_RR);
95 1.41 yamt /*
96 1.41 yamt * this is a bit arbitrary because the priority is dynamic
97 1.41 yamt * for SCHED_OTHER threads and will likely be changed by
98 1.41 yamt * the scheduler soon anyway.
99 1.41 yamt */
100 1.29 rmind return l->l_priority - PRI_USER_RT;
101 1.7 rmind }
102 1.29 rmind
103 1.29 rmind /* Real-time -> real-time */
104 1.29 rmind return l->l_priority;
105 1.7 rmind }
106 1.7 rmind
107 1.5 rmind int
108 1.18 elad do_sched_setparam(pid_t pid, lwpid_t lid, int policy,
109 1.18 elad const struct sched_param *params)
110 1.5 rmind {
111 1.5 rmind struct proc *p;
112 1.5 rmind struct lwp *t;
113 1.18 elad pri_t pri;
114 1.5 rmind u_int lcnt;
115 1.5 rmind int error;
116 1.5 rmind
117 1.18 elad error = 0;
118 1.18 elad
119 1.18 elad pri = params->sched_priority;
120 1.7 rmind
121 1.7 rmind /* If no parameters specified, just return (this should not happen) */
122 1.7 rmind if (pri == PRI_NONE && policy == SCHED_NONE)
123 1.7 rmind return 0;
124 1.5 rmind
125 1.7 rmind /* Validate scheduling class */
126 1.7 rmind if (policy != SCHED_NONE && (policy < SCHED_OTHER || policy > SCHED_RR))
127 1.7 rmind return EINVAL;
128 1.5 rmind
129 1.7 rmind /* Validate priority */
130 1.7 rmind if (pri != PRI_NONE && (pri < SCHED_PRI_MIN || pri > SCHED_PRI_MAX))
131 1.7 rmind return EINVAL;
132 1.5 rmind
133 1.18 elad if (pid != 0) {
134 1.7 rmind /* Find the process */
135 1.49 ad mutex_enter(&proc_lock);
136 1.35 rmind p = proc_find(pid);
137 1.20 ad if (p == NULL) {
138 1.49 ad mutex_exit(&proc_lock);
139 1.7 rmind return ESRCH;
140 1.20 ad }
141 1.21 ad mutex_enter(p->p_lock);
142 1.49 ad mutex_exit(&proc_lock);
143 1.7 rmind /* Disallow modification of system processes */
144 1.17 ad if ((p->p_flag & PK_SYSTEM) != 0) {
145 1.21 ad mutex_exit(p->p_lock);
146 1.7 rmind return EPERM;
147 1.7 rmind }
148 1.7 rmind } else {
149 1.7 rmind /* Use the calling process */
150 1.18 elad p = curlwp->l_proc;
151 1.21 ad mutex_enter(p->p_lock);
152 1.5 rmind }
153 1.1 ad
154 1.5 rmind /* Find the LWP(s) */
155 1.5 rmind lcnt = 0;
156 1.5 rmind LIST_FOREACH(t, &p->p_lwps, l_sibling) {
157 1.7 rmind pri_t kpri;
158 1.12 elad int lpolicy;
159 1.5 rmind
160 1.5 rmind if (lid && lid != t->l_lid)
161 1.5 rmind continue;
162 1.29 rmind
163 1.15 drochner lcnt++;
164 1.7 rmind lwp_lock(t);
165 1.29 rmind lpolicy = (policy == SCHED_NONE) ? t->l_class : policy;
166 1.29 rmind
167 1.29 rmind /* Disallow setting of priority for SCHED_OTHER threads */
168 1.30 rmind if (lpolicy == SCHED_OTHER && pri != PRI_NONE) {
169 1.29 rmind lwp_unlock(t);
170 1.29 rmind error = EINVAL;
171 1.29 rmind break;
172 1.29 rmind }
173 1.7 rmind
174 1.29 rmind /* Convert priority, if needed */
175 1.12 elad kpri = convert_pri(t, lpolicy, pri);
176 1.12 elad
177 1.12 elad /* Check the permission */
178 1.18 elad error = kauth_authorize_process(kauth_cred_get(),
179 1.12 elad KAUTH_PROCESS_SCHEDULER_SETPARAM, p, t, KAUTH_ARG(lpolicy),
180 1.12 elad KAUTH_ARG(kpri));
181 1.14 yamt if (error) {
182 1.14 yamt lwp_unlock(t);
183 1.12 elad break;
184 1.14 yamt }
185 1.5 rmind
186 1.29 rmind /* Set the scheduling class, change the priority */
187 1.29 rmind t->l_class = lpolicy;
188 1.29 rmind lwp_changepri(t, kpri);
189 1.5 rmind lwp_unlock(t);
190 1.5 rmind }
191 1.21 ad mutex_exit(p->p_lock);
192 1.7 rmind return (lcnt == 0) ? ESRCH : error;
193 1.5 rmind }
194 1.5 rmind
195 1.5 rmind /*
196 1.18 elad * Set scheduling parameters.
