Home | History | Annotate | Line # | Download | only in kern
      1  1.68   khorben /*	$NetBSD: sys_select.c,v 1.68 2024/11/26 23:10:15 khorben Exp $	*/
      2   1.1        ad 
      3   1.1        ad /*-
      4  1.62        ad  * Copyright (c) 2007, 2008, 2009, 2010, 2019, 2020, 2023
      5  1.62        ad  *     The NetBSD Foundation, Inc.
      6   1.1        ad  * All rights reserved.
      7   1.1        ad  *
      8   1.1        ad  * This code is derived from software contributed to The NetBSD Foundation
      9  1.23     rmind  * by Andrew Doran and Mindaugas Rasiukevicius.
     10   1.1        ad  *
     11   1.1        ad  * Redistribution and use in source and binary forms, with or without
     12   1.1        ad  * modification, are permitted provided that the following conditions
     13   1.1        ad  * are met:
     14   1.1        ad  * 1. Redistributions of source code must retain the above copyright
     15   1.1        ad  *    notice, this list of conditions and the following disclaimer.
     16   1.1        ad  * 2. Redistributions in binary form must reproduce the above copyright
     17   1.1        ad  *    notice, this list of conditions and the following disclaimer in the
     18   1.1        ad  *    documentation and/or other materials provided with the distribution.
     19   1.1        ad  *
     20   1.1        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21   1.1        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22   1.1        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23   1.1        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24   1.1        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25   1.1        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26   1.1        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27   1.1        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28   1.1        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29   1.1        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30   1.1        ad  * POSSIBILITY OF SUCH DAMAGE.
     31   1.1        ad  */
     32   1.1        ad 
     33   1.1        ad /*
     34   1.1        ad  * Copyright (c) 1982, 1986, 1989, 1993
     35   1.1        ad  *	The Regents of the University of California.  All rights reserved.
     36   1.1        ad  * (c) UNIX System Laboratories, Inc.
     37   1.1        ad  * All or some portions of this file are derived from material licensed
     38   1.1        ad  * to the University of California by American Telephone and Telegraph
     39   1.1        ad  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     40   1.1        ad  * the permission of UNIX System Laboratories, Inc.
     41   1.1        ad  *
     42   1.1        ad  * Redistribution and use in source and binary forms, with or without
     43   1.1        ad  * modification, are permitted provided that the following conditions
     44   1.1        ad  * are met:
     45   1.1        ad  * 1. Redistributions of source code must retain the above copyright
     46   1.1        ad  *    notice, this list of conditions and the following disclaimer.
     47   1.1        ad  * 2. Redistributions in binary form must reproduce the above copyright
     48   1.1        ad  *    notice, this list of conditions and the following disclaimer in the
     49   1.1        ad  *    documentation and/or other materials provided with the distribution.
     50   1.1        ad  * 3. Neither the name of the University nor the names of its contributors
     51   1.1        ad  *    may be used to endorse or promote products derived from this software
     52   1.1        ad  *    without specific prior written permission.
     53   1.1        ad  *
     54   1.1        ad  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     55   1.1        ad  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     56   1.1        ad  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     57   1.1        ad  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     58   1.1        ad  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     59   1.1        ad  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     60   1.1        ad  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     61   1.1        ad  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     62   1.1        ad  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     63   1.1        ad  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     64   1.1        ad  * SUCH DAMAGE.
     65   1.1        ad  *
     66   1.1        ad  *	@(#)sys_generic.c	8.9 (Berkeley) 2/14/95
     67   1.1        ad  */
     68   1.1        ad 
     69   1.1        ad /*
     70  1.21     rmind  * System calls of synchronous I/O multiplexing subsystem.
     71  1.21     rmind  *
     72  1.21     rmind  * Locking
     73  1.21     rmind  *
     74  1.22        ad  * Two locks are used: <object-lock> and selcluster_t::sc_lock.
     75  1.21     rmind  *
     76  1.21     rmind  * The <object-lock> might be a device driver or another subsystem, e.g.
     77  1.21     rmind  * socket or pipe.  This lock is not exported, and thus invisible to this
     78  1.21     rmind  * subsystem.  Mainly, synchronisation between selrecord() and selnotify()
     79  1.21     rmind  * routines depends on this lock, as it will be described in the comments.
     80  1.21     rmind  *
     81  1.21     rmind  * Lock order
     82  1.21     rmind  *
     83  1.21     rmind  *	<object-lock> ->
     84  1.22        ad  *		selcluster_t::sc_lock
     85   1.1        ad  */
     86   1.1        ad 
     87   1.1        ad #include <sys/cdefs.h>
     88  1.68   khorben __KERNEL_RCSID(0, "$NetBSD: sys_select.c,v 1.68 2024/11/26 23:10:15 khorben Exp $");
     89   1.1        ad 
     90   1.1        ad #include <sys/param.h>
     91  1.66  riastrad 
     92  1.66  riastrad #include <sys/atomic.h>
     93  1.66  riastrad #include <sys/bitops.h>
     94  1.66  riastrad #include <sys/cpu.h>
     95  1.66  riastrad #include <sys/file.h>
     96   1.1        ad #include <sys/filedesc.h>
     97   1.1        ad #include <sys/kernel.h>
     98  1.29     rmind #include <sys/lwp.h>
     99  1.66  riastrad #include <sys/mount.h>
    100   1.1        ad #include <sys/poll.h>
    101  1.66  riastrad #include <sys/proc.h>
    102  1.66  riastrad #include <sys/signalvar.h>
    103  1.66  riastrad #include <sys/sleepq.h>
    104  1.66  riastrad #include <sys/socketvar.h>
    105  1.66  riastrad #include <sys/socketvar.h>
    106  1.66  riastrad #include <sys/syncobj.h>
    107   1.1        ad #include <sys/syscallargs.h>
    108  1.36     rmind #include <sys/sysctl.h>
    109  1.66  riastrad #include <sys/systm.h>
    110  1.66  riastrad #include <sys/uio.h>
    111   1.1        ad 
    112   1.1        ad /* Flags for lwp::l_selflag. */
    113   1.1        ad #define	SEL_RESET	0	/* awoken, interrupted, or not yet polling */
    114   1.1        ad #define	SEL_SCANNING	1	/* polling descriptors */
    115  1.23     rmind #define	SEL_BLOCKING	2	/* blocking and waiting for event */
    116  1.23     rmind #define	SEL_EVENT	3	/* interrupted, events set directly */
    117  1.23     rmind 
    118  1.22        ad /*
    119  1.22        ad  * Per-cluster state for select()/poll().  For a system with fewer
    120  1.50        ad  * than 64 CPUs, this gives us per-CPU clusters.
    121  1.22        ad  */
    122  1.50        ad #define	SELCLUSTERS	64
    123  1.22        ad #define	SELCLUSTERMASK	(SELCLUSTERS - 1)
    124  1.22        ad 
    125  1.22        ad typedef struct selcluster {
    126  1.13        ad 	kmutex_t	*sc_lock;
    127   1.1        ad 	sleepq_t	sc_sleepq;
    128  1.49        ad 	uint64_t	sc_mask;
    129   1.1        ad 	int		sc_ncoll;
    130  1.22        ad } selcluster_t;
    131   1.1        ad 
    132  1.23     rmind static inline int	selscan(char *, const int, const size_t, register_t *);
    133  1.23     rmind static inline int	pollscan(struct pollfd *, const int, register_t *);
    134  1.19     rmind static void		selclear(void);
    135   1.1        ad 
    136  1.23     rmind static const int sel_flag[] = {
    137  1.23     rmind 	POLLRDNORM | POLLHUP | POLLERR,
    138  1.23     rmind 	POLLWRNORM | POLLHUP | POLLERR,
    139  1.23     rmind 	POLLRDBAND
    140  1.23     rmind };
    141  1.23     rmind 
    142  1.53        ad /*
    143  1.53        ad  * LWPs are woken using the sleep queue only due to a collision, the case
    144  1.53        ad  * with the maximum Suck Factor.  Save the cost of sorting for named waiters
    145  1.53        ad  * by inserting in LIFO order.  In the future it would be preferable to not
    146  1.53        ad  * enqueue LWPs at all, unless subject to a collision.
