Home | History | Annotate | Line # | Download | only in kern
sys_sched.c revision 1.49
      1 /*	$NetBSD: sys_sched.c,v 1.49 2020/05/23 23:42:43 ad Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2008, 2011 Mindaugas Rasiukevicius <rmind at NetBSD org>
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  */
     28 
     29 /*
     30  * System calls relating to the scheduler.
     31  *
     32  * Lock order:
     33  *
     34  *	cpu_lock ->
     35  *	    proc_lock ->
     36  *		proc_t::p_lock ->
     37  *		    lwp_t::lwp_lock
     38  *
     39  * TODO:
     40  *  - Handle pthread_setschedprio() as defined by POSIX;
     41  */
     42 
     43 #include <sys/cdefs.h>
     44 __KERNEL_RCSID(0, "$NetBSD: sys_sched.c,v 1.49 2020/05/23 23:42:43 ad Exp $");
     45 
     46 #include <sys/param.h>
     47 
     48 #include <sys/cpu.h>
     49 #include <sys/kauth.h>
     50 #include <sys/kmem.h>
     51 #include <sys/lwp.h>
     52 #include <sys/mutex.h>
     53 #include <sys/proc.h>
     54 #include <sys/pset.h>
     55 #include <sys/sched.h>
     56 #include <sys/syscallargs.h>
     57 #include <sys/sysctl.h>
     58 #include <sys/systm.h>
     59 #include <sys/types.h>
     60 #include <sys/unistd.h>
     61 
     62 static struct sysctllog *sched_sysctl_log;
     63 static kauth_listener_t sched_listener;
     64 
     65 /*
     66  * Convert user priority or the in-kernel priority or convert the current
     67  * priority to the appropriate range according to the policy change.
     68  */
     69 static pri_t
     70 convert_pri(lwp_t *l, int policy, pri_t pri)
     71 {
     72 
     73 	/* Convert user priority to the in-kernel */
     74 	if (pri != PRI_NONE) {
     75 		/* Only for real-time threads */
     76 		KASSERT(pri >= SCHED_PRI_MIN && pri <= SCHED_PRI_MAX);
     77 		KASSERT(policy != SCHED_OTHER);
     78 		return PRI_USER_RT + pri;
     79 	}
     80 
     81 	/* Neither policy, nor priority change */
     82 	if (l->l_class == policy)
     83 		return l->l_priority;
     84 
     85 	/* Time-sharing -> real-time */
     86 	if (l->l_class == SCHED_OTHER) {
     87 		KASSERT(policy == SCHED_FIFO || policy == SCHED_RR);
     88 		return PRI_USER_RT;
     89 	}
     90 
     91 	/* Real-time -> time-sharing */
     92 	if (policy == SCHED_OTHER) {
     93 		KASSERT(l->l_class == SCHED_FIFO || l->l_class == SCHED_RR);
     94 		/*
     95 		 * this is a bit arbitrary because the priority is dynamic
     96 		 * for SCHED_OTHER threads and will likely be changed by
     97 		 * the scheduler soon anyway.
