Home | History | Annotate | Line # | Download | only in kern
sys_select.c revision 1.13
      1  1.13        ad /*	$NetBSD: sys_select.c,v 1.13 2009/03/21 13:11:14 ad Exp $	*/
      2   1.1        ad 
      3   1.1        ad /*-
      4  1.13        ad  * Copyright (c) 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5   1.1        ad  * All rights reserved.
      6   1.1        ad  *
      7   1.1        ad  * This code is derived from software contributed to The NetBSD Foundation
      8   1.1        ad  * by Andrew Doran.
      9   1.1        ad  *
     10   1.1        ad  * Redistribution and use in source and binary forms, with or without
     11   1.1        ad  * modification, are permitted provided that the following conditions
     12   1.1        ad  * are met:
     13   1.1        ad  * 1. Redistributions of source code must retain the above copyright
     14   1.1        ad  *    notice, this list of conditions and the following disclaimer.
     15   1.1        ad  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.1        ad  *    notice, this list of conditions and the following disclaimer in the
     17   1.1        ad  *    documentation and/or other materials provided with the distribution.
     18   1.1        ad  *
     19   1.1        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20   1.1        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21   1.1        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22   1.1        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23   1.1        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24   1.1        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25   1.1        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26   1.1        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27   1.1        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28   1.1        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29   1.1        ad  * POSSIBILITY OF SUCH DAMAGE.
     30   1.1        ad  */
     31   1.1        ad 
     32   1.1        ad /*
     33   1.1        ad  * Copyright (c) 1982, 1986, 1989, 1993
     34   1.1        ad  *	The Regents of the University of California.  All rights reserved.
     35   1.1        ad  * (c) UNIX System Laboratories, Inc.
     36   1.1        ad  * All or some portions of this file are derived from material licensed
     37   1.1        ad  * to the University of California by American Telephone and Telegraph
     38   1.1        ad  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     39   1.1        ad  * the permission of UNIX System Laboratories, Inc.
     40   1.1        ad  *
     41   1.1        ad  * Redistribution and use in source and binary forms, with or without
     42   1.1        ad  * modification, are permitted provided that the following conditions
     43   1.1        ad  * are met:
     44   1.1        ad  * 1. Redistributions of source code must retain the above copyright
     45   1.1        ad  *    notice, this list of conditions and the following disclaimer.
     46   1.1        ad  * 2. Redistributions in binary form must reproduce the above copyright
     47   1.1        ad  *    notice, this list of conditions and the following disclaimer in the
     48   1.1        ad  *    documentation and/or other materials provided with the distribution.
     49   1.1        ad  * 3. Neither the name of the University nor the names of its contributors
     50   1.1        ad  *    may be used to endorse or promote products derived from this software
     51   1.1        ad  *    without specific prior written permission.
     52   1.1        ad  *
     53   1.1        ad  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54   1.1        ad  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55   1.1        ad  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56   1.1        ad  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57   1.1        ad  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58   1.1        ad  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59   1.1        ad  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60   1.1        ad  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61   1.1        ad  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62   1.1        ad  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63   1.1        ad  * SUCH DAMAGE.
     64   1.1        ad  *
     65   1.1        ad  *	@(#)sys_generic.c	8.9 (Berkeley) 2/14/95
     66   1.1        ad  */
     67   1.1        ad 
     68   1.1        ad /*
     69   1.1        ad  * System calls relating to files.
     70   1.1        ad  */
     71   1.1        ad 
     72   1.1        ad #include <sys/cdefs.h>
     73  1.13        ad __KERNEL_RCSID(0, "$NetBSD: sys_select.c,v 1.13 2009/03/21 13:11:14 ad Exp $");
     74   1.1        ad 
     75   1.1        ad #include <sys/param.h>
     76   1.1        ad #include <sys/systm.h>
     77   1.1        ad #include <sys/filedesc.h>
     78   1.1        ad #include <sys/ioctl.h>
     79   1.1        ad #include <sys/file.h>
     80   1.1        ad #include <sys/proc.h>
     81   1.1        ad #include <sys/socketvar.h>
     82   1.1        ad #include <sys/signalvar.h>
     83   1.1        ad #include <sys/uio.h>
     84   1.1        ad #include <sys/kernel.h>
     85   1.1        ad #include <sys/stat.h>
     86   1.1        ad #include <sys/poll.h>
     87   1.1        ad #include <sys/vnode.h>
     88   1.1        ad #include <sys/mount.h>
     89   1.1        ad #include <sys/syscallargs.h>
     90   1.1        ad #include <sys/cpu.h>
     91   1.1        ad #include <sys/atomic.h>
     92   1.1        ad #include <sys/socketvar.h>
     93   1.1        ad #include <sys/sleepq.h>
     94   1.1        ad 
     95   1.1        ad /* Flags for lwp::l_selflag. */
     96   1.1        ad #define	SEL_RESET	0	/* awoken, interrupted, or not yet polling */
     97   1.1        ad #define	SEL_SCANNING	1	/* polling descriptors */
     98   1.1        ad #define	SEL_BLOCKING	2	/* about to block on select_cv */
     99   1.1        ad 
    100   1.1        ad /* Per-CPU state for select()/poll(). */
    101   1.1        ad #if MAXCPUS > 32
    102   1.1        ad #error adjust this code
    103   1.1        ad #endif
    104   1.1        ad typedef struct selcpu {
    105  1.13        ad 	kmutex_t	*sc_lock;
    106   1.1        ad 	sleepq_t	sc_sleepq;
    107   1.1        ad 	int		sc_ncoll;
    108   1.1        ad 	uint32_t	sc_mask;
    109   1.1        ad } selcpu_t;
    110   1.1        ad 
    111   1.1        ad static int	selscan(lwp_t *, fd_mask *, fd_mask *, int, register_t *);
    112   1.1        ad static int	pollscan(lwp_t *, struct pollfd *, int, register_t *);
    113   1.1        ad static void	selclear(void);
    114   1.1        ad 
    115   1.1        ad static syncobj_t select_sobj = {
    116   1.1        ad 	SOBJ_SLEEPQ_FIFO,
    117   1.1        ad 	sleepq_unsleep,
    118   1.1        ad 	sleepq_changepri,
    119   1.1        ad 	sleepq_lendpri,
    120   1.1        ad 	syncobj_noowner,
    121   1.1        ad };
    122   1.1        ad 
    123   1.1        ad /*
    124   1.1        ad  * Select system call.