197 1.5 rmind */
198 1.5 rmind int
199 1.18 elad sys__sched_setparam(struct lwp *l, const struct sys__sched_setparam_args *uap,
200 1.5 rmind register_t *retval)
201 1.5 rmind {
202 1.5 rmind /* {
203 1.5 rmind syscallarg(pid_t) pid;
204 1.5 rmind syscallarg(lwpid_t) lid;
205 1.18 elad syscallarg(int) policy;
206 1.18 elad syscallarg(const struct sched_param *) params;
207 1.5 rmind } */
208 1.18 elad struct sched_param params;
209 1.18 elad int error;
210 1.18 elad
211 1.18 elad /* Get the parameters from the user-space */
212 1.18 elad error = copyin(SCARG(uap, params), ¶ms, sizeof(params));
213 1.18 elad if (error)
214 1.18 elad goto out;
215 1.18 elad
216 1.18 elad error = do_sched_setparam(SCARG(uap, pid), SCARG(uap, lid),
217 1.18 elad SCARG(uap, policy), ¶ms);
218 1.31 rmind out:
219 1.31 rmind return error;
220 1.18 elad }
221 1.18 elad
222 1.41 yamt /*
223 1.41 yamt * do_sched_getparam:
224 1.41 yamt *
225 1.41 yamt * if lid=0, returns the parameter of the first LWP in the process.
226 1.41 yamt */
227 1.18 elad int
228 1.18 elad do_sched_getparam(pid_t pid, lwpid_t lid, int *policy,
229 1.18 elad struct sched_param *params)
230 1.18 elad {
231 1.18 elad struct sched_param lparams;
232 1.5 rmind struct lwp *t;
233 1.18 elad int error, lpolicy;
234 1.5 rmind
235 1.48 thorpej if (pid < 0 || lid < 0)
236 1.48 thorpej return EINVAL;
237 1.48 thorpej
238 1.41 yamt t = lwp_find2(pid, lid); /* acquire p_lock */
239 1.21 ad if (t == NULL)
240 1.21 ad return ESRCH;
241 1.10 yamt
242 1.10 yamt /* Check the permission */
243 1.18 elad error = kauth_authorize_process(kauth_cred_get(),
244 1.11 elad KAUTH_PROCESS_SCHEDULER_GETPARAM, t->l_proc, NULL, NULL, NULL);
245 1.10 yamt if (error != 0) {
246 1.21 ad mutex_exit(t->l_proc->p_lock);
247 1.21 ad return error;
248 1.5 rmind }
249 1.10 yamt
250 1.21 ad lwp_lock(t);
251 1.18 elad lparams.sched_priority = t->l_priority;
252 1.18 elad lpolicy = t->l_class;
253 1.41 yamt lwp_unlock(t);
254 1.41 yamt mutex_exit(t->l_proc->p_lock);
255 1.5 rmind
256 1.41 yamt /*
257 1.41 yamt * convert to the user-visible priority value.
258 1.41 yamt * it's an inversion of convert_pri().
259 1.41 yamt *
260 1.41 yamt * the SCHED_OTHER case is a bit arbitrary given that
261 1.41 yamt * - we don't allow setting the priority.
262 1.41 yamt * - the priority is dynamic.