     98 		 */
     99 		return l->l_priority - PRI_USER_RT;
    100 	}
    101 
    102 	/* Real-time -> real-time */
    103 	return l->l_priority;
    104 }
    105 
    106 int
    107 do_sched_setparam(pid_t pid, lwpid_t lid, int policy,
    108     const struct sched_param *params)
    109 {
    110 	struct proc *p;
    111 	struct lwp *t;
    112 	pri_t pri;
    113 	u_int lcnt;
    114 	int error;
    115 
    116 	error = 0;
    117 
    118 	pri = params->sched_priority;
    119 
    120 	/* If no parameters specified, just return (this should not happen) */
    121 	if (pri == PRI_NONE && policy == SCHED_NONE)
    122 		return 0;
    123 
    124 	/* Validate scheduling class */
    125 	if (policy != SCHED_NONE && (policy < SCHED_OTHER || policy > SCHED_RR))
    126 		return EINVAL;
    127 
    128 	/* Validate priority */
    129 	if (pri != PRI_NONE && (pri < SCHED_PRI_MIN || pri > SCHED_PRI_MAX))
    130 		return EINVAL;
    131 
    132 	if (pid != 0) {
    133 		/* Find the process */
    134 		mutex_enter(&proc_lock);
    135 		p = proc_find(pid);
    136 		if (p == NULL) {
    137 			mutex_exit(&proc_lock);
    138 			return ESRCH;
    139 		}
    140 		mutex_enter(p->p_lock);
    141 		mutex_exit(&proc_lock);
    142 		/* Disallow modification of system processes */
    143 		if ((p->p_flag & PK_SYSTEM) != 0) {
    144 			mutex_exit(p->p_lock);
    145 			return EPERM;
    146 		}
    147 	} else {
    148 		/* Use the calling process */
    149 		p = curlwp->l_proc;
    150 		mutex_enter(p->p_lock);
    151 	}
    152 
    153 	/* Find the LWP(s) */
    154 	lcnt = 0;
    155 	LIST_FOREACH(t, &p->p_lwps, l_sibling) {
    156 		pri_t kpri;
    157 		int lpolicy;
    158 
    159 		if (lid && lid != t->l_lid)
    160 			continue;
    161 
    162 		lcnt++;
    163 		lwp_lock(t);
    164 		lpolicy = (policy == SCHED_NONE) ? t->l_class : policy;
    165 
    166 		/* Disallow setting of priority for SCHED_OTHER threads */
    167 		if (lpolicy == SCHED_OTHER && pri != PRI_NONE) {
    168 			lwp_unlock(t);
    169 			error = EINVAL;
    170 			break;
    171 		}
    172 
    173 		/* Convert priority, if needed */
    174 		kpri = convert_pri(t, lpolicy, pri);
    175 
    176 		/* Check the permission */
    177 		error = kauth_authorize_process(kauth_cred_get(),
    178 		    KAUTH_PROCESS_SCHEDULER_SETPARAM, p, t, KAUTH_ARG(lpolicy),
    179 		    KAUTH_ARG(kpri));
    180 		if (error) {
    181 			lwp_unlock(t);
    182 			break;
    183 		}
    184 
    185 		/* Set the scheduling class, change the priority */
    186 		t->l_class = lpolicy;
    187 		lwp_changepri(t, kpri);
    188 		lwp_unlock(t);
    189 	}
    190 	mutex_exit(p->p_lock);
    191 	return (lcnt == 0) ? ESRCH : error;
    192 }
    193 
    194 /*
    195  * Set scheduling parameters.
    196  */
    197 int
    198 sys__sched_setparam(struct lwp *l, const struct sys__sched_setparam_args *uap,
    199     register_t *retval)
    200 {
    201 	/* {
    202 		syscallarg(pid_t) pid;
    203 		syscallarg(lwpid_t) lid;
    204 		syscallarg(int) policy;
    205 		syscallarg(const struct sched_param *) params;
    206 	} */
    207 	struct sched_param params;
    208 	int error;
    209 
    210 	/* Get the parameters from the user-space */
    211 	error = copyin(SCARG(uap, params), &params, sizeof(params));
    212 	if (error)
    213 		goto out;
    214 
    215 	error = do_sched_setparam(SCARG(uap, pid), SCARG(uap, lid),
    216 	    SCARG(uap, policy), &params);
    217 out:
    218 	return error;
    219 }
    220 
    221 /*
    222  * do_sched_getparam:
    223  *
    224  * if lid=0, returns the parameter of the first LWP in the process.
    225  */
    226 int
    227 do_sched_getparam(pid_t pid, lwpid_t lid, int *policy,
    228     struct sched_param *params)
    229 {
    230 	struct sched_param lparams;
    231 	struct lwp *t;
    232 	int error, lpolicy;
    233 
    234 	if (pid < 0 || lid < 0)
    235 		return EINVAL;
    236 
    237 	t = lwp_find2(pid, lid); /* acquire p_lock */
    238 	if (t == NULL)
    239 		return ESRCH;
    240 
    241 	/* Check the permission */
    242 	error = kauth_authorize_process(kauth_cred_get(),
    243 	    KAUTH_PROCESS_SCHEDULER_GETPARAM, t->l_proc, NULL, NULL, NULL);
    244 	if (error != 0) {
    245 		mutex_exit(t->l_proc->p_lock);
    246 		return error;
    247 	}
    248 
    249 	lwp_lock(t);
    250 	lparams.sched_priority = t->l_priority;
    251 	lpolicy = t->l_class;
    252 	lwp_unlock(t);
    253 	mutex_exit(t->l_proc->p_lock);
    254 
    255 	/*
    256 	 * convert to the user-visible priority value.