    125   1.1        ad  */
    126   1.1        ad int
    127  1.12  christos sys___pselect50(struct lwp *l, const struct sys___pselect50_args *uap,
    128  1.12  christos     register_t *retval)
    129   1.1        ad {
    130   1.1        ad 	/* {
    131   1.1        ad 		syscallarg(int)				nd;
    132   1.1        ad 		syscallarg(fd_set *)			in;
    133   1.1        ad 		syscallarg(fd_set *)			ou;
    134   1.1        ad 		syscallarg(fd_set *)			ex;
    135   1.1        ad 		syscallarg(const struct timespec *)	ts;
    136   1.1        ad 		syscallarg(sigset_t *)			mask;
    137   1.1        ad 	} */
    138   1.1        ad 	struct timespec	ats;
    139   1.1        ad 	struct timeval	atv, *tv = NULL;
    140   1.1        ad 	sigset_t	amask, *mask = NULL;
    141   1.1        ad 	int		error;
    142   1.1        ad 
    143   1.1        ad 	if (SCARG(uap, ts)) {
    144   1.1        ad 		error = copyin(SCARG(uap, ts), &ats, sizeof(ats));
    145   1.1        ad 		if (error)
    146   1.1        ad 			return error;
    147   1.1        ad 		atv.tv_sec = ats.tv_sec;
    148   1.1        ad 		atv.tv_usec = ats.tv_nsec / 1000;
    149   1.1        ad 		tv = &atv;
    150   1.1        ad 	}
    151   1.1        ad 	if (SCARG(uap, mask) != NULL) {
    152   1.1        ad 		error = copyin(SCARG(uap, mask), &amask, sizeof(amask));
    153   1.1        ad 		if (error)
    154   1.1        ad 			return error;
    155   1.1        ad 		mask = &amask;
    156   1.1        ad 	}
    157   1.1        ad 
    158   1.1        ad 	return selcommon(l, retval, SCARG(uap, nd), SCARG(uap, in),
    159   1.1        ad 	    SCARG(uap, ou), SCARG(uap, ex), tv, mask);
    160   1.1        ad }
    161   1.1        ad 
    162   1.1        ad int
    163   1.1        ad inittimeleft(struct timeval *tv, struct timeval *sleeptv)
    164   1.1        ad {
    165   1.1        ad 	if (itimerfix(tv))
    166   1.1        ad 		return -1;
    167   1.1        ad 	getmicrouptime(sleeptv);
    168   1.1        ad 	return 0;
    169   1.1        ad }
    170   1.1        ad 
    171   1.1        ad int
    172   1.1        ad gettimeleft(struct timeval *tv, struct timeval *sleeptv)
    173   1.1        ad {
    174   1.1        ad 	/*
    175   1.1        ad 	 * We have to recalculate the timeout on every retry.
    176   1.1        ad 	 */
    177   1.1        ad 	struct timeval slepttv;
    178   1.1        ad 	/*
    179   1.1        ad 	 * reduce tv by elapsed time
    180   1.1        ad 	 * based on monotonic time scale
    181   1.1        ad 	 */
    182   1.1        ad 	getmicrouptime(&slepttv);
    183   1.1        ad 	timeradd(tv, sleeptv, tv);
    184   1.1        ad 	timersub(tv, &slepttv, tv);
    185   1.1        ad 	*sleeptv = slepttv;
    186   1.1        ad 	return tvtohz(tv);
    187   1.1        ad }
    188   1.1        ad 
    189   1.1        ad int
    190  1.12  christos sys___select50(struct lwp *l, const struct sys___select50_args *uap,
    191  1.12  christos     register_t *retval)
    192   1.1        ad {
    193   1.1        ad 	/* {
    194   1.1        ad 		syscallarg(int)			nd;
    195   1.1        ad 		syscallarg(fd_set *)		in;
    196   1.1        ad 		syscallarg(fd_set *)		ou;
    197   1.1        ad 		syscallarg(fd_set *)		ex;
    198   1.1        ad 		syscallarg(struct timeval *)	tv;
    199   1.1        ad 	} */
    200   1.1        ad 	struct timeval atv, *tv = NULL;
    201   1.1        ad 	int error;
    202   1.1        ad 
    203   1.1        ad 	if (SCARG(uap, tv)) {
    204   1.1        ad 		error = copyin(SCARG(uap, tv), (void *)&atv,
    205   1.1        ad 			sizeof(atv));
    206   1.1        ad 		if (error)
    207   1.1        ad 			return error;
    208   1.1        ad 		tv = &atv;
    209   1.1        ad 	}
    210   1.1        ad 
    211   1.1        ad 	return selcommon(l, retval, SCARG(uap, nd), SCARG(uap, in),
    212   1.1        ad 	    SCARG(uap, ou), SCARG(uap, ex), tv, NULL);
    213   1.1        ad }
    214   1.1        ad 
    215   1.1        ad int
    216   1.1        ad selcommon(lwp_t *l, register_t *retval, int nd, fd_set *u_in,
    217   1.1        ad 	  fd_set *u_ou, fd_set *u_ex, struct timeval *tv, sigset_t *mask)
    218   1.1        ad {
    219   1.1        ad 	char		smallbits[howmany(FD_SETSIZE, NFDBITS) *
    220   1.1        ad 			    sizeof(fd_mask) * 6];
    221   1.1        ad 	proc_t		* const p = l->l_proc;
    222   1.1        ad 	char 		*bits;
    223   1.1        ad 	int		ncoll, error, timo;
    224   1.1        ad 	size_t		ni;
    225   1.1        ad 	sigset_t	oldmask;
    226   1.1        ad 	struct timeval  sleeptv;
    227   1.1        ad 	selcpu_t	*sc;
    228  1.13        ad 	kmutex_t	*lock;
    229   1.1        ad 
    230   1.1        ad 	error = 0;
    231   1.1        ad 	if (nd < 0)
    232   1.1        ad 		return (EINVAL);
    233   1.1        ad 	if (nd > p->p_fd->fd_nfiles) {
    234   1.1        ad 		/* forgiving; slightly wrong */
    235   1.1        ad 		nd = p->p_fd->fd_nfiles;
    236   1.1        ad 	}