263 1.41 yamt */
264 1.18 elad switch (lpolicy) {
265 1.5 rmind case SCHED_OTHER:
266 1.18 elad lparams.sched_priority -= PRI_USER;
267 1.5 rmind break;
268 1.5 rmind case SCHED_RR:
269 1.5 rmind case SCHED_FIFO:
270 1.18 elad lparams.sched_priority -= PRI_USER_RT;
271 1.5 rmind break;
272 1.5 rmind }
273 1.18 elad
274 1.18 elad if (policy != NULL)
275 1.18 elad *policy = lpolicy;
276 1.18 elad
277 1.18 elad if (params != NULL)
278 1.18 elad *params = lparams;
279 1.18 elad
280 1.18 elad return error;
281 1.18 elad }
282 1.18 elad
283 1.18 elad /*
284 1.18 elad * Get scheduling parameters.
285 1.18 elad */
286 1.18 elad int
287 1.18 elad sys__sched_getparam(struct lwp *l, const struct sys__sched_getparam_args *uap,
288 1.18 elad register_t *retval)
289 1.18 elad {
290 1.18 elad /* {
291 1.18 elad syscallarg(pid_t) pid;
292 1.18 elad syscallarg(lwpid_t) lid;
293 1.18 elad syscallarg(int *) policy;
294 1.18 elad syscallarg(struct sched_param *) params;
295 1.18 elad } */
296 1.18 elad struct sched_param params;
297 1.18 elad int error, policy;
298 1.18 elad
299 1.18 elad error = do_sched_getparam(SCARG(uap, pid), SCARG(uap, lid), &policy,
300 1.18 elad ¶ms);
301 1.18 elad if (error)
302 1.18 elad goto out;
303 1.18 elad
304 1.18 elad error = copyout(¶ms, SCARG(uap, params), sizeof(params));
305 1.10 yamt if (error == 0 && SCARG(uap, policy) != NULL)
306 1.10 yamt error = copyout(&policy, SCARG(uap, policy), sizeof(int));
307 1.31 rmind out:
308 1.31 rmind return error;
309 1.5 rmind }
310 1.5 rmind
311 1.31 rmind /*
312 1.31 rmind * Allocate the CPU set, and get it from userspace.
313 1.31 rmind */
314 1.23 christos static int
315 1.26 christos genkcpuset(kcpuset_t **dset, const cpuset_t *sset, size_t size)
316 1.23 christos {
317 1.36 rmind kcpuset_t *kset;
318 1.23 christos int error;
319 1.23 christos
320 1.42 rmind kcpuset_create(&kset, true);
321 1.36 rmind error = kcpuset_copyin(sset, kset, size);
322 1.36 rmind if (error) {
323 1.36 rmind kcpuset_unuse(kset, NULL);
324 1.36 rmind } else {
325 1.36 rmind *dset = kset;
326 1.36 rmind }
327 1.23 christos return error;
328 1.23 christos }
329 1.23 christos
330 1.5 rmind /*
331 1.5 rmind * Set affinity.
332 1.5 rmind */
333 1.5 rmind int
334 1.5 rmind sys__sched_setaffinity(struct lwp *l,
335 1.5 rmind const struct sys__sched_setaffinity_args *uap, register_t *retval)
336 1.5 rmind {
337 1.5 rmind /* {
338 1.5 rmind syscallarg(pid_t) pid;
339 1.5 rmind syscallarg(lwpid_t) lid;
340 1.5 rmind syscallarg(size_t) size;
341 1.23 christos syscallarg(const cpuset_t *) cpuset;
342 1.5 rmind } */
343 1.36 rmind kcpuset_t *kcset, *kcpulst = NULL;
344 1.32 rmind struct cpu_info *ici, *ci;
345 1.5 rmind struct proc *p;
346 1.5 rmind struct lwp *t;
347 1.5 rmind CPU_INFO_ITERATOR cii;
348 1.32 rmind bool alloff;
349 1.5 rmind lwpid_t lid;
350 1.5 rmind u_int lcnt;
351 1.5 rmind int error;
352 1.5 rmind
353 1.36 rmind error = genkcpuset(&kcset, SCARG(uap, cpuset), SCARG(uap, size));
354 1.31 rmind if (error)
355 1.23 christos return error;
356 1.5 rmind
357 1.31 rmind /*
358 1.32 rmind * Traverse _each_ CPU to:
359 1.32 rmind * - Check that CPUs in the mask have no assigned processor set.
360 1.32 rmind * - Check that at least one CPU from the mask is online.
361 1.32 rmind * - Find the first target CPU to migrate.