    147  1.53        ad  */
    148  1.52        ad syncobj_t select_sobj = {
    149  1.61  riastrad 	.sobj_name	= "select",
    150  1.53        ad 	.sobj_flag	= SOBJ_SLEEPQ_LIFO,
    151  1.62        ad 	.sobj_boostpri  = PRI_KERNEL,
    152  1.41     ozaki 	.sobj_unsleep	= sleepq_unsleep,
    153  1.41     ozaki 	.sobj_changepri	= sleepq_changepri,
    154  1.41     ozaki 	.sobj_lendpri	= sleepq_lendpri,
    155  1.41     ozaki 	.sobj_owner	= syncobj_noowner,
    156   1.1        ad };
    157   1.1        ad 
    158  1.23     rmind static selcluster_t	*selcluster[SELCLUSTERS] __read_mostly;
    159  1.36     rmind static int		direct_select __read_mostly = 0;
    160  1.22        ad 
    161  1.49        ad /* Operations: either select() or poll(). */
    162  1.49        ad const char		selop_select[] = "select";
    163  1.49        ad const char		selop_poll[] = "poll";
    164  1.49        ad 
    165   1.1        ad /*
    166   1.1        ad  * Select system call.
    167   1.1        ad  */
    168   1.1        ad int
    169  1.12  christos sys___pselect50(struct lwp *l, const struct sys___pselect50_args *uap,
    170  1.12  christos     register_t *retval)
    171   1.1        ad {
    172   1.1        ad 	/* {
    173   1.1        ad 		syscallarg(int)				nd;
    174   1.1        ad 		syscallarg(fd_set *)			in;
    175   1.1        ad 		syscallarg(fd_set *)			ou;
    176   1.1        ad 		syscallarg(fd_set *)			ex;
    177   1.1        ad 		syscallarg(const struct timespec *)	ts;
    178   1.1        ad 		syscallarg(sigset_t *)			mask;
    179   1.1        ad 	} */
    180  1.14  christos 	struct timespec	ats, *ts = NULL;
    181   1.1        ad 	sigset_t	amask, *mask = NULL;
    182   1.1        ad 	int		error;
    183   1.1        ad 
    184   1.1        ad 	if (SCARG(uap, ts)) {
    185   1.1        ad 		error = copyin(SCARG(uap, ts), &ats, sizeof(ats));
    186   1.1        ad 		if (error)
    187   1.1        ad 			return error;
    188  1.14  christos 		ts = &ats;
    189   1.1        ad 	}
    190   1.1        ad 	if (SCARG(uap, mask) != NULL) {
    191   1.1        ad 		error = copyin(SCARG(uap, mask), &amask, sizeof(amask));
    192   1.1        ad 		if (error)
    193   1.1        ad 			return error;
    194   1.1        ad 		mask = &amask;
    195   1.1        ad 	}
    196   1.1        ad 
    197  1.19     rmind 	return selcommon(retval, SCARG(uap, nd), SCARG(uap, in),
    198  1.14  christos 	    SCARG(uap, ou), SCARG(uap, ex), ts, mask);
    199   1.1        ad }
    200   1.1        ad 
    201   1.1        ad int
    202  1.12  christos sys___select50(struct lwp *l, const struct sys___select50_args *uap,
    203  1.12  christos     register_t *retval)
    204   1.1        ad {
    205   1.1        ad 	/* {
    206   1.1        ad 		syscallarg(int)			nd;
    207   1.1        ad 		syscallarg(fd_set *)		in;
    208   1.1        ad 		syscallarg(fd_set *)		ou;
    209   1.1        ad 		syscallarg(fd_set *)		ex;
    210   1.1        ad 		syscallarg(struct timeval *)	tv;
    211   1.1        ad 	} */
    212  1.14  christos 	struct timeval atv;
    213  1.14  christos 	struct timespec ats, *ts = NULL;
    214   1.1        ad 	int error;
    215   1.1        ad 
    216   1.1        ad 	if (SCARG(uap, tv)) {
    217  1.14  christos 		error = copyin(SCARG(uap, tv), (void *)&atv, sizeof(atv));
    218   1.1        ad 		if (error)
    219   1.1        ad 			return error;
    220  1.48     kamil 
    221  1.48     kamil 		if (atv.tv_usec < 0 || atv.tv_usec >= 1000000)
    222  1.48     kamil 			return EINVAL;
    223  1.48     kamil 
    224  1.14  christos 		TIMEVAL_TO_TIMESPEC(&atv, &ats);
    225  1.14  christos 		ts = &ats;
    226   1.1        ad 	}
    227   1.1        ad 
    228  1.19     rmind 	return selcommon(retval, SCARG(uap, nd), SCARG(uap, in),
    229  1.14  christos 	    SCARG(uap, ou), SCARG(uap, ex), ts, NULL);
    230   1.1        ad }
    231   1.1        ad 
    232  1.17     rmind /*
    233  1.17     rmind  * sel_do_scan: common code to perform the scan on descriptors.
    234  1.17     rmind  */
    235  1.17     rmind static int
    236  1.49        ad sel_do_scan(const char *opname, void *fds, const int nf, const size_t ni,
    237  1.23     rmind     struct timespec *ts, sigset_t *mask, register_t *retval)
    238   1.1        ad {
    239  1.17     rmind 	lwp_t		* const l = curlwp;
    240  1.22        ad 	selcluster_t	*sc;
    241  1.13        ad 	kmutex_t	*lock;
    242  1.17     rmind 	struct timespec	sleepts;
    243  1.17     rmind 	int		error, timo;
    244   1.1        ad 
    245   1.1        ad 	timo = 0;
    246  1.14  christos 	if (ts && inittimeleft(ts, &sleepts) == -1) {
    247  1.17     rmind 		return EINVAL;
    248   1.1        ad 	}
    249   1.1        ad 
    250  1.32  christos 	if (__predict_false(mask))
    251  1.31  christos 		sigsuspendsetup(l, mask);
    252   1.1        ad 
    253  1.49        ad 	/*
    254  1.49        ad 	 * We may context switch during or at any time after picking a CPU
    255  1.49        ad 	 * and cluster to associate with, but it doesn't matter.  In the
    256  1.49        ad 	 * unlikely event we migrate elsewhere all we risk is a little lock
    257  1.49        ad 	 * contention; correctness is not sacrificed.
    258  1.49        ad 	 */
    259  1.22        ad 	sc = curcpu()->ci_data.cpu_selcluster;
    260  1.13        ad 	lock = sc->sc_lock;
    261  1.22        ad 	l->l_selcluster = sc;
    262  1.49        ad 
    263  1.49        ad 	if (opname == selop_select) {
    264  1.30     rmind 		l->l_selbits = fds;
    265  1.23     rmind 		l->l_selni = ni;
    266  1.23     rmind 	} else {
    267  1.23     rmind 		l->l_selbits = NULL;
    268  1.23     rmind 	}
    269  1.34   hannken 
    270   1.1        ad 	for (;;) {
    271  1.17     rmind 		int ncoll;
    272  1.17     rmind 
    273  1.34   hannken 		SLIST_INIT(&l->l_selwait);
    274  1.34   hannken 		l->l_selret = 0;
    275  1.34   hannken 
    276   1.1        ad 		/*
    277  1.17     rmind 		 * No need to lock.  If this is overwritten by another value
    278  1.17     rmind 		 * while scanning, we will retry below.  We only need to see
    279  1.17     rmind 		 * exact state from the descriptors that we are about to poll,
    280  1.17     rmind 		 * and lock activity resulting from fo_poll is enough to
    281  1.17     rmind 		 * provide an up to date value for new polling activity.