    257 	 * it's an inversion of convert_pri().
    258 	 *
    259 	 * the SCHED_OTHER case is a bit arbitrary given that
    260 	 *	- we don't allow setting the priority.
    261 	 *	- the priority is dynamic.
    262 	 */
    263 	switch (lpolicy) {
    264 	case SCHED_OTHER:
    265 		lparams.sched_priority -= PRI_USER;
    266 		break;
    267 	case SCHED_RR:
    268 	case SCHED_FIFO:
    269 		lparams.sched_priority -= PRI_USER_RT;
    270 		break;
    271 	}
    272 
    273 	if (policy != NULL)
    274 		*policy = lpolicy;
    275 
    276 	if (params != NULL)
    277 		*params = lparams;
    278 
    279 	return error;
    280 }
    281 
    282 /*
    283  * Get scheduling parameters.
    284  */
    285 int
    286 sys__sched_getparam(struct lwp *l, const struct sys__sched_getparam_args *uap,
    287     register_t *retval)
    288 {
    289 	/* {
    290 		syscallarg(pid_t) pid;
    291 		syscallarg(lwpid_t) lid;
    292 		syscallarg(int *) policy;
    293 		syscallarg(struct sched_param *) params;
    294 	} */
    295 	struct sched_param params;
    296 	int error, policy;
    297 
    298 	error = do_sched_getparam(SCARG(uap, pid), SCARG(uap, lid), &policy,
    299 	    &params);
    300 	if (error)
    301 		goto out;
    302 
    303 	error = copyout(&params, SCARG(uap, params), sizeof(params));
    304 	if (error == 0 && SCARG(uap, policy) != NULL)
    305 		error = copyout(&policy, SCARG(uap, policy), sizeof(int));
    306 out:
    307 	return error;
    308 }
    309 
    310 /*
    311  * Allocate the CPU set, and get it from userspace.
    312  */
    313 static int
    314 genkcpuset(kcpuset_t **dset, const cpuset_t *sset, size_t size)
    315 {
    316 	kcpuset_t *kset;
    317 	int error;
    318 
    319 	kcpuset_create(&kset, true);
    320 	error = kcpuset_copyin(sset, kset, size);
    321 	if (error) {
    322 		kcpuset_unuse(kset, NULL);
    323 	} else {
    324 		*dset = kset;
    325 	}
    326 	return error;
    327 }
    328 
    329 /*
    330  * Set affinity.
    331  */
    332 int
    333 sys__sched_setaffinity(struct lwp *l,
    334     const struct sys__sched_setaffinity_args *uap, register_t *retval)
    335 {
    336 	/* {
    337 		syscallarg(pid_t) pid;
    338 		syscallarg(lwpid_t) lid;
    339 		syscallarg(size_t) size;
    340 		syscallarg(const cpuset_t *) cpuset;
    341 	} */
    342 	kcpuset_t *kcset, *kcpulst = NULL;
    343 	struct cpu_info *ici, *ci;
    344 	struct proc *p;
    345 	struct lwp *t;
    346 	CPU_INFO_ITERATOR cii;
    347 	bool alloff;
    348 	lwpid_t lid;
    349 	u_int lcnt;
    350 	int error;
    351 
    352 	error = genkcpuset(&kcset, SCARG(uap, cpuset), SCARG(uap, size));
    353 	if (error)
    354 		return error;
    355 
    356 	/*
    357 	 * Traverse _each_ CPU to:
    358 	 *  - Check that CPUs in the mask have no assigned processor set.
    359 	 *  - Check that at least one CPU from the mask is online.
    360 	 *  - Find the first target CPU to migrate.
    361 	 *
    362 	 * To avoid the race with CPU online/offline calls and processor sets,
    363 	 * cpu_lock will be locked for the entire operation.