362 1.31 rmind *
363 1.32 rmind * To avoid the race with CPU online/offline calls and processor sets,
364 1.32 rmind * cpu_lock will be locked for the entire operation.
365 1.31 rmind */
366 1.32 rmind ci = NULL;
367 1.32 rmind alloff = false;
368 1.31 rmind mutex_enter(&cpu_lock);
369 1.32 rmind for (CPU_INFO_FOREACH(cii, ici)) {
370 1.32 rmind struct schedstate_percpu *ispc;
371 1.31 rmind
372 1.39 rmind if (!kcpuset_isset(kcset, cpu_index(ici))) {
373 1.31 rmind continue;
374 1.39 rmind }
375 1.32 rmind
376 1.32 rmind ispc = &ici->ci_schedstate;
377 1.32 rmind /* Check that CPU is not in the processor-set */
378 1.32 rmind if (ispc->spc_psid != PS_NONE) {
379 1.32 rmind error = EPERM;
380 1.32 rmind goto out;
381 1.32 rmind }
382 1.32 rmind /* Skip offline CPUs */
383 1.32 rmind if (ispc->spc_flags & SPCF_OFFLINE) {
384 1.32 rmind alloff = true;
385 1.31 rmind continue;
386 1.24 rmind }
387 1.32 rmind /* Target CPU to migrate */
388 1.32 rmind if (ci == NULL) {
389 1.32 rmind ci = ici;
390 1.32 rmind }
391 1.23 christos }
392 1.5 rmind if (ci == NULL) {
393 1.32 rmind if (alloff) {
394 1.31 rmind /* All CPUs in the set are offline */
395 1.31 rmind error = EPERM;
396 1.31 rmind goto out;
397 1.31 rmind }
398 1.5 rmind /* Empty set */
399 1.36 rmind kcpuset_unuse(kcset, &kcpulst);
400 1.45 msaitoh kcset = NULL;
401 1.5 rmind }
402 1.5 rmind
403 1.7 rmind if (SCARG(uap, pid) != 0) {
404 1.7 rmind /* Find the process */
405 1.49 ad mutex_enter(&proc_lock);
406 1.35 rmind p = proc_find(SCARG(uap, pid));
407 1.7 rmind if (p == NULL) {
408 1.49 ad mutex_exit(&proc_lock);
409 1.7 rmind error = ESRCH;
410 1.23 christos goto out;
411 1.7 rmind }
412 1.21 ad mutex_enter(p->p_lock);
413 1.49 ad mutex_exit(&proc_lock);
414 1.17 ad /* Disallow modification of system processes. */
415 1.17 ad if ((p->p_flag & PK_SYSTEM) != 0) {
416 1.21 ad mutex_exit(p->p_lock);
417 1.17 ad error = EPERM;
418 1.23 christos goto out;
419 1.17 ad }
420 1.7 rmind } else {
421 1.7 rmind /* Use the calling process */
422 1.7 rmind p = l->l_proc;
423 1.21 ad mutex_enter(p->p_lock);
424 1.5 rmind }
425 1.5 rmind
426 1.10 yamt /*
427 1.10 yamt * Check the permission.
428 1.10 yamt */
429 1.11 elad error = kauth_authorize_process(l->l_cred,
430 1.11 elad KAUTH_PROCESS_SCHEDULER_SETAFFINITY, p, NULL, NULL, NULL);
431 1.10 yamt if (error != 0) {
432 1.21 ad mutex_exit(p->p_lock);
433 1.23 christos goto out;
434 1.10 yamt }
435 1.5 rmind
436 1.37 rmind /* Iterate through LWP(s). */
437 1.5 rmind lcnt = 0;
438 1.5 rmind lid = SCARG(uap, lid);
439 1.5 rmind LIST_FOREACH(t, &p->p_lwps, l_sibling) {
440 1.37 rmind if (lid && lid != t->l_lid) {
441 1.5 rmind continue;
442 1.37 rmind }
443 1.5 rmind lwp_lock(t);
444 1.37 rmind /* No affinity for zombie LWPs. */
445 1.27 rmind if (t->l_stat == LSZOMB) {
446 1.27 rmind lwp_unlock(t);
447 1.27 rmind continue;
448 1.27 rmind }
449 1.37 rmind /* First, release existing affinity, if any. */
450 1.37 rmind if (t->l_affinity) {
451 1.37 rmind kcpuset_unuse(t->l_affinity, &kcpulst);
452 1.37 rmind }
453 1.36 rmind if (kcset) {
454 1.37 rmind /*
455 1.37 rmind * Hold a reference on affinity mask, assign mask to
456 1.37 rmind * LWP and migrate it to another CPU (unlocks LWP).