    282   1.1        ad 		 */
    283  1.49        ad 		if (ts && (ts->tv_sec | ts->tv_nsec | direct_select) == 0) {
    284  1.49        ad 			/* Non-blocking: no need for selrecord()/selclear() */
    285  1.49        ad 			l->l_selflag = SEL_RESET;
    286  1.49        ad 		} else {
    287  1.49        ad 			l->l_selflag = SEL_SCANNING;
    288  1.49        ad 		}
    289   1.1        ad 		ncoll = sc->sc_ncoll;
    290  1.59  riastrad 		membar_release();
    291   1.1        ad 
    292  1.49        ad 		if (opname == selop_select) {
    293  1.23     rmind 			error = selscan((char *)fds, nf, ni, retval);
    294  1.17     rmind 		} else {
    295  1.23     rmind 			error = pollscan((struct pollfd *)fds, nf, retval);
    296  1.17     rmind 		}
    297   1.1        ad 		if (error || *retval)
    298   1.1        ad 			break;
    299  1.14  christos 		if (ts && (timo = gettimeleft(ts, &sleepts)) <= 0)
    300   1.1        ad 			break;
    301  1.23     rmind 		/*
    302  1.23     rmind 		 * Acquire the lock and perform the (re)checks.  Note, if
    303  1.57    andvar 		 * collision has occurred, then our state does not matter,
    304  1.23     rmind 		 * as we must perform re-scan.  Therefore, check it first.
    305  1.23     rmind 		 */
    306  1.23     rmind state_check:
    307  1.13        ad 		mutex_spin_enter(lock);
    308  1.23     rmind 		if (__predict_false(sc->sc_ncoll != ncoll)) {
    309  1.23     rmind 			/* Collision: perform re-scan. */
    310  1.23     rmind 			mutex_spin_exit(lock);
    311  1.34   hannken 			selclear();
    312  1.23     rmind 			continue;
    313  1.23     rmind 		}
    314  1.23     rmind 		if (__predict_true(l->l_selflag == SEL_EVENT)) {
    315  1.57    andvar 			/* Events occurred, they are set directly. */
    316  1.23     rmind 			mutex_spin_exit(lock);
    317  1.23     rmind 			break;
    318  1.23     rmind 		}
    319  1.23     rmind 		if (__predict_true(l->l_selflag == SEL_RESET)) {
    320  1.57    andvar 			/* Events occurred, but re-scan is requested. */
    321  1.13        ad 			mutex_spin_exit(lock);
    322  1.34   hannken 			selclear();
    323   1.1        ad 			continue;
    324   1.1        ad 		}
    325  1.23     rmind 		/* Nothing happen, therefore - sleep. */
    326   1.1        ad 		l->l_selflag = SEL_BLOCKING;
    327  1.63        ad 		KASSERT(l->l_blcnt == 0);
    328  1.63        ad 		(void)sleepq_enter(&sc->sc_sleepq, l, lock);
    329  1.54        ad 		sleepq_enqueue(&sc->sc_sleepq, sc, opname, &select_sobj, true);
    330  1.63        ad 		error = sleepq_block(timo, true, &select_sobj, 0);
    331  1.23     rmind 		if (error != 0) {
    332   1.1        ad 			break;
    333  1.23     rmind 		}
    334  1.23     rmind 		/* Awoken: need to check the state. */
    335  1.23     rmind 		goto state_check;
    336   1.1        ad 	}
    337   1.1        ad 	selclear();
    338   1.1        ad 
    339  1.34   hannken 	/* Add direct events if any. */
    340  1.34   hannken 	if (l->l_selflag == SEL_EVENT) {
    341  1.34   hannken 		KASSERT(l->l_selret != 0);
    342  1.34   hannken 		*retval += l->l_selret;
    343  1.34   hannken 	}
    344  1.34   hannken 
    345  1.33  christos 	if (__predict_false(mask))
    346  1.33  christos 		sigsuspendteardown(l);
    347  1.33  christos 
    348  1.20       dsl 	/* select and poll are not restarted after signals... */
    349  1.20       dsl 	if (error == ERESTART)
    350  1.20       dsl 		return EINTR;
    351  1.20       dsl 	if (error == EWOULDBLOCK)
    352  1.20       dsl 		return 0;
    353  1.17     rmind 	return error;
    354  1.17     rmind }
    355  1.17     rmind 
    356  1.67       kre /* designed to be compatible with FD_SET() FD_ISSET() ... */
    357  1.67       kre static int
    358  1.67       kre anyset(void *p, size_t nbits)
    359  1.67       kre {
    360  1.67       kre 	size_t nwords;
    361  1.67       kre 	__fd_mask mask;
    362  1.67       kre 	__fd_mask *f = (__fd_mask *)p;
    363  1.67       kre 
    364  1.67       kre 	nwords = nbits / __NFDBITS;
    365  1.67       kre 
    366  1.67       kre 	while (nwords-- > 0)
    367  1.67       kre 		if (*f++ != 0)
    368  1.67       kre 			return 1;
    369  1.67       kre 
    370  1.67       kre 	nbits &= __NFDMASK;
    371  1.67       kre 	if (nbits != 0) {
    372  1.67       kre 		mask = (1U << nbits) - 1;
    373  1.67       kre 		if ((*f & mask) != 0)
    374  1.67       kre 			return 1;
    375  1.67       kre 	}
    376  1.67       kre 	return 0;
    377  1.67       kre }
    378  1.67       kre 
    379  1.17     rmind int
    380  1.19     rmind selcommon(register_t *retval, int nd, fd_set *u_in, fd_set *u_ou,
    381  1.19     rmind     fd_set *u_ex, struct timespec *ts, sigset_t *mask)
    382  1.17     rmind {
    383  1.17     rmind 	char		smallbits[howmany(FD_SETSIZE, NFDBITS) *
    384  1.17     rmind 			    sizeof(fd_mask) * 6];
    385  1.17     rmind 	char 		*bits;
    386  1.67       kre 	int		error, nf, fb, db;
    387  1.17     rmind 	size_t		ni;
    388  1.17     rmind 
    389  1.17     rmind 	if (nd < 0)
    390  1.67       kre 		return EINVAL;
    391  1.67       kre 
    392  1.51  riastrad 	nf = atomic_load_consume(&curlwp->l_fd->fd_dt)->dt_nfiles;
    393  1.67       kre 
    394  1.67       kre 	/*
    395  1.67       kre 	 * Don't allow absurdly large numbers of fds to be selected.
    396  1.67       kre 	 * (used to silently truncate, naughty naughty, no more ...)
    397  1.67       kre 	 *
    398  1.68   khorben 	 * The additional FD_SETSIZE allows for cases where the limit
    399  1.67       kre 	 * is not a round binary number, but the fd_set wants to
    400  1.67       kre 	 * include all the possible fds, as fd_sets are always
    401  1.67       kre 	 * multiples of 32 bits (__NFDBITS extra would be enough).
    402  1.67       kre 	 *
    403  1.67       kre 	 * The first test handles the case where the res limit has been
    404  1.67       kre 	 * set lower after some fds were opened, we always allow selecting
    405  1.67       kre 	 * up to the highest currently open fd.