    237   1.1        ad 	ni = howmany(nd, NFDBITS) * sizeof(fd_mask);
    238   1.9     rmind 	if (ni * 6 > sizeof(smallbits)) {
    239   1.1        ad 		bits = kmem_alloc(ni * 6, KM_SLEEP);
    240   1.9     rmind 		if (bits == NULL)
    241   1.9     rmind 			return ENOMEM;
    242   1.9     rmind 	} else
    243   1.1        ad 		bits = smallbits;
    244   1.1        ad 
    245   1.1        ad #define	getbits(name, x)						\
    246   1.1        ad 	if (u_ ## name) {						\
    247   1.1        ad 		error = copyin(u_ ## name, bits + ni * x, ni);		\
    248   1.1        ad 		if (error)						\
    249   1.1        ad 			goto done;					\
    250   1.1        ad 	} else								\
    251   1.1        ad 		memset(bits + ni * x, 0, ni);
    252   1.1        ad 	getbits(in, 0);
    253   1.1        ad 	getbits(ou, 1);
    254   1.1        ad 	getbits(ex, 2);
    255   1.1        ad #undef	getbits
    256   1.1        ad 
    257   1.1        ad 	timo = 0;
    258   1.1        ad 	if (tv && inittimeleft(tv, &sleeptv) == -1) {
    259   1.1        ad 		error = EINVAL;
    260   1.1        ad 		goto done;
    261   1.1        ad 	}
    262   1.1        ad 
    263   1.1        ad 	if (mask) {
    264   1.1        ad 		sigminusset(&sigcantmask, mask);
    265   1.5        ad 		mutex_enter(p->p_lock);
    266   1.1        ad 		oldmask = l->l_sigmask;
    267   1.1        ad 		l->l_sigmask = *mask;
    268   1.5        ad 		mutex_exit(p->p_lock);
    269   1.1        ad 	} else
    270   1.1        ad 		oldmask = l->l_sigmask;	/* XXXgcc */
    271   1.1        ad 
    272   1.1        ad 	sc = curcpu()->ci_data.cpu_selcpu;
    273  1.13        ad 	lock = sc->sc_lock;
    274   1.1        ad 	l->l_selcpu = sc;
    275   1.1        ad 	SLIST_INIT(&l->l_selwait);
    276   1.1        ad 	for (;;) {
    277   1.1        ad 		/*
    278   1.1        ad 		 * No need to lock.  If this is overwritten by another
    279   1.1        ad 		 * value while scanning, we will retry below.  We only
    280   1.1        ad 		 * need to see exact state from the descriptors that
    281   1.1        ad 		 * we are about to poll, and lock activity resulting
    282   1.1        ad 		 * from fo_poll is enough to provide an up to date value
    283   1.1        ad 		 * for new polling activity.
    284   1.1        ad 		 */
    285   1.1        ad 	 	l->l_selflag = SEL_SCANNING;
    286   1.1        ad 		ncoll = sc->sc_ncoll;
    287   1.1        ad 
    288   1.1        ad 		error = selscan(l, (fd_mask *)(bits + ni * 0),
    289   1.1        ad 		    (fd_mask *)(bits + ni * 3), nd, retval);
    290   1.1        ad 
    291   1.1        ad 		if (error || *retval)
    292   1.1        ad 			break;
    293   1.1        ad 		if (tv && (timo = gettimeleft(tv, &sleeptv)) <= 0)
    294   1.1        ad 			break;
    295  1.13        ad 		mutex_spin_enter(lock);
    296   1.1        ad 		if (l->l_selflag != SEL_SCANNING || sc->sc_ncoll != ncoll) {
    297  1.13        ad 			mutex_spin_exit(lock);
    298   1.1        ad 			continue;
    299   1.1        ad 		}
    300   1.1        ad 		l->l_selflag = SEL_BLOCKING;
    301   1.7        ad 		l->l_kpriority = true;
    302  1.13        ad 		sleepq_enter(&sc->sc_sleepq, l, lock);
    303   1.1        ad 		sleepq_enqueue(&sc->sc_sleepq, sc, "select", &select_sobj);
    304   1.1        ad 		error = sleepq_block(timo, true);
    305   1.1        ad 		if (error != 0)
    306   1.1        ad 			break;
    307   1.1        ad 	}
    308   1.1        ad 	selclear();
    309   1.1        ad 
    310   1.1        ad 	if (mask) {
    311   1.5        ad 		mutex_enter(p->p_lock);
    312   1.1        ad 		l->l_sigmask = oldmask;
    313   1.5        ad 		mutex_exit(p->p_lock);
    314   1.1        ad 	}
    315   1.1        ad 
    316   1.1        ad  done:
    317   1.1        ad 	/* select is not restarted after signals... */
    318   1.1        ad 	if (error == ERESTART)
    319   1.1        ad 		error = EINTR;
    320   1.1        ad 	if (error == EWOULDBLOCK)
    321   1.1        ad 		error = 0;
    322   1.1        ad 	if (error == 0 && u_in != NULL)
    323   1.1        ad 		error = copyout(bits + ni * 3, u_in, ni);
    324   1.1        ad 	if (error == 0 && u_ou != NULL)
    325   1.1        ad 		error = copyout(bits + ni * 4, u_ou, ni);
    326   1.1        ad 	if (error == 0 && u_ex != NULL)
    327   1.1        ad 		error = copyout(bits + ni * 5, u_ex, ni);
    328   1.1        ad 	if (bits != smallbits)
    329   1.1        ad 		kmem_free(bits, ni * 6);
    330   1.1        ad 	return (error);
    331   1.1        ad }
    332   1.1        ad 
    333   1.1        ad int
    334   1.1        ad selscan(lwp_t *l, fd_mask *ibitp, fd_mask *obitp, int nfd,
    335   1.1        ad 	register_t *retval)
    336   1.1        ad {
    337   1.1        ad 	static const int flag[3] = { POLLRDNORM | POLLHUP | POLLERR,
    338   1.1        ad 			       POLLWRNORM | POLLHUP | POLLERR,
    339   1.1        ad 			       POLLRDBAND };
    340   1.1        ad 	int msk, i, j, fd, n;
    341   1.1        ad 	fd_mask ibits, obits;