    364 	 */
    365 	ci = NULL;
    366 	alloff = false;
    367 	mutex_enter(&cpu_lock);
    368 	for (CPU_INFO_FOREACH(cii, ici)) {
    369 		struct schedstate_percpu *ispc;
    370 
    371 		if (!kcpuset_isset(kcset, cpu_index(ici))) {
    372 			continue;
    373 		}
    374 
    375 		ispc = &ici->ci_schedstate;
    376 		/* Check that CPU is not in the processor-set */
    377 		if (ispc->spc_psid != PS_NONE) {
    378 			error = EPERM;
    379 			goto out;
    380 		}
    381 		/* Skip offline CPUs */
    382 		if (ispc->spc_flags & SPCF_OFFLINE) {
    383 			alloff = true;
    384 			continue;
    385 		}
    386 		/* Target CPU to migrate */
    387 		if (ci == NULL) {
    388 			ci = ici;
    389 		}
    390 	}
    391 	if (ci == NULL) {
    392 		if (alloff) {
    393 			/* All CPUs in the set are offline */
    394 			error = EPERM;
    395 			goto out;
    396 		}
    397 		/* Empty set */
    398 		kcpuset_unuse(kcset, &kcpulst);
    399 		kcset = NULL;
    400 	}
    401 
    402 	if (SCARG(uap, pid) != 0) {
    403 		/* Find the process */
    404 		mutex_enter(&proc_lock);
    405 		p = proc_find(SCARG(uap, pid));
    406 		if (p == NULL) {
    407 			mutex_exit(&proc_lock);
    408 			error = ESRCH;
    409 			goto out;
    410 		}
    411 		mutex_enter(p->p_lock);
    412 		mutex_exit(&proc_lock);
    413 		/* Disallow modification of system processes. */
    414 		if ((p->p_flag & PK_SYSTEM) != 0) {
    415 			mutex_exit(p->p_lock);
    416 			error = EPERM;
    417 			goto out;
    418 		}
    419 	} else {
    420 		/* Use the calling process */
    421 		p = l->l_proc;
    422 		mutex_enter(p->p_lock);
    423 	}
    424 
    425 	/*
    426 	 * Check the permission.
    427 	 */
    428 	error = kauth_authorize_process(l->l_cred,
    429 	    KAUTH_PROCESS_SCHEDULER_SETAFFINITY, p, NULL, NULL, NULL);
    430 	if (error != 0) {
    431 		mutex_exit(p->p_lock);
    432 		goto out;
    433 	}
    434 
    435 	/* Iterate through LWP(s). */
    436 	lcnt = 0;
    437 	lid = SCARG(uap, lid);
    438 	LIST_FOREACH(t, &p->p_lwps, l_sibling) {
    439 		if (lid && lid != t->l_lid) {
    440 			continue;
    441 		}
    442 		lwp_lock(t);
    443 		/* No affinity for zombie LWPs. */
    444 		if (t->l_stat == LSZOMB) {
    445 			lwp_unlock(t);
    446 			continue;
    447 		}
    448 		/* First, release existing affinity, if any. */
    449 		if (t->l_affinity) {
    450 			kcpuset_unuse(t->l_affinity, &kcpulst);
    451 		}
    452 		if (kcset) {
    453 			/*
    454 			 * Hold a reference on affinity mask, assign mask to
    455 			 * LWP and migrate it to another CPU (unlocks LWP).
    456 			 */
    457 			kcpuset_use(kcset);
    458 			t->l_affinity = kcset;
    459 			lwp_migrate(t, ci);
    460 		} else {
    461 			/* Old affinity mask is released, just clear. */
    462 			t->l_affinity = NULL;
    463 			lwp_unlock(t);
    464 		}
    465 		lcnt++;
    466 	}
    467 	mutex_exit(p->p_lock);
    468 	if (lcnt == 0) {
    469 		error = ESRCH;
    470 	}
    471 out:
    472 	mutex_exit(&cpu_lock);
    473 
    474 	/*
    475 	 * Drop the initial reference (LWPs, if any, have the ownership now),
    476 	 * and destroy whatever is in the G/C list, if filled.
    477 	 */
    478 	if (kcset) {
    479 		kcpuset_unuse(kcset, &kcpulst);
    480 	}
    481 	if (kcpulst) {
    482 		kcpuset_destroy(kcpulst);
    483 	}
    484 	return error;
    485 }
    486 
    487 /*
    488  * Get affinity.