    406  1.67       kre 	 */
    407  1.67       kre 	if (nd > nf + FD_SETSIZE &&
    408  1.67       kre 	    nd > curlwp->l_proc->p_rlimit[RLIMIT_NOFILE].rlim_max + FD_SETSIZE)
    409  1.67       kre 		return EINVAL;
    410  1.67       kre 
    411  1.67       kre 	fb = howmany(nf, __NFDBITS);		/* how many fd_masks */
    412  1.67       kre 	db = howmany(nd, __NFDBITS);
    413  1.67       kre 
    414  1.67       kre 	if (db > fb) {
    415  1.67       kre 		size_t off;
    416  1.67       kre 
    417  1.67       kre 		/*
    418  1.67       kre 		 * the application wants to supply more fd masks than can
    419  1.67       kre 		 * possibly represent valid file descriptors.
    420  1.67       kre 		 *
    421  1.67       kre 		 * Check the excess fd_masks, if any bits are set in them
    422  1.67       kre 		 * that must be an error (cannot represent valid fd).
    423  1.67       kre 		 *
    424  1.67       kre 		 * Supplying lots of extra cleared fd_masks is dumb,
    425  1.67       kre 		 * but harmless, so allow that.
    426  1.67       kre 		 */
    427  1.67       kre 		ni = (db - fb) * sizeof(fd_mask);	/* excess bytes */
    428  1.67       kre 		bits = smallbits;
    429  1.67       kre 
    430  1.67       kre 		/* skip over the valid fd_masks, those will be checked below */
    431  1.67       kre 		off = howmany(nf, __NFDBITS) * sizeof(__fd_mask);
    432  1.67       kre 
    433  1.67       kre 		nd -= fb * NFDBITS;	/* the number of excess fds */
    434  1.67       kre 
    435  1.67       kre #define checkbits(name, o, sz, fds)					\
    436  1.67       kre 		do {							\
    437  1.67       kre 		    if (u_ ## name != NULL) {				\
    438  1.67       kre 			error = copyin((char *)u_ ## name + o,		\
    439  1.67       kre 					bits, sz);			\
    440  1.67       kre 			if (error)					\
    441  1.67       kre 			    goto fail;					\
    442  1.67       kre 			if (anyset(bits, (fds) ?			\
    443  1.67       kre 				 (size_t)(fds) : CHAR_BIT * (sz))) {	\
    444  1.67       kre 			    error = EBADF;				\
    445  1.67       kre 			    goto fail;					\
    446  1.67       kre 			}						\
    447  1.67       kre 		    }							\
    448  1.67       kre 		} while (0)
    449  1.67       kre 
    450  1.67       kre 		while (ni > sizeof(smallbits)) {
    451  1.67       kre 			checkbits(in, off, sizeof(smallbits), 0);
    452  1.67       kre 			checkbits(ou, off, sizeof(smallbits), 0);
    453  1.67       kre 			checkbits(ex, off, sizeof(smallbits), 0);
    454  1.67       kre 
    455  1.67       kre 			off += sizeof(smallbits);
    456  1.67       kre 			ni -= sizeof(smallbits);
    457  1.67       kre 			nd -= sizeof(smallbits) * CHAR_BIT;
    458  1.67       kre 		}
    459  1.67       kre 		checkbits(in, off, ni, nd);
    460  1.67       kre 		checkbits(ou, off, ni, nd);
    461  1.67       kre 		checkbits(ex, off, ni, nd);
    462  1.67       kre #undef checkbits
    463  1.67       kre 
    464  1.67       kre 		db = fb;	/* now just check the plausible fds */
    465  1.67       kre 		nd = db * __NFDBITS;
    466  1.17     rmind 	}
    467  1.67       kre 
    468  1.67       kre 	ni = db * sizeof(fd_mask);
    469  1.40       chs 	if (ni * 6 > sizeof(smallbits))
    470  1.17     rmind 		bits = kmem_alloc(ni * 6, KM_SLEEP);
    471  1.40       chs 	else
    472  1.17     rmind 		bits = smallbits;
    473  1.17     rmind 
    474  1.17     rmind #define	getbits(name, x)						\
    475  1.67       kre 	do {								\
    476  1.67       kre 		if (u_ ## name) {					\
    477  1.67       kre 			error = copyin(u_ ## name, bits + ni * x, ni);	\
    478  1.67       kre 			if (error)					\
    479  1.67       kre 				goto fail;				\
    480  1.67       kre 		} else							\
    481  1.67       kre 			memset(bits + ni * x, 0, ni);			\
    482  1.67       kre 	} while (0)
    483  1.67       kre 
    484  1.17     rmind 	getbits(in, 0);
    485  1.17     rmind 	getbits(ou, 1);
    486  1.17     rmind 	getbits(ex, 2);
    487  1.17     rmind #undef	getbits
    488   1.1        ad 
    489  1.49        ad 	error = sel_do_scan(selop_select, bits, nd, ni, ts, mask, retval);
    490  1.67       kre 
    491  1.67       kre #define copyback(name, x)						\
    492  1.67       kre 		do {							\
    493  1.67       kre 			if (error == 0 && u_ ## name != NULL)		\
    494  1.67       kre 				error = copyout(bits + ni * x,		\
    495  1.67       kre 						u_ ## name, ni);	\
    496  1.67       kre 		} while (0)
    497  1.67       kre 
    498  1.67       kre 	copyback(in, 3);
    499  1.67       kre 	copyback(ou, 4);
    500  1.67       kre 	copyback(ex, 5);
    501  1.67       kre #undef copyback
    502  1.67       kre 
    503  1.20       dsl  fail:
    504   1.1        ad 	if (bits != smallbits)
    505   1.1        ad 		kmem_free(bits, ni * 6);
    506   1.1        ad 	return (error);
    507   1.1        ad }
    508   1.1        ad 
    509  1.19     rmind static inline int
    510  1.23     rmind selscan(char *bits, const int nfd, const size_t ni, register_t *retval)
    511   1.1        ad {
    512  1.17     rmind 	fd_mask *ibitp, *obitp;
    513  1.23     rmind 	int msk, i, j, fd, n;
    514   1.1        ad 	file_t *fp;
    515  1.49        ad 	lwp_t *l;
    516   1.1        ad 
    517  1.17     rmind 	ibitp = (fd_mask *)(bits + ni * 0);
    518  1.17     rmind 	obitp = (fd_mask *)(bits + ni * 3);
    519   1.1        ad 	n = 0;
    520  1.49        ad 	l = curlwp;
    521  1.17     rmind 
    522  1.34   hannken 	memset(obitp, 0, ni * 3);
    523   1.1        ad 	for (msk = 0; msk < 3; msk++) {
    524   1.1        ad 		for (i = 0; i < nfd; i += NFDBITS) {
    525  1.23     rmind 			fd_mask ibits, obits;
    526  1.23     rmind 
    527  1.35   hannken 			ibits = *ibitp;
    528   1.1        ad 			obits = 0;
    529   1.1        ad 			while ((j = ffs(ibits)) && (fd = i + --j) < nfd) {
    530  1.47   msaitoh 				ibits &= ~(1U << j);
    531   1.1        ad 				if ((fp = fd_getfile(fd)) == NULL)
    532   1.1        ad 					return (EBADF);
    533  1.23     rmind 				/*
    534  1.23     rmind 				 * Setup an argument to selrecord(), which is
    535  1.23     rmind 				 * a file descriptor number.
    536  1.23     rmind 				 */
    537  1.49        ad 				l->l_selrec = fd;
    538  1.23     rmind 				if ((*fp->f_ops->fo_poll)(fp, sel_flag[msk])) {
    539  1.49        ad 					if (!direct_select) {
    540  1.49        ad 						/*
    541  1.49        ad 						 * Have events: do nothing in
    542  1.49        ad 						 * selrecord().