    342   1.1        ad 	file_t *fp;
    343   1.1        ad 
    344   1.1        ad 	n = 0;
    345   1.1        ad 	for (msk = 0; msk < 3; msk++) {
    346   1.1        ad 		for (i = 0; i < nfd; i += NFDBITS) {
    347   1.1        ad 			ibits = *ibitp++;
    348   1.1        ad 			obits = 0;
    349   1.1        ad 			while ((j = ffs(ibits)) && (fd = i + --j) < nfd) {
    350   1.1        ad 				ibits &= ~(1 << j);
    351   1.1        ad 				if ((fp = fd_getfile(fd)) == NULL)
    352   1.1        ad 					return (EBADF);
    353   1.1        ad 				if ((*fp->f_ops->fo_poll)(fp, flag[msk])) {
    354   1.1        ad 					obits |= (1 << j);
    355   1.1        ad 					n++;
    356   1.1        ad 				}
    357   1.1        ad 				fd_putfile(fd);
    358   1.1        ad 			}
    359   1.1        ad 			*obitp++ = obits;
    360   1.1        ad 		}
    361   1.1        ad 	}
    362   1.1        ad 	*retval = n;
    363   1.1        ad 	return (0);
    364   1.1        ad }
    365   1.1        ad 
    366   1.1        ad /*
    367   1.1        ad  * Poll system call.
    368   1.1        ad  */
    369   1.1        ad int
    370   1.1        ad sys_poll(struct lwp *l, const struct sys_poll_args *uap, register_t *retval)
    371   1.1        ad {
    372   1.1        ad 	/* {
    373   1.1        ad 		syscallarg(struct pollfd *)	fds;
    374   1.1        ad 		syscallarg(u_int)		nfds;
    375   1.1        ad 		syscallarg(int)			timeout;
    376   1.1        ad 	} */
    377   1.1        ad 	struct timeval	atv, *tv = NULL;
    378   1.1        ad 
    379   1.1        ad 	if (SCARG(uap, timeout) != INFTIM) {
    380   1.1        ad 		atv.tv_sec = SCARG(uap, timeout) / 1000;
    381   1.1        ad 		atv.tv_usec = (SCARG(uap, timeout) % 1000) * 1000;
    382   1.1        ad 		tv = &atv;
    383   1.1        ad 	}
    384   1.1        ad 
    385   1.1        ad 	return pollcommon(l, retval, SCARG(uap, fds), SCARG(uap, nfds),
    386   1.1        ad 		tv, NULL);
    387   1.1        ad }
    388   1.1        ad 
    389   1.1        ad /*
    390   1.1        ad  * Poll system call.
    391   1.1        ad  */
    392   1.1        ad int
    393  1.12  christos sys___pollts50(struct lwp *l, const struct sys___pollts50_args *uap,
    394  1.12  christos     register_t *retval)
    395   1.1        ad {
    396   1.1        ad 	/* {
    397   1.1        ad 		syscallarg(struct pollfd *)		fds;
    398   1.1        ad 		syscallarg(u_int)			nfds;
    399   1.1        ad 		syscallarg(const struct timespec *)	ts;
    400   1.1        ad 		syscallarg(const sigset_t *)		mask;
    401   1.1        ad 	} */
    402   1.1        ad 	struct timespec	ats;
    403   1.1        ad 	struct timeval	atv, *tv = NULL;
    404   1.1        ad 	sigset_t	amask, *mask = NULL;
    405   1.1        ad 	int		error;
    406   1.1        ad 
    407   1.1        ad 	if (SCARG(uap, ts)) {
    408   1.1        ad 		error = copyin(SCARG(uap, ts), &ats, sizeof(ats));
    409   1.1        ad 		if (error)
    410   1.1        ad 			return error;
    411   1.1        ad 		atv.tv_sec = ats.tv_sec;
    412   1.1        ad 		atv.tv_usec = ats.tv_nsec / 1000;
    413   1.1        ad 		tv = &atv;
    414   1.1        ad 	}
    415   1.1        ad 	if (SCARG(uap, mask)) {
    416   1.1        ad 		error = copyin(SCARG(uap, mask), &amask, sizeof(amask));
    417   1.1        ad 		if (error)
    418   1.1        ad 			return error;
    419   1.1        ad 		mask = &amask;
    420   1.1        ad 	}
    421   1.1        ad 
    422   1.1        ad 	return pollcommon(l, retval, SCARG(uap, fds), SCARG(uap, nfds),
    423   1.1        ad 		tv, mask);
    424   1.1        ad }
    425   1.1        ad 
    426   1.1        ad int
    427   1.1        ad pollcommon(lwp_t *l, register_t *retval,
    428   1.1        ad 	struct pollfd *u_fds, u_int nfds,
    429   1.1        ad 	struct timeval *tv, sigset_t *mask)
    430   1.1        ad {
    431  1.11      yamt 	struct pollfd	smallfds[32];
    432  1.11      yamt 	struct pollfd	*fds;
    433   1.1        ad 	proc_t		* const p = l->l_proc;
    434   1.1        ad 	sigset_t	oldmask;
    435   1.1        ad 	int		ncoll, error, timo;
    436   1.1        ad 	size_t		ni;
    437   1.1        ad 	struct timeval	sleeptv;
    438   1.1        ad 	selcpu_t	*sc;
    439  1.13        ad 	kmutex_t	*lock;
    440   1.1        ad 
    441   1.1        ad 	if (nfds > p->p_fd->fd_nfiles) {
    442   1.1        ad 		/* forgiving; slightly wrong */
    443   1.1        ad 		nfds = p->p_fd->fd_nfiles;
    444   1.1        ad 	}
    445   1.1        ad 	ni = nfds * sizeof(struct pollfd);
    446  1.11      yamt 	if (ni > sizeof(smallfds)) {
    447  1.11      yamt 		fds = kmem_alloc(ni, KM_SLEEP);
    448  1.11      yamt 		if (fds == NULL)
    449   1.9     rmind 			return ENOMEM;
    450   1.9     rmind 	} else
    451  1.11      yamt 		fds = smallfds;
    452   1.1        ad 
    453  1.11      yamt 	error = copyin(u_fds, fds, ni);
    454   1.1        ad 	if (error)
    455   1.1        ad 		goto done;