457 1.37 rmind */
458 1.36 rmind kcpuset_use(kcset);
459 1.36 rmind t->l_affinity = kcset;
460 1.5 rmind lwp_migrate(t, ci);
461 1.5 rmind } else {
462 1.37 rmind /* Old affinity mask is released, just clear. */
463 1.23 christos t->l_affinity = NULL;
464 1.5 rmind lwp_unlock(t);
465 1.5 rmind }
466 1.5 rmind lcnt++;
467 1.5 rmind }
468 1.21 ad mutex_exit(p->p_lock);
469 1.36 rmind if (lcnt == 0) {
470 1.5 rmind error = ESRCH;
471 1.36 rmind }
472 1.23 christos out:
473 1.31 rmind mutex_exit(&cpu_lock);
474 1.36 rmind
475 1.36 rmind /*
476 1.36 rmind * Drop the initial reference (LWPs, if any, have the ownership now),
477 1.36 rmind * and destroy whatever is in the G/C list, if filled.
478 1.36 rmind */
479 1.36 rmind if (kcset) {
480 1.36 rmind kcpuset_unuse(kcset, &kcpulst);
481 1.36 rmind }
482 1.36 rmind if (kcpulst) {
483 1.36 rmind kcpuset_destroy(kcpulst);
484 1.36 rmind }
485 1.5 rmind return error;
486 1.5 rmind }
487 1.5 rmind
488 1.5 rmind /*
489 1.5 rmind * Get affinity.
490 1.5 rmind */
491 1.5 rmind int
492 1.5 rmind sys__sched_getaffinity(struct lwp *l,
493 1.5 rmind const struct sys__sched_getaffinity_args *uap, register_t *retval)
494 1.5 rmind {
495 1.5 rmind /* {
496 1.5 rmind syscallarg(pid_t) pid;
497 1.5 rmind syscallarg(lwpid_t) lid;
498 1.5 rmind syscallarg(size_t) size;
499 1.23 christos syscallarg(cpuset_t *) cpuset;
500 1.5 rmind } */
501 1.5 rmind struct lwp *t;
502 1.36 rmind kcpuset_t *kcset;
503 1.5 rmind int error;
504 1.5 rmind
505 1.48 thorpej if (SCARG(uap, pid) < 0 || SCARG(uap, lid) < 0)
506 1.48 thorpej return EINVAL;
507 1.48 thorpej
508 1.36 rmind error = genkcpuset(&kcset, SCARG(uap, cpuset), SCARG(uap, size));
509 1.31 rmind if (error)
510 1.23 christos return error;
511 1.5 rmind
512 1.16 rmind /* Locks the LWP */
513 1.16 rmind t = lwp_find2(SCARG(uap, pid), SCARG(uap, lid));
514 1.5 rmind if (t == NULL) {
515 1.23 christos error = ESRCH;
516 1.23 christos goto out;
517 1.5 rmind }
518 1.10 yamt /* Check the permission */
519 1.11 elad if (kauth_authorize_process(l->l_cred,
520 1.11 elad KAUTH_PROCESS_SCHEDULER_GETAFFINITY, t->l_proc, NULL, NULL, NULL)) {
521 1.21 ad mutex_exit(t->l_proc->p_lock);
522 1.23 christos error = EPERM;
523 1.23 christos goto out;
524 1.10 yamt }
525 1.21 ad lwp_lock(t);
526 1.37 rmind if (t->l_affinity) {
527 1.36 rmind kcpuset_copy(kcset, t->l_affinity);
528 1.36 rmind } else {
529 1.36 rmind kcpuset_zero(kcset);
530 1.36 rmind }
531 1.5 rmind lwp_unlock(t);
532 1.21 ad mutex_exit(t->l_proc->p_lock);
533 1.5 rmind
534 1.36 rmind error = kcpuset_copyout(kcset, SCARG(uap, cpuset), SCARG(uap, size));
535 1.23 christos out:
536 1.36 rmind kcpuset_unuse(kcset, NULL);
537 1.5 rmind return error;
538 1.5 rmind }
539 1.5 rmind
540 1.5 rmind /*
541 1.44 christos * Priority protection for PTHREAD_PRIO_PROTECT. This is a weak
542 1.44 christos * analogue of priority inheritance: temp raise the priority
543 1.44 christos * of the caller when accessing a protected resource.