    543  1.49        ad 						 */
    544  1.49        ad 						l->l_selflag = SEL_RESET;
    545  1.49        ad 					}
    546  1.47   msaitoh 					obits |= (1U << j);
    547   1.1        ad 					n++;
    548   1.1        ad 				}
    549   1.1        ad 				fd_putfile(fd);
    550   1.1        ad 			}
    551  1.34   hannken 			if (obits != 0) {
    552  1.36     rmind 				if (direct_select) {
    553  1.36     rmind 					kmutex_t *lock;
    554  1.49        ad 					lock = l->l_selcluster->sc_lock;
    555  1.35   hannken 					mutex_spin_enter(lock);
    556  1.36     rmind 					*obitp |= obits;
    557  1.35   hannken 					mutex_spin_exit(lock);
    558  1.36     rmind 				} else {
    559  1.36     rmind 					*obitp |= obits;
    560  1.36     rmind 				}
    561  1.34   hannken 			}
    562  1.35   hannken 			ibitp++;
    563  1.34   hannken 			obitp++;
    564   1.1        ad 		}
    565   1.1        ad 	}
    566   1.1        ad 	*retval = n;
    567   1.1        ad 	return (0);
    568   1.1        ad }
    569   1.1        ad 
    570   1.1        ad /*
    571   1.1        ad  * Poll system call.
    572   1.1        ad  */
    573   1.1        ad int
    574   1.1        ad sys_poll(struct lwp *l, const struct sys_poll_args *uap, register_t *retval)
    575   1.1        ad {
    576   1.1        ad 	/* {
    577   1.1        ad 		syscallarg(struct pollfd *)	fds;
    578   1.1        ad 		syscallarg(u_int)		nfds;
    579   1.1        ad 		syscallarg(int)			timeout;
    580   1.1        ad 	} */
    581  1.14  christos 	struct timespec	ats, *ts = NULL;
    582   1.1        ad 
    583   1.1        ad 	if (SCARG(uap, timeout) != INFTIM) {
    584  1.14  christos 		ats.tv_sec = SCARG(uap, timeout) / 1000;
    585  1.14  christos 		ats.tv_nsec = (SCARG(uap, timeout) % 1000) * 1000000;
    586  1.14  christos 		ts = &ats;
    587   1.1        ad 	}
    588   1.1        ad 
    589  1.19     rmind 	return pollcommon(retval, SCARG(uap, fds), SCARG(uap, nfds), ts, NULL);
    590   1.1        ad }
    591   1.1        ad 
    592   1.1        ad /*
    593   1.1        ad  * Poll system call.
    594   1.1        ad  */
    595   1.1        ad int
    596  1.12  christos sys___pollts50(struct lwp *l, const struct sys___pollts50_args *uap,
    597  1.12  christos     register_t *retval)
    598   1.1        ad {
    599   1.1        ad 	/* {
    600   1.1        ad 		syscallarg(struct pollfd *)		fds;
    601   1.1        ad 		syscallarg(u_int)			nfds;
    602   1.1        ad 		syscallarg(const struct timespec *)	ts;
    603   1.1        ad 		syscallarg(const sigset_t *)		mask;
    604   1.1        ad 	} */
    605  1.14  christos 	struct timespec	ats, *ts = NULL;
    606   1.1        ad 	sigset_t	amask, *mask = NULL;
    607   1.1        ad 	int		error;
    608   1.1        ad 
    609   1.1        ad 	if (SCARG(uap, ts)) {
    610   1.1        ad 		error = copyin(SCARG(uap, ts), &ats, sizeof(ats));
    611   1.1        ad 		if (error)
    612   1.1        ad 			return error;
    613  1.14  christos 		ts = &ats;
    614   1.1        ad 	}
    615   1.1        ad 	if (SCARG(uap, mask)) {
    616   1.1        ad 		error = copyin(SCARG(uap, mask), &amask, sizeof(amask));
    617   1.1        ad 		if (error)
    618   1.1        ad 			return error;
    619   1.1        ad 		mask = &amask;
    620   1.1        ad 	}
    621   1.1        ad 
    622  1.19     rmind 	return pollcommon(retval, SCARG(uap, fds), SCARG(uap, nfds), ts, mask);
    623   1.1        ad }
    624   1.1        ad 
    625   1.1        ad int
    626  1.19     rmind pollcommon(register_t *retval, struct pollfd *u_fds, u_int nfds,
    627  1.14  christos     struct timespec *ts, sigset_t *mask)
    628   1.1        ad {
    629  1.11      yamt 	struct pollfd	smallfds[32];
    630  1.11      yamt 	struct pollfd	*fds;
    631  1.17     rmind 	int		error;
    632  1.20       dsl 	size_t		ni;
    633   1.1        ad 
    634  1.45  christos 	if (nfds > curlwp->l_proc->p_rlimit[RLIMIT_NOFILE].rlim_max + 1000) {
    635  1.20       dsl 		/*
    636  1.43  christos 		 * Prevent userland from causing over-allocation.
    637  1.43  christos 		 * Raising the default limit too high can still cause
    638  1.43  christos 		 * a lot of memory to be allocated, but this also means
    639  1.43  christos 		 * that the file descriptor array will also be large.
    640  1.43  christos 		 *
    641  1.43  christos 		 * To reduce the memory requirements here, we could
    642  1.43  christos 		 * process the 'fds' array in chunks, but that
    643  1.20       dsl 		 * is a lot of code that isn't normally useful.
    644  1.20       dsl 		 * (Or just move the copyin/out into pollscan().)
    645  1.43  christos 		 *
    646  1.20       dsl 		 * Historically the code silently truncated 'fds' to
    647  1.20       dsl 		 * dt_nfiles entries - but that does cause issues.
    648  1.44  christos 		 *
    649  1.44  christos 		 * Using the max limit equivalent to sysctl
    650  1.44  christos 		 * kern.maxfiles is the moral equivalent of OPEN_MAX
    651  1.45  christos 		 * as specified by POSIX.
    652  1.45  christos 		 *
    653  1.45  christos 		 * We add a slop of 1000 in case the resource limit was
    654  1.45  christos 		 * changed after opening descriptors or the same descriptor
    655  1.45  christos 		 * was specified more than once.
    656  1.20       dsl 		 */
    657  1.20       dsl 		return EINVAL;
    658   1.1        ad 	}
    659   1.1        ad 	ni = nfds * sizeof(struct pollfd);
    660  1.40       chs 	if (ni > sizeof(smallfds))
    661  1.11      yamt 		fds = kmem_alloc(ni, KM_SLEEP);
    662  1.40       chs 	else
    663  1.11      yamt 		fds = smallfds;
    664   1.1        ad 
    665  1.11      yamt 	error = copyin(u_fds, fds, ni);
    666   1.1        ad 	if (error)
    667  1.20       dsl 		goto fail;
    668   1.1        ad 
    669  1.49        ad 	error = sel_do_scan(selop_poll, fds, nfds, ni, ts, mask, retval);
    670   1.1        ad 	if (error == 0)
    671  1.11      yamt 		error = copyout(fds, u_fds, ni);
    672  1.20       dsl  fail:
    673  1.11      yamt 	if (fds != smallfds)
    674  1.11      yamt 		kmem_free(fds, ni);
    675   1.1        ad 	return (error);
    676   1.1        ad }
    677   1.1        ad 
    678  1.19     rmind static inline int
    679  1.23     rmind pollscan(struct pollfd *fds, const int nfd, register_t *retval)
    680   1.1        ad {
    681   1.1        ad 	file_t *fp;
    682  1.34   hannken 	int i, n = 0, revents;
    683   1.1        ad 
    684   1.1        ad 	for (i = 0; i < nfd; i++, fds++) {
    685  1.34   hannken 		fds->revents = 0;
    686   1.1        ad 		if (fds->fd < 0) {
    687  1.34   hannken 			revents = 0;
    688   1.1        ad 		} else if ((fp = fd_getfile(fds->fd)) == NULL) {
    689  1.34   hannken 			revents = POLLNVAL;
    690   1.1        ad 		} else {
    691  1.23     rmind 			/*
    692  1.23     rmind 			 * Perform poll: registers select request or returns
    693  1.23     rmind 			 * the events which are set.  Setup an argument for
    694  1.23     rmind 			 * selrecord(), which is a pointer to struct pollfd.