    456   1.1        ad 
    457   1.1        ad 	timo = 0;
    458   1.1        ad 	if (tv && inittimeleft(tv, &sleeptv) == -1) {
    459   1.1        ad 		error = EINVAL;
    460   1.1        ad 		goto done;
    461   1.1        ad 	}
    462   1.1        ad 
    463   1.1        ad 	if (mask) {
    464   1.1        ad 		sigminusset(&sigcantmask, mask);
    465   1.5        ad 		mutex_enter(p->p_lock);
    466   1.1        ad 		oldmask = l->l_sigmask;
    467   1.1        ad 		l->l_sigmask = *mask;
    468   1.5        ad 		mutex_exit(p->p_lock);
    469   1.1        ad 	} else
    470   1.1        ad 		oldmask = l->l_sigmask;	/* XXXgcc */
    471   1.1        ad 
    472   1.1        ad 	sc = curcpu()->ci_data.cpu_selcpu;
    473  1.13        ad 	lock = sc->sc_lock;
    474   1.1        ad 	l->l_selcpu = sc;
    475   1.1        ad 	SLIST_INIT(&l->l_selwait);
    476   1.1        ad 	for (;;) {
    477   1.1        ad 		/*
    478   1.1        ad 		 * No need to lock.  If this is overwritten by another
    479   1.1        ad 		 * value while scanning, we will retry below.  We only
    480   1.1        ad 		 * need to see exact state from the descriptors that
    481   1.1        ad 		 * we are about to poll, and lock activity resulting
    482   1.1        ad 		 * from fo_poll is enough to provide an up to date value
    483   1.1        ad 		 * for new polling activity.
    484   1.1        ad 		 */
    485   1.1        ad 		ncoll = sc->sc_ncoll;
    486   1.1        ad 		l->l_selflag = SEL_SCANNING;
    487   1.1        ad 
    488  1.11      yamt 		error = pollscan(l, fds, nfds, retval);
    489   1.1        ad 
    490   1.1        ad 		if (error || *retval)
    491   1.1        ad 			break;
    492   1.1        ad 		if (tv && (timo = gettimeleft(tv, &sleeptv)) <= 0)
    493   1.1        ad 			break;
    494  1.13        ad 		mutex_spin_enter(lock);
    495   1.1        ad 		if (l->l_selflag != SEL_SCANNING || sc->sc_ncoll != ncoll) {
    496  1.13        ad 			mutex_spin_exit(lock);
    497   1.1        ad 			continue;
    498   1.1        ad 		}
    499   1.1        ad 		l->l_selflag = SEL_BLOCKING;
    500   1.7        ad 		l->l_kpriority = true;
    501  1.13        ad 		sleepq_enter(&sc->sc_sleepq, l, lock);
    502   1.1        ad 		sleepq_enqueue(&sc->sc_sleepq, sc, "select", &select_sobj);
    503   1.1        ad 		error = sleepq_block(timo, true);
    504   1.1        ad 		if (error != 0)
    505   1.1        ad 			break;
    506   1.1        ad 	}
    507   1.1        ad 	selclear();
    508   1.1        ad 
    509   1.1        ad 	if (mask) {
    510   1.5        ad 		mutex_enter(p->p_lock);
    511   1.1        ad 		l->l_sigmask = oldmask;
    512   1.5        ad 		mutex_exit(p->p_lock);
    513   1.1        ad 	}
    514   1.1        ad  done:
    515   1.1        ad 	/* poll is not restarted after signals... */
    516   1.1        ad 	if (error == ERESTART)
    517   1.1        ad 		error = EINTR;
    518   1.1        ad 	if (error == EWOULDBLOCK)
    519   1.1        ad 		error = 0;
    520   1.1        ad 	if (error == 0)
    521  1.11      yamt 		error = copyout(fds, u_fds, ni);
    522  1.11      yamt 	if (fds != smallfds)
    523  1.11      yamt 		kmem_free(fds, ni);
    524   1.1        ad 	return (error);
    525   1.1        ad }
    526   1.1        ad 
    527   1.1        ad int
    528   1.1        ad pollscan(lwp_t *l, struct pollfd *fds, int nfd, register_t *retval)
    529   1.1        ad {
    530   1.1        ad 	int i, n;
    531   1.1        ad 	file_t *fp;
    532   1.1        ad 
    533   1.1        ad 	n = 0;
    534   1.1        ad 	for (i = 0; i < nfd; i++, fds++) {
    535   1.1        ad 		if (fds->fd < 0) {
    536   1.1        ad 			fds->revents = 0;
    537   1.1        ad 		} else if ((fp = fd_getfile(fds->fd)) == NULL) {
    538   1.1        ad 			fds->revents = POLLNVAL;
    539   1.1        ad 			n++;
    540   1.1        ad 		} else {
    541   1.1        ad 			fds->revents = (*fp->f_ops->fo_poll)(fp,
    542   1.1        ad 			    fds->events | POLLERR | POLLHUP);
    543   1.1        ad 			if (fds->revents != 0)
    544   1.1        ad 				n++;
    545   1.1        ad 			fd_putfile(fds->fd);
    546   1.1        ad 		}
    547   1.1        ad 	}
    548   1.1        ad 	*retval = n;
    549   1.1        ad 	return (0);
    550   1.1        ad }
    551   1.1        ad 
    552   1.1        ad /*ARGSUSED*/
    553   1.1        ad int
    554   1.1        ad seltrue(dev_t dev, int events, lwp_t *l)
    555   1.1        ad {
    556   1.1        ad 
    557   1.1        ad 	return (events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
    558   1.1        ad }
    559   1.1        ad 
    560   1.1        ad /*
    561   1.1        ad  * Record a select request.  Concurrency issues:
    562   1.1        ad  *
    563   1.1        ad  * The caller holds the same lock across calls to selrecord() and
    564   1.4      yamt  * selnotify(), so we don't need to consider a concurrent wakeup
    565   1.1        ad  * while in this routine.