    489  */
    490 int
    491 sys__sched_getaffinity(struct lwp *l,
    492     const struct sys__sched_getaffinity_args *uap, register_t *retval)
    493 {
    494 	/* {
    495 		syscallarg(pid_t) pid;
    496 		syscallarg(lwpid_t) lid;
    497 		syscallarg(size_t) size;
    498 		syscallarg(cpuset_t *) cpuset;
    499 	} */
    500 	struct lwp *t;
    501 	kcpuset_t *kcset;
    502 	int error;
    503 
    504 	if (SCARG(uap, pid) < 0 || SCARG(uap, lid) < 0)
    505 		return EINVAL;
    506 
    507 	error = genkcpuset(&kcset, SCARG(uap, cpuset), SCARG(uap, size));
    508 	if (error)
    509 		return error;
    510 
    511 	/* Locks the LWP */
    512 	t = lwp_find2(SCARG(uap, pid), SCARG(uap, lid));
    513 	if (t == NULL) {
    514 		error = ESRCH;
    515 		goto out;
    516 	}
    517 	/* Check the permission */
    518 	if (kauth_authorize_process(l->l_cred,
    519 	    KAUTH_PROCESS_SCHEDULER_GETAFFINITY, t->l_proc, NULL, NULL, NULL)) {
    520 		mutex_exit(t->l_proc->p_lock);
    521 		error = EPERM;
    522 		goto out;
    523 	}
    524 	lwp_lock(t);
    525 	if (t->l_affinity) {
    526 		kcpuset_copy(kcset, t->l_affinity);
    527 	} else {
    528 		kcpuset_zero(kcset);
    529 	}
    530 	lwp_unlock(t);
    531 	mutex_exit(t->l_proc->p_lock);
    532 
    533 	error = kcpuset_copyout(kcset, SCARG(uap, cpuset), SCARG(uap, size));
    534 out:
    535 	kcpuset_unuse(kcset, NULL);
    536 	return error;
    537 }
    538 
    539 /*
    540  * Priority protection for PTHREAD_PRIO_PROTECT. This is a weak
    541  * analogue of priority inheritance: temp raise the priority
    542  * of the caller when accessing a protected resource.
    543  */
    544 int
    545 sys__sched_protect(struct lwp *l,
    546     const struct sys__sched_protect_args *uap, register_t *retval)
    547 {
    548         /* {
    549                 syscallarg(int) priority;
    550 		syscallarg(int *) opriority;
    551         } */
    552 	int error;
    553 	pri_t pri;
    554 
    555 	KASSERT(l->l_inheritedprio == -1);
    556 	KASSERT(l->l_auxprio == -1 || l->l_auxprio == l->l_protectprio);
    557 
    558 	pri = SCARG(uap, priority);
    559 	error = 0;
    560 	lwp_lock(l);
    561 	if (pri == -1) {
    562 		/* back out priority changes */
    563 		switch(l->l_protectdepth) {
    564 		case 0:
    565 			error = EINVAL;
    566 			break;
    567 		case 1:
    568 			l->l_protectdepth = 0;
    569 			l->l_protectprio = -1;
    570 			l->l_auxprio = -1;
    571 			break;
    572 		default:
    573 			l->l_protectdepth--;
    574 			break;
    575 		}
    576 	} else if (pri < 0) {
    577 		/* Just retrieve the current value, for debugging */
    578 		if (l->l_protectprio == -1)
    579 			error = ENOENT;
    580 		else
    581 			*retval = l->l_protectprio - PRI_USER_RT;
    582 	} else if (__predict_false(pri < SCHED_PRI_MIN ||
    583 	    pri > SCHED_PRI_MAX || l->l_priority > pri + PRI_USER_RT)) {
    584 		/* must fail if existing priority is higher */
    585 		error = EPERM;
    586 	} else {
    587 		/* play along but make no changes if not a realtime LWP. */
    588 		l->l_protectdepth++;
    589 		pri += PRI_USER_RT;
    590 		if (__predict_true(l->l_class != SCHED_OTHER &&
    591 		    pri > l->l_protectprio)) {
    592 			l->l_protectprio = pri;
    593 			l->l_auxprio = pri;
    594 		}
    595 	}
    596 	lwp_unlock(l);
    597 
    598 	return error;
    599 }
    600 
    601 /*
    602  * Yield.