    695  1.23     rmind 			 */
    696  1.23     rmind 			curlwp->l_selrec = (uintptr_t)fds;
    697  1.34   hannken 			revents = (*fp->f_ops->fo_poll)(fp,
    698   1.1        ad 			    fds->events | POLLERR | POLLHUP);
    699   1.1        ad 			fd_putfile(fds->fd);
    700   1.1        ad 		}
    701  1.34   hannken 		if (revents) {
    702  1.49        ad 			if (!direct_select)  {
    703  1.49        ad 				/* Have events: do nothing in selrecord(). */
    704  1.49        ad 				curlwp->l_selflag = SEL_RESET;
    705  1.49        ad 			}
    706  1.34   hannken 			fds->revents = revents;
    707  1.34   hannken 			n++;
    708  1.34   hannken 		}
    709   1.1        ad 	}
    710   1.1        ad 	*retval = n;
    711   1.1        ad 	return (0);
    712   1.1        ad }
    713   1.1        ad 
    714   1.1        ad int
    715   1.1        ad seltrue(dev_t dev, int events, lwp_t *l)
    716   1.1        ad {
    717   1.1        ad 
    718   1.1        ad 	return (events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
    719   1.1        ad }
    720   1.1        ad 
    721   1.1        ad /*
    722   1.1        ad  * Record a select request.  Concurrency issues:
    723   1.1        ad  *
    724   1.1        ad  * The caller holds the same lock across calls to selrecord() and
    725   1.4      yamt  * selnotify(), so we don't need to consider a concurrent wakeup
    726   1.1        ad  * while in this routine.
    727   1.1        ad  *
    728   1.1        ad  * The only activity we need to guard against is selclear(), called by
    729  1.17     rmind  * another thread that is exiting sel_do_scan().
    730   1.1        ad  * `sel_lwp' can only become non-NULL while the caller's lock is held,
    731   1.1        ad  * so it cannot become non-NULL due to a change made by another thread
    732   1.1        ad  * while we are in this routine.  It can only become _NULL_ due to a
    733   1.1        ad  * call to selclear().
    734   1.1        ad  *
    735   1.1        ad  * If it is non-NULL and != selector there is the potential for
    736   1.1        ad  * selclear() to be called by another thread.  If either of those
    737   1.1        ad  * conditions are true, we're not interested in touching the `named
    738   1.1        ad  * waiter' part of the selinfo record because we need to record a
    739   1.1        ad  * collision.  Hence there is no need for additional locking in this
    740   1.1        ad  * routine.
    741   1.1        ad  */
    742   1.1        ad void
    743   1.1        ad selrecord(lwp_t *selector, struct selinfo *sip)
    744   1.1        ad {
    745  1.22        ad 	selcluster_t *sc;
    746   1.1        ad 	lwp_t *other;
    747   1.1        ad 
    748   1.1        ad 	KASSERT(selector == curlwp);
    749   1.1        ad 
    750  1.22        ad 	sc = selector->l_selcluster;
    751   1.1        ad 	other = sip->sel_lwp;
    752   1.1        ad 
    753  1.49        ad 	if (selector->l_selflag == SEL_RESET) {
    754  1.49        ad 		/* 0. We're not going to block - will poll again if needed. */
    755  1.49        ad 	} else if (other == selector) {
    756  1.23     rmind 		/* 1. We (selector) already claimed to be the first LWP. */
    757  1.37  riastrad 		KASSERT(sip->sel_cluster == sc);
    758   1.1        ad 	} else if (other == NULL) {
    759   1.1        ad 		/*
    760  1.23     rmind 		 * 2. No first LWP, therefore we (selector) are the first.
    761  1.23     rmind 		 *
    762  1.23     rmind 		 * There may be unnamed waiters (collisions).  Issue a memory
    763  1.23     rmind 		 * barrier to ensure that we access sel_lwp (above) before
    764  1.23     rmind 		 * other fields - this guards against a call to selclear().
    765   1.1        ad 		 */
    766  1.59  riastrad 		membar_acquire();
    767   1.1        ad 		sip->sel_lwp = selector;
    768   1.1        ad 		SLIST_INSERT_HEAD(&selector->l_selwait, sip, sel_chain);
    769  1.23     rmind 		/* Copy the argument, which is for selnotify(). */
    770  1.23     rmind 		sip->sel_fdinfo = selector->l_selrec;
    771  1.22        ad 		/* Replace selinfo's lock with the chosen cluster's lock. */
    772  1.22        ad 		sip->sel_cluster = sc;
    773   1.1        ad 	} else {
    774  1.23     rmind 		/* 3. Multiple waiters: record a collision. */
    775   1.1        ad 		sip->sel_collision |= sc->sc_mask;
    776  1.22        ad 		KASSERT(sip->sel_cluster != NULL);
    777   1.1        ad 	}
    778   1.1        ad }
    779   1.1        ad 
    780   1.1        ad /*
    781  1.55   thorpej  * Record a knote.
    782  1.55   thorpej  *
    783  1.55   thorpej  * The caller holds the same lock as for selrecord().
    784  1.55   thorpej  */
    785  1.55   thorpej void
    786  1.55   thorpej selrecord_knote(struct selinfo *sip, struct knote *kn)
    787  1.55   thorpej {
    788  1.58   thorpej 	klist_insert(&sip->sel_klist, kn);
    789  1.55   thorpej }
    790  1.55   thorpej 
    791  1.55   thorpej /*
    792  1.55   thorpej  * Remove a knote.
    793  1.55   thorpej  *
    794  1.55   thorpej  * The caller holds the same lock as for selrecord().
    795  1.56   thorpej  *
    796  1.56   thorpej  * Returns true if the last knote was removed and the list
    797  1.56   thorpej  * is now empty.
    798  1.55   thorpej  */
    799  1.56   thorpej bool
    800  1.55   thorpej selremove_knote(struct selinfo *sip, struct knote *kn)
    801  1.55   thorpej {
    802  1.58   thorpej 	return klist_remove(&sip->sel_klist, kn);
    803  1.55   thorpej }
    804  1.55   thorpej 
    805  1.55   thorpej /*
    806  1.23     rmind  * sel_setevents: a helper function for selnotify(), to set the events
    807  1.23     rmind  * for LWP sleeping in selcommon() or pollcommon().
    808  1.23     rmind  */
    809  1.30     rmind static inline bool
    810  1.23     rmind sel_setevents(lwp_t *l, struct selinfo *sip, const int events)
    811  1.23     rmind {
    812  1.23     rmind 	const int oflag = l->l_selflag;
    813  1.30     rmind 	int ret = 0;
    814  1.23     rmind 
    815  1.23     rmind 	/*
    816  1.23     rmind 	 * If we require re-scan or it was required by somebody else,
    817  1.23     rmind 	 * then just (re)set SEL_RESET and return.