    566   1.1        ad  *
    567   1.1        ad  * The only activity we need to guard against is selclear(), called by
    568   1.1        ad  * another thread that is exiting selcommon() or pollcommon().
    569   1.1        ad  * `sel_lwp' can only become non-NULL while the caller's lock is held,
    570   1.1        ad  * so it cannot become non-NULL due to a change made by another thread
    571   1.1        ad  * while we are in this routine.  It can only become _NULL_ due to a
    572   1.1        ad  * call to selclear().
    573   1.1        ad  *
    574   1.1        ad  * If it is non-NULL and != selector there is the potential for
    575   1.1        ad  * selclear() to be called by another thread.  If either of those
    576   1.1        ad  * conditions are true, we're not interested in touching the `named
    577   1.1        ad  * waiter' part of the selinfo record because we need to record a
    578   1.1        ad  * collision.  Hence there is no need for additional locking in this
    579   1.1        ad  * routine.
    580   1.1        ad  */
    581   1.1        ad void
    582   1.1        ad selrecord(lwp_t *selector, struct selinfo *sip)
    583   1.1        ad {
    584   1.1        ad 	selcpu_t *sc;
    585   1.1        ad 	lwp_t *other;
    586   1.1        ad 
    587   1.1        ad 	KASSERT(selector == curlwp);
    588   1.1        ad 
    589   1.1        ad 	sc = selector->l_selcpu;
    590   1.1        ad 	other = sip->sel_lwp;
    591   1.1        ad 
    592   1.1        ad 	if (other == selector) {
    593   1.1        ad 		/* `selector' has already claimed it. */
    594   1.1        ad 		KASSERT(sip->sel_cpu = sc);
    595   1.1        ad 	} else if (other == NULL) {
    596   1.1        ad 		/*
    597   1.1        ad 		 * First named waiter, although there may be unnamed
    598   1.1        ad 		 * waiters (collisions).  Issue a memory barrier to
    599   1.1        ad 		 * ensure that we access sel_lwp (above) before other
    600   1.1        ad 		 * fields - this guards against a call to selclear().
    601   1.1        ad 		 */
    602   1.1        ad 		membar_enter();
    603   1.1        ad 		sip->sel_lwp = selector;
    604   1.1        ad 		SLIST_INSERT_HEAD(&selector->l_selwait, sip, sel_chain);
    605   1.1        ad 		/* Replace selinfo's lock with our chosen CPU's lock. */
    606   1.1        ad 		sip->sel_cpu = sc;
    607   1.1        ad 	} else {
    608   1.1        ad 		/* Multiple waiters: record a collision. */
    609   1.1        ad 		sip->sel_collision |= sc->sc_mask;
    610   1.1        ad 		KASSERT(sip->sel_cpu != NULL);
    611   1.1        ad 	}
    612   1.1        ad }
    613   1.1        ad 
    614   1.1        ad /*
    615   1.1        ad  * Do a wakeup when a selectable event occurs.  Concurrency issues:
    616   1.1        ad  *
    617   1.1        ad  * As per selrecord(), the caller's object lock is held.  If there
    618   1.1        ad  * is a named waiter, we must acquire the associated selcpu's lock
    619   1.1        ad  * in order to synchronize with selclear() and pollers going to sleep
    620   1.1        ad  * in selcommon() and/or pollcommon().
    621   1.1        ad  *
    622   1.1        ad  * sip->sel_cpu cannot change at this point, as it is only changed
    623   1.1        ad  * in selrecord(), and concurrent calls to selrecord() are locked
    624   1.1        ad  * out by the caller.
    625   1.1        ad  */
    626   1.1        ad void
    627   1.1        ad selnotify(struct selinfo *sip, int events, long knhint)
    628   1.1        ad {
    629   1.1        ad 	selcpu_t *sc;
    630   1.1        ad 	uint32_t mask;
    631   1.1        ad 	int index, oflag, swapin;
    632   1.1        ad 	lwp_t *l;
    633  1.13        ad 	kmutex_t *lock;
    634   1.1        ad 
    635   1.1        ad 	KNOTE(&sip->sel_klist, knhint);
    636   1.1        ad 
    637   1.1        ad 	if (sip->sel_lwp != NULL) {
    638   1.1        ad 		/* One named LWP is waiting. */
    639   1.1        ad 		swapin = 0;
    640   1.1        ad 		sc = sip->sel_cpu;
    641  1.13        ad 		lock = sc->sc_lock;
    642  1.13        ad 		mutex_spin_enter(lock);
    643   1.1        ad 		/* Still there? */
    644   1.1        ad 		if (sip->sel_lwp != NULL) {
    645   1.1        ad 			l = sip->sel_lwp;
    646   1.1        ad 			/*
    647   1.1        ad 			 * If thread is sleeping, wake it up.  If it's not
    648   1.1        ad 			 * yet asleep, it will notice the change in state
    649   1.1        ad 			 * and will re-poll the descriptors.