    603  */
    604 int
    605 sys_sched_yield(struct lwp *l, const void *v, register_t *retval)
    606 {
    607 
    608 	yield();
    609 	return 0;
    610 }
    611 
    612 /*
    613  * Sysctl nodes and initialization.
    614  */
    615 static void
    616 sysctl_sched_setup(struct sysctllog **clog)
    617 {
    618 	const struct sysctlnode *node = NULL;
    619 
    620 	sysctl_createv(clog, 0, NULL, NULL,
    621 		CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
    622 		CTLTYPE_INT, "posix_sched",
    623 		SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
    624 			     "Process Scheduling option to which the "
    625 			     "system attempts to conform"),
    626 		NULL, _POSIX_PRIORITY_SCHEDULING, NULL, 0,
    627 		CTL_KERN, CTL_CREATE, CTL_EOL);
    628 	sysctl_createv(clog, 0, NULL, &node,
    629 		CTLFLAG_PERMANENT,
    630 		CTLTYPE_NODE, "sched",
    631 		SYSCTL_DESCR("Scheduler options"),
    632 		NULL, 0, NULL, 0,
    633 		CTL_KERN, CTL_CREATE, CTL_EOL);
    634 
    635 	if (node == NULL)
    636 		return;
    637 
    638 	sysctl_createv(clog, 0, &node, NULL,
    639 		CTLFLAG_PERMANENT | CTLFLAG_IMMEDIATE,
    640 		CTLTYPE_INT, "pri_min",
    641 		SYSCTL_DESCR("Minimal POSIX real-time priority"),
    642 		NULL, SCHED_PRI_MIN, NULL, 0,
    643 		CTL_CREATE, CTL_EOL);
    644 	sysctl_createv(clog, 0, &node, NULL,
    645 		CTLFLAG_PERMANENT | CTLFLAG_IMMEDIATE,
    646 		CTLTYPE_INT, "pri_max",
    647 		SYSCTL_DESCR("Maximal POSIX real-time priority"),
    648 		NULL, SCHED_PRI_MAX, NULL, 0,
    649 		CTL_CREATE, CTL_EOL);
    650 }
    651 
    652 static int
    653 sched_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    654     void *arg0, void *arg1, void *arg2, void *arg3)
    655 {
    656 	struct proc *p;
    657 	int result;
    658 
    659 	result = KAUTH_RESULT_DEFER;
    660 	p = arg0;
    661 
    662 	switch (action) {
    663 	case KAUTH_PROCESS_SCHEDULER_GETPARAM:
    664 		if (kauth_cred_uidmatch(cred, p->p_cred))
    665 			result = KAUTH_RESULT_ALLOW;
    666 		break;
    667 
    668 	case KAUTH_PROCESS_SCHEDULER_SETPARAM:
    669 		if (kauth_cred_uidmatch(cred, p->p_cred)) {
    670 			struct lwp *l;
    671 			int policy;
    672 			pri_t priority;
    673 
    674 			l = arg1;
    675 			policy = (int)(unsigned long)arg2;
    676 			priority = (pri_t)(unsigned long)arg3;
    677 
    678 			if ((policy == l->l_class ||
    679 			    (policy != SCHED_FIFO && policy != SCHED_RR)) &&
    680 			    priority <= l->l_priority)
    681 				result = KAUTH_RESULT_ALLOW;
    682 		}
    683 
    684 		break;
    685 
    686 	case KAUTH_PROCESS_SCHEDULER_GETAFFINITY:
    687 		result = KAUTH_RESULT_ALLOW;
    688 		break;
    689 
    690 	case KAUTH_PROCESS_SCHEDULER_SETAFFINITY:
    691 		/* Privileged; we let the secmodel handle this. */
    692 		break;
    693 
    694 	default:
    695 		break;
    696 	}
    697 
    698 	return result;
    699 }
    700 
    701 void
    702 sched_init(void)
    703 {
    704 
    705 	sysctl_sched_setup(&sched_sysctl_log);
    706 
    707 	sched_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
    708 	    sched_listener_cb, NULL);
    709 }
    710