544 1.44 christos */
545 1.44 christos int
546 1.44 christos sys__sched_protect(struct lwp *l,
547 1.44 christos const struct sys__sched_protect_args *uap, register_t *retval)
548 1.44 christos {
549 1.44 christos /* {
550 1.44 christos syscallarg(int) priority;
551 1.44 christos syscallarg(int *) opriority;
552 1.44 christos } */
553 1.44 christos int error;
554 1.44 christos pri_t pri;
555 1.44 christos
556 1.44 christos KASSERT(l->l_inheritedprio == -1);
557 1.44 christos KASSERT(l->l_auxprio == -1 || l->l_auxprio == l->l_protectprio);
558 1.44 christos
559 1.44 christos pri = SCARG(uap, priority);
560 1.44 christos error = 0;
561 1.44 christos lwp_lock(l);
562 1.44 christos if (pri == -1) {
563 1.44 christos /* back out priority changes */
564 1.44 christos switch(l->l_protectdepth) {
565 1.44 christos case 0:
566 1.44 christos error = EINVAL;
567 1.44 christos break;
568 1.44 christos case 1:
569 1.44 christos l->l_protectdepth = 0;
570 1.44 christos l->l_protectprio = -1;
571 1.44 christos l->l_auxprio = -1;
572 1.44 christos break;
573 1.44 christos default:
574 1.44 christos l->l_protectdepth--;
575 1.45 msaitoh break;
576 1.44 christos }
577 1.44 christos } else if (pri < 0) {
578 1.44 christos /* Just retrieve the current value, for debugging */
579 1.46 christos if (l->l_protectprio == -1)
580 1.44 christos error = ENOENT;
581 1.44 christos else
582 1.44 christos *retval = l->l_protectprio - PRI_USER_RT;
583 1.44 christos } else if (__predict_false(pri < SCHED_PRI_MIN ||
584 1.44 christos pri > SCHED_PRI_MAX || l->l_priority > pri + PRI_USER_RT)) {
585 1.44 christos /* must fail if existing priority is higher */
586 1.44 christos error = EPERM;
587 1.44 christos } else {
588 1.44 christos /* play along but make no changes if not a realtime LWP. */
589 1.44 christos l->l_protectdepth++;
590 1.44 christos pri += PRI_USER_RT;
591 1.44 christos if (__predict_true(l->l_class != SCHED_OTHER &&
592 1.44 christos pri > l->l_protectprio)) {
593 1.44 christos l->l_protectprio = pri;
594 1.44 christos l->l_auxprio = pri;
595 1.44 christos }
596 1.44 christos }
597 1.44 christos lwp_unlock(l);
598 1.44 christos
599 1.44 christos return error;
600 1.44 christos }
601 1.44 christos
602 1.44 christos /*
603 1.5 rmind * Yield.
604 1.5 rmind */
605 1.1 ad int
606 1.4 dsl sys_sched_yield(struct lwp *l, const void *v, register_t *retval)
607 1.1 ad {
608 1.1 ad
609 1.1 ad yield();
610 1.1 ad return 0;
611 1.1 ad }
612 1.5 rmind
613 1.5 rmind /*
614 1.5 rmind * Sysctl nodes and initialization.