    650   1.1        ad 			 */
    651   1.1        ad 			oflag = l->l_selflag;
    652   1.1        ad 			l->l_selflag = SEL_RESET;
    653  1.13        ad 			if (oflag == SEL_BLOCKING && l->l_mutex == lock) {
    654   1.1        ad 				KASSERT(l->l_wchan == sc);
    655   1.1        ad 				swapin = sleepq_unsleep(l, false);
    656   1.1        ad 			}
    657   1.1        ad 		}
    658  1.13        ad 		mutex_spin_exit(lock);
    659   1.1        ad 		if (swapin)
    660   1.1        ad 			uvm_kick_scheduler();
    661   1.1        ad 	}
    662   1.1        ad 
    663   1.1        ad 	if ((mask = sip->sel_collision) != 0) {
    664   1.1        ad 		/*
    665   1.1        ad 		 * There was a collision (multiple waiters): we must
    666   1.1        ad 		 * inform all potentially interested waiters.
    667   1.1        ad 		 */
    668   1.1        ad 		sip->sel_collision = 0;
    669   1.3        ad 		do {
    670   1.1        ad 			index = ffs(mask) - 1;
    671   1.1        ad 			mask &= ~(1 << index);
    672  1.10        ad 			sc = cpu_lookup(index)->ci_data.cpu_selcpu;
    673  1.13        ad 			lock = sc->sc_lock;
    674  1.13        ad 			mutex_spin_enter(lock);
    675   1.1        ad 			sc->sc_ncoll++;
    676  1.13        ad 			sleepq_wake(&sc->sc_sleepq, sc, (u_int)-1, lock);
    677   1.3        ad 		} while (__predict_false(mask != 0));
    678   1.1        ad 	}
    679   1.1        ad }
    680   1.1        ad 
    681   1.1        ad /*
    682   1.1        ad  * Remove an LWP from all objects that it is waiting for.  Concurrency
    683   1.1        ad  * issues:
    684   1.1        ad  *
    685   1.1        ad  * The object owner's (e.g. device driver) lock is not held here.  Calls
    686   1.1        ad  * can be made to selrecord() and we do not synchronize against those
    687   1.1        ad  * directly using locks.  However, we use `sel_lwp' to lock out changes.
    688   1.1        ad  * Before clearing it we must use memory barriers to ensure that we can
    689   1.1        ad  * safely traverse the list of selinfo records.
    690   1.1        ad  */
    691   1.1        ad static void
    692   1.1        ad selclear(void)
    693   1.1        ad {
    694   1.1        ad 	struct selinfo *sip, *next;
    695   1.1        ad 	selcpu_t *sc;
    696   1.1        ad 	lwp_t *l;
    697  1.13        ad 	kmutex_t *lock;
    698   1.1        ad 
    699   1.1        ad 	l = curlwp;
    700   1.1        ad 	sc = l->l_selcpu;
    701  1.13        ad 	lock = sc->sc_lock;
    702   1.1        ad 
    703  1.13        ad 	mutex_spin_enter(lock);
    704   1.1        ad 	for (sip = SLIST_FIRST(&l->l_selwait); sip != NULL; sip = next) {
    705   1.1        ad 		KASSERT(sip->sel_lwp == l);
    706   1.1        ad 		KASSERT(sip->sel_cpu == l->l_selcpu);
    707   1.1        ad 		/*
    708   1.1        ad 		 * Read link to next selinfo record, if any.
    709   1.1        ad 		 * It's no longer safe to touch `sip' after clearing
    710   1.1        ad 		 * `sel_lwp', so ensure that the read of `sel_chain'
    711   1.1        ad 		 * completes before the clearing of sel_lwp becomes
    712   1.1        ad 		 * globally visible.
    713   1.1        ad 		 */
    714   1.1        ad 		next = SLIST_NEXT(sip, sel_chain);
    715   1.1        ad 		membar_exit();
    716   1.1        ad 		/* Release the record for another named waiter to use. */
    717   1.1        ad 		sip->sel_lwp = NULL;
    718   1.1        ad 	}
    719  1.13        ad 	mutex_spin_exit(lock);
    720   1.1        ad }
    721   1.1        ad 
    722   1.1        ad /*
    723   1.1        ad  * Initialize the select/poll system calls.  Called once for each
    724   1.1        ad  * CPU in the system, as they are attached.
    725   1.1        ad  */
    726   1.1        ad void
    727   1.1        ad selsysinit(struct cpu_info *ci)
    728   1.1        ad {
    729   1.1        ad 	selcpu_t *sc;
    730   1.1        ad 
    731   1.2        ad 	sc = kmem_alloc(roundup2(sizeof(selcpu_t), coherency_unit) +
    732   1.2        ad 	    coherency_unit, KM_SLEEP);
    733   1.2        ad 	sc = (void *)roundup2((uintptr_t)sc, coherency_unit);
    734  1.13        ad 	sc->sc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
    735   1.8        ad 	sleepq_init(&sc->sc_sleepq);
    736   1.1        ad 	sc->sc_ncoll = 0;
    737   1.1        ad 	sc->sc_mask = (1 << cpu_index(ci));
    738   1.1        ad 	ci->ci_data.cpu_selcpu = sc;
    739   1.1        ad }
    740   1.1        ad 
    741   1.1        ad /*
    742   1.1        ad  * Initialize a selinfo record.