    818  1.23     rmind 	 */
    819  1.23     rmind 	if (__predict_false(events == 0 || oflag == SEL_RESET)) {
    820  1.23     rmind 		l->l_selflag = SEL_RESET;
    821  1.30     rmind 		return true;
    822  1.23     rmind 	}
    823  1.23     rmind 	/*
    824  1.23     rmind 	 * Direct set.  Note: select state of LWP is locked.  First,
    825  1.23     rmind 	 * determine whether it is selcommon() or pollcommon().
    826  1.23     rmind 	 */
    827  1.23     rmind 	if (l->l_selbits != NULL) {
    828  1.30     rmind 		const size_t ni = l->l_selni;
    829  1.23     rmind 		fd_mask *fds = (fd_mask *)l->l_selbits;
    830  1.30     rmind 		fd_mask *ofds = (fd_mask *)((char *)fds + ni * 3);
    831  1.30     rmind 		const int fd = sip->sel_fdinfo, fbit = 1 << (fd & __NFDMASK);
    832  1.25     rmind 		const int idx = fd >> __NFDSHIFT;
    833  1.23     rmind 		int n;
    834  1.23     rmind 
    835  1.23     rmind 		for (n = 0; n < 3; n++) {
    836  1.34   hannken 			if ((fds[idx] & fbit) != 0 &&
    837  1.34   hannken 			    (ofds[idx] & fbit) == 0 &&
    838  1.34   hannken 			    (sel_flag[n] & events)) {
    839  1.30     rmind 				ofds[idx] |= fbit;
    840  1.30     rmind 				ret++;
    841  1.23     rmind 			}
    842  1.23     rmind 			fds = (fd_mask *)((char *)fds + ni);
    843  1.30     rmind 			ofds = (fd_mask *)((char *)ofds + ni);
    844  1.23     rmind 		}
    845  1.23     rmind 	} else {
    846  1.23     rmind 		struct pollfd *pfd = (void *)sip->sel_fdinfo;
    847  1.30     rmind 		int revents = events & (pfd->events | POLLERR | POLLHUP);
    848  1.30     rmind 
    849  1.30     rmind 		if (revents) {
    850  1.34   hannken 			if (pfd->revents == 0)
    851  1.34   hannken 				ret = 1;
    852  1.30     rmind 			pfd->revents |= revents;
    853  1.30     rmind 		}
    854  1.30     rmind 	}
    855  1.30     rmind 	/* Check whether there are any events to return. */
    856  1.30     rmind 	if (!ret) {
    857  1.30     rmind 		return false;
    858  1.23     rmind 	}
    859  1.23     rmind 	/* Indicate direct set and note the event (cluster lock is held). */
    860  1.23     rmind 	l->l_selflag = SEL_EVENT;
    861  1.30     rmind 	l->l_selret += ret;
    862  1.30     rmind 	return true;
    863  1.23     rmind }
    864  1.23     rmind 
    865  1.23     rmind /*
    866   1.1        ad  * Do a wakeup when a selectable event occurs.  Concurrency issues:
    867   1.1        ad  *
    868   1.1        ad  * As per selrecord(), the caller's object lock is held.  If there
    869  1.22        ad  * is a named waiter, we must acquire the associated selcluster's lock
    870   1.1        ad  * in order to synchronize with selclear() and pollers going to sleep
    871  1.17     rmind  * in sel_do_scan().
    872   1.1        ad  *
    873  1.22        ad  * sip->sel_cluser cannot change at this point, as it is only changed
    874   1.1        ad  * in selrecord(), and concurrent calls to selrecord() are locked
    875   1.1        ad  * out by the caller.
    876   1.1        ad  */
    877   1.1        ad void
    878   1.1        ad selnotify(struct selinfo *sip, int events, long knhint)
    879   1.1        ad {
    880  1.22        ad 	selcluster_t *sc;
    881  1.49        ad 	uint64_t mask;
    882  1.16     rmind 	int index, oflag;
    883   1.1        ad 	lwp_t *l;
    884  1.13        ad 	kmutex_t *lock;
    885   1.1        ad 
    886   1.1        ad 	KNOTE(&sip->sel_klist, knhint);
    887   1.1        ad 
    888   1.1        ad 	if (sip->sel_lwp != NULL) {
    889   1.1        ad 		/* One named LWP is waiting. */
    890  1.22        ad 		sc = sip->sel_cluster;
    891  1.13        ad 		lock = sc->sc_lock;
    892  1.13        ad 		mutex_spin_enter(lock);
    893   1.1        ad 		/* Still there? */
    894   1.1        ad 		if (sip->sel_lwp != NULL) {
    895  1.23     rmind 			/*
    896  1.23     rmind 			 * Set the events for our LWP and indicate that.
    897  1.23     rmind 			 * Otherwise, request for a full re-scan.
    898  1.23     rmind 			 */
    899   1.1        ad 			l = sip->sel_lwp;
    900  1.23     rmind 			oflag = l->l_selflag;
    901  1.36     rmind 
    902  1.36     rmind 			if (!direct_select) {
    903  1.36     rmind 				l->l_selflag = SEL_RESET;
    904  1.36     rmind 			} else if (!sel_setevents(l, sip, events)) {
    905  1.30     rmind 				/* No events to return. */
    906  1.30     rmind 				mutex_spin_exit(lock);
    907  1.30     rmind 				return;
    908  1.30     rmind 			}
    909  1.36     rmind 
    910   1.1        ad 			/*
    911   1.1        ad 			 * If thread is sleeping, wake it up.  If it's not
    912   1.1        ad 			 * yet asleep, it will notice the change in state
    913   1.1        ad 			 * and will re-poll the descriptors.
    914   1.1        ad 			 */
    915  1.13        ad 			if (oflag == SEL_BLOCKING && l->l_mutex == lock) {
    916   1.1        ad 				KASSERT(l->l_wchan == sc);
    917  1.64        ad 				sleepq_remove(l->l_sleepq, l, true);
    918   1.1        ad 			}
    919   1.1        ad 		}
    920  1.13        ad 		mutex_spin_exit(lock);
    921   1.1        ad 	}
    922   1.1        ad 
    923   1.1        ad 	if ((mask = sip->sel_collision) != 0) {
    924   1.1        ad 		/*
    925   1.1        ad 		 * There was a collision (multiple waiters): we must
    926   1.1        ad 		 * inform all potentially interested waiters.
    927   1.1        ad 		 */
    928   1.1        ad 		sip->sel_collision = 0;
    929   1.3        ad 		do {
    930  1.49        ad 			index = ffs64(mask) - 1;
    931  1.49        ad 			mask ^= __BIT(index);
    932  1.22        ad 			sc = selcluster[index];
    933  1.13        ad 			lock = sc->sc_lock;
    934  1.13        ad 			mutex_spin_enter(lock);
    935   1.1        ad 			sc->sc_ncoll++;
    936  1.13        ad 			sleepq_wake(&sc->sc_sleepq, sc, (u_int)-1, lock);
    937   1.3        ad 		} while (__predict_false(mask != 0));
    938   1.1        ad 	}
    939   1.1        ad }
    940   1.1        ad 
    941   1.1        ad /*
    942   1.1        ad  * Remove an LWP from all objects that it is waiting for.  Concurrency
    943   1.1        ad  * issues:
    944   1.1        ad  *
    945   1.1        ad  * The object owner's (e.g. device driver) lock is not held here.  Calls
    946   1.1        ad  * can be made to selrecord() and we do not synchronize against those
    947   1.1        ad  * directly using locks.  However, we use `sel_lwp' to lock out changes.
    948   1.1        ad  * Before clearing it we must use memory barriers to ensure that we can
    949   1.1        ad  * safely traverse the list of selinfo records.