615 1.5 rmind */
616 1.34 elad static void
617 1.34 elad sysctl_sched_setup(struct sysctllog **clog)
618 1.5 rmind {
619 1.5 rmind const struct sysctlnode *node = NULL;
620 1.5 rmind
621 1.5 rmind sysctl_createv(clog, 0, NULL, NULL,
622 1.5 rmind CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
623 1.5 rmind CTLTYPE_INT, "posix_sched",
624 1.5 rmind SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
625 1.5 rmind "Process Scheduling option to which the "
626 1.5 rmind "system attempts to conform"),
627 1.5 rmind NULL, _POSIX_PRIORITY_SCHEDULING, NULL, 0,
628 1.5 rmind CTL_KERN, CTL_CREATE, CTL_EOL);
629 1.5 rmind sysctl_createv(clog, 0, NULL, &node,
630 1.5 rmind CTLFLAG_PERMANENT,
631 1.5 rmind CTLTYPE_NODE, "sched",
632 1.5 rmind SYSCTL_DESCR("Scheduler options"),
633 1.5 rmind NULL, 0, NULL, 0,
634 1.5 rmind CTL_KERN, CTL_CREATE, CTL_EOL);
635 1.5 rmind
636 1.5 rmind if (node == NULL)
637 1.5 rmind return;
638 1.5 rmind
639 1.5 rmind sysctl_createv(clog, 0, &node, NULL,
640 1.5 rmind CTLFLAG_PERMANENT | CTLFLAG_IMMEDIATE,
641 1.5 rmind CTLTYPE_INT, "pri_min",
642 1.5 rmind SYSCTL_DESCR("Minimal POSIX real-time priority"),
643 1.5 rmind NULL, SCHED_PRI_MIN, NULL, 0,
644 1.5 rmind CTL_CREATE, CTL_EOL);
645 1.5 rmind sysctl_createv(clog, 0, &node, NULL,
646 1.5 rmind CTLFLAG_PERMANENT | CTLFLAG_IMMEDIATE,
647 1.5 rmind CTLTYPE_INT, "pri_max",
648 1.19 njoly SYSCTL_DESCR("Maximal POSIX real-time priority"),
649 1.5 rmind NULL, SCHED_PRI_MAX, NULL, 0,
650 1.5 rmind CTL_CREATE, CTL_EOL);
651 1.5 rmind }
652 1.34 elad
653 1.34 elad static int
654 1.34 elad sched_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
655 1.34 elad void *arg0, void *arg1, void *arg2, void *arg3)
656 1.34 elad {
657 1.34 elad struct proc *p;
658 1.34 elad int result;
659 1.34 elad
660 1.34 elad result = KAUTH_RESULT_DEFER;
661 1.34 elad p = arg0;
662 1.34 elad
663 1.34 elad switch (action) {
664 1.34 elad case KAUTH_PROCESS_SCHEDULER_GETPARAM:
665 1.34 elad if (kauth_cred_uidmatch(cred, p->p_cred))
666 1.34 elad result = KAUTH_RESULT_ALLOW;
667 1.34 elad break;
668 1.34 elad
669 1.34 elad case KAUTH_PROCESS_SCHEDULER_SETPARAM:
670 1.34 elad if (kauth_cred_uidmatch(cred, p->p_cred)) {
671 1.34 elad struct lwp *l;
672 1.34 elad int policy;
673 1.34 elad pri_t priority;
674 1.34 elad
675 1.34 elad l = arg1;
676 1.34 elad policy = (int)(unsigned long)arg2;
677 1.34 elad priority = (pri_t)(unsigned long)arg3;
678 1.34 elad
679 1.34 elad if ((policy == l->l_class ||
680 1.34 elad (policy != SCHED_FIFO && policy != SCHED_RR)) &&
681 1.34 elad priority <= l->l_priority)
682 1.34 elad result = KAUTH_RESULT_ALLOW;
683 1.34 elad }
684 1.34 elad
685 1.34 elad break;
686 1.34 elad
687 1.34 elad case KAUTH_PROCESS_SCHEDULER_GETAFFINITY:
688 1.34 elad result = KAUTH_RESULT_ALLOW;
689 1.34 elad break;
690 1.34 elad
691 1.34 elad case KAUTH_PROCESS_SCHEDULER_SETAFFINITY:
692 1.34 elad /* Privileged; we let the secmodel handle this. */
693 1.34 elad break;
694 1.34 elad
695 1.34 elad default:
696 1.34 elad break;
697 1.34 elad }
698 1.34 elad
699 1.34 elad return result;
700 1.34 elad }
701 1.34 elad
702 1.34 elad void
703 1.34 elad sched_init(void)
704 1.34 elad {
705 1.34 elad
706 1.34 elad sysctl_sched_setup(&sched_sysctl_log);
707 1.34 elad
708 1.34 elad sched_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
709 1.34 elad sched_listener_cb, NULL);
710 1.34 elad }
711