    950   1.1        ad  */
    951   1.1        ad static void
    952   1.1        ad selclear(void)
    953   1.1        ad {
    954   1.1        ad 	struct selinfo *sip, *next;
    955  1.22        ad 	selcluster_t *sc;
    956   1.1        ad 	lwp_t *l;
    957  1.13        ad 	kmutex_t *lock;
    958   1.1        ad 
    959   1.1        ad 	l = curlwp;
    960  1.22        ad 	sc = l->l_selcluster;
    961  1.13        ad 	lock = sc->sc_lock;
    962   1.1        ad 
    963  1.49        ad 	/*
    964  1.49        ad 	 * If the request was non-blocking, or we found events on the first
    965  1.49        ad 	 * descriptor, there will be no need to clear anything - avoid
    966  1.49        ad 	 * taking the lock.
    967  1.49        ad 	 */
    968  1.49        ad 	if (SLIST_EMPTY(&l->l_selwait)) {
    969  1.49        ad 		return;
    970  1.49        ad 	}
    971  1.49        ad 
    972  1.13        ad 	mutex_spin_enter(lock);
    973   1.1        ad 	for (sip = SLIST_FIRST(&l->l_selwait); sip != NULL; sip = next) {
    974   1.1        ad 		KASSERT(sip->sel_lwp == l);
    975  1.22        ad 		KASSERT(sip->sel_cluster == l->l_selcluster);
    976  1.22        ad 
    977   1.1        ad 		/*
    978   1.1        ad 		 * Read link to next selinfo record, if any.
    979   1.1        ad 		 * It's no longer safe to touch `sip' after clearing
    980   1.1        ad 		 * `sel_lwp', so ensure that the read of `sel_chain'
    981   1.1        ad 		 * completes before the clearing of sel_lwp becomes
    982   1.1        ad 		 * globally visible.
    983   1.1        ad 		 */
    984   1.1        ad 		next = SLIST_NEXT(sip, sel_chain);
    985   1.1        ad 		/* Release the record for another named waiter to use. */
    986  1.59  riastrad 		atomic_store_release(&sip->sel_lwp, NULL);
    987   1.1        ad 	}
    988  1.13        ad 	mutex_spin_exit(lock);
    989   1.1        ad }
    990   1.1        ad 
    991   1.1        ad /*
    992   1.1        ad  * Initialize the select/poll system calls.  Called once for each
    993   1.1        ad  * CPU in the system, as they are attached.
    994   1.1        ad  */
    995   1.1        ad void
    996   1.1        ad selsysinit(struct cpu_info *ci)
    997   1.1        ad {
    998  1.22        ad 	selcluster_t *sc;
    999  1.22        ad 	u_int index;
   1000   1.1        ad 
   1001  1.22        ad 	/* If already a cluster in place for this bit, re-use. */
   1002  1.22        ad 	index = cpu_index(ci) & SELCLUSTERMASK;
   1003  1.22        ad 	sc = selcluster[index];
   1004  1.22        ad 	if (sc == NULL) {
   1005  1.22        ad 		sc = kmem_alloc(roundup2(sizeof(selcluster_t),
   1006  1.22        ad 		    coherency_unit) + coherency_unit, KM_SLEEP);
   1007  1.22        ad 		sc = (void *)roundup2((uintptr_t)sc, coherency_unit);
   1008  1.22        ad 		sc->sc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
   1009  1.22        ad 		sleepq_init(&sc->sc_sleepq);
   1010  1.22        ad 		sc->sc_ncoll = 0;
   1011  1.46   msaitoh 		sc->sc_mask = __BIT(index);
   1012  1.22        ad 		selcluster[index] = sc;
   1013  1.22        ad 	}
   1014  1.22        ad 	ci->ci_data.cpu_selcluster = sc;
   1015   1.1        ad }
   1016   1.1        ad 
   1017   1.1        ad /*
   1018   1.1        ad  * Initialize a selinfo record.
   1019   1.1        ad  */
   1020   1.1        ad void
   1021   1.1        ad selinit(struct selinfo *sip)
   1022   1.1        ad {
   1023   1.1        ad 
   1024   1.1        ad 	memset(sip, 0, sizeof(*sip));
   1025  1.58   thorpej 	klist_init(&sip->sel_klist);
   1026   1.1        ad }
   1027   1.1        ad 
   1028   1.1        ad /*
   1029   1.1        ad  * Destroy a selinfo record.  The owning object must not gain new
   1030   1.1        ad  * references while this is in progress: all activity on the record
   1031   1.1        ad  * must be stopped.
   1032   1.1        ad  *
   1033   1.1        ad  * Concurrency issues: we only need guard against a call to selclear()
   1034  1.17     rmind  * by a thread exiting sel_do_scan().  The caller has prevented further
   1035  1.17     rmind  * references being made to the selinfo record via selrecord(), and it
   1036  1.23     rmind  * will not call selnotify() again.
   1037   1.1        ad  */
   1038   1.1        ad void
   1039   1.1        ad seldestroy(struct selinfo *sip)
   1040   1.1        ad {
   1041  1.22        ad 	selcluster_t *sc;
   1042  1.13        ad 	kmutex_t *lock;
   1043   1.1        ad 	lwp_t *l;
   1044   1.1        ad 
   1045  1.58   thorpej 	klist_fini(&sip->sel_klist);
   1046  1.58   thorpej 
   1047   1.1        ad 	if (sip->sel_lwp == NULL)
   1048   1.1        ad 		return;
   1049   1.1        ad 
   1050   1.1        ad 	/*
   1051  1.22        ad 	 * Lock out selclear().  The selcluster pointer can't change while
   1052   1.1        ad 	 * we are here since it is only ever changed in selrecord(),
   1053   1.1        ad 	 * and that will not be entered again for this record because
   1054   1.1        ad 	 * it is dying.
   1055   1.1        ad 	 */
   1056  1.22        ad 	KASSERT(sip->sel_cluster != NULL);
   1057  1.22        ad 	sc = sip->sel_cluster;
   1058  1.13        ad 	lock = sc->sc_lock;
   1059  1.13        ad 	mutex_spin_enter(lock);
   1060   1.1        ad 	if ((l = sip->sel_lwp) != NULL) {
   1061   1.1        ad 		/*
   1062   1.1        ad 		 * This should rarely happen, so although SLIST_REMOVE()
   1063   1.1        ad 		 * is slow, using it here is not a problem.
   1064   1.1        ad 		 */
   1065  1.22        ad 		KASSERT(l->l_selcluster == sc);
   1066   1.1        ad 		SLIST_REMOVE(&l->l_selwait, sip, selinfo, sel_chain);
   1067   1.1        ad 		sip->sel_lwp = NULL;
   1068   1.1        ad 	}
   1069  1.13        ad 	mutex_spin_exit(lock);
   1070   1.1        ad }
   1071   1.1        ad 
   1072  1.36     rmind /*
   1073  1.36     rmind  * System control nodes.
   1074  1.36     rmind  */
   1075  1.36     rmind SYSCTL_SETUP(sysctl_select_setup, "sysctl select setup")
   1076  1.36     rmind {
   1077  1.36     rmind 
   1078  1.38     pooka 	sysctl_createv(clog, 0, NULL, NULL,
   1079  1.36     rmind 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   1080  1.36     rmind 		CTLTYPE_INT, "direct_select",
   1081  1.36     rmind 		SYSCTL_DESCR("Enable/disable direct select (for testing)"),
   1082  1.36     rmind 		NULL, 0, &direct_select, 0,
   1083  1.38     pooka 		CTL_KERN, CTL_CREATE, CTL_EOL);
   1084  1.36     rmind }
   1085