    743   1.1        ad  */
    744   1.1        ad void
    745   1.1        ad selinit(struct selinfo *sip)
    746   1.1        ad {
    747   1.1        ad 
    748   1.1        ad 	memset(sip, 0, sizeof(*sip));
    749   1.1        ad }
    750   1.1        ad 
    751   1.1        ad /*
    752   1.1        ad  * Destroy a selinfo record.  The owning object must not gain new
    753   1.1        ad  * references while this is in progress: all activity on the record
    754   1.1        ad  * must be stopped.
    755   1.1        ad  *
    756   1.1        ad  * Concurrency issues: we only need guard against a call to selclear()
    757   1.1        ad  * by a thread exiting selcommon() and/or pollcommon().  The caller has
    758   1.1        ad  * prevented further references being made to the selinfo record via
    759   1.1        ad  * selrecord(), and it won't call selwakeup() again.
    760   1.1        ad  */
    761   1.1        ad void
    762   1.1        ad seldestroy(struct selinfo *sip)
    763   1.1        ad {
    764   1.1        ad 	selcpu_t *sc;
    765  1.13        ad 	kmutex_t *lock;
    766   1.1        ad 	lwp_t *l;
    767   1.1        ad 
    768   1.1        ad 	if (sip->sel_lwp == NULL)
    769   1.1        ad 		return;
    770   1.1        ad 
    771   1.1        ad 	/*
    772   1.1        ad 	 * Lock out selclear().  The selcpu pointer can't change while
    773   1.1        ad 	 * we are here since it is only ever changed in selrecord(),
    774   1.1        ad 	 * and that will not be entered again for this record because
    775   1.1        ad 	 * it is dying.
    776   1.1        ad 	 */
    777   1.1        ad 	KASSERT(sip->sel_cpu != NULL);
    778   1.1        ad 	sc = sip->sel_cpu;
    779  1.13        ad 	lock = sc->sc_lock;
    780  1.13        ad 	mutex_spin_enter(lock);
    781   1.1        ad 	if ((l = sip->sel_lwp) != NULL) {
    782   1.1        ad 		/*
    783   1.1        ad 		 * This should rarely happen, so although SLIST_REMOVE()
    784   1.1        ad 		 * is slow, using it here is not a problem.
    785   1.1        ad 		 */
    786   1.1        ad 		KASSERT(l->l_selcpu == sc);
    787   1.1        ad 		SLIST_REMOVE(&l->l_selwait, sip, selinfo, sel_chain);
    788   1.1        ad 		sip->sel_lwp = NULL;
    789   1.1        ad 	}
    790  1.13        ad 	mutex_spin_exit(lock);
    791   1.1        ad }
    792   1.1        ad 
    793   1.1        ad int
    794   1.1        ad pollsock(struct socket *so, const struct timeval *tvp, int events)
    795   1.1        ad {
    796   1.1        ad 	int		ncoll, error, timo;
    797   1.1        ad 	struct timeval	sleeptv, tv;
    798   1.1        ad 	selcpu_t	*sc;
    799   1.1        ad 	lwp_t		*l;
    800  1.13        ad 	kmutex_t	*lock;
    801   1.1        ad 
    802   1.1        ad 	timo = 0;
    803   1.1        ad 	if (tvp != NULL) {
    804   1.1        ad 		tv = *tvp;
    805   1.1        ad 		if (inittimeleft(&tv, &sleeptv) == -1)
    806   1.1        ad 			return EINVAL;
    807   1.1        ad 	}
    808   1.1        ad 
    809   1.1        ad 	l = curlwp;
    810   1.1        ad 	sc = l->l_cpu->ci_data.cpu_selcpu;
    811  1.13        ad 	lock = sc->sc_lock;
    812   1.1        ad 	l->l_selcpu = sc;
    813   1.1        ad 	SLIST_INIT(&l->l_selwait);
    814   1.1        ad 	error = 0;
    815   1.1        ad 	for (;;) {
    816   1.1        ad 		/*
    817   1.1        ad 		 * No need to lock.  If this is overwritten by another
    818   1.1        ad 		 * value while scanning, we will retry below.  We only
    819   1.1        ad 		 * need to see exact state from the descriptors that
    820   1.1        ad 		 * we are about to poll, and lock activity resulting
    821   1.1        ad 		 * from fo_poll is enough to provide an up to date value
    822   1.1        ad 		 * for new polling activity.
    823   1.1        ad 		 */
    824   1.1        ad 		ncoll = sc->sc_ncoll;
    825   1.1        ad 		l->l_selflag = SEL_SCANNING;
    826   1.1        ad 		if (sopoll(so, events) != 0)
    827   1.1        ad 			break;
    828   1.1        ad 		if (tvp && (timo = gettimeleft(&tv, &sleeptv)) <= 0)
    829   1.1        ad 			break;
    830  1.13        ad 		mutex_spin_enter(lock);
    831   1.1        ad 		if (l->l_selflag != SEL_SCANNING || sc->sc_ncoll != ncoll) {
    832  1.13        ad 			mutex_spin_exit(lock);
    833   1.1        ad 			continue;
    834   1.1        ad 		}
    835   1.1        ad 		l->l_selflag = SEL_BLOCKING;
    836  1.13        ad 		sleepq_enter(&sc->sc_sleepq, l, lock);
    837   1.1        ad 		sleepq_enqueue(&sc->sc_sleepq, sc, "pollsock", &select_sobj);
    838   1.1        ad 		error = sleepq_block(timo, true);
    839   1.1        ad 		if (error != 0)
    840   1.1        ad 			break;
    841   1.1        ad 	}
    842   1.1        ad 	selclear();
    843   1.1        ad 	/* poll is not restarted after signals... */
    844   1.1        ad 	if (error == ERESTART)
    845   1.1        ad 		error = EINTR;
    846   1.1        ad 	if (error == EWOULDBLOCK)
    847   1.1        ad 		error = 0;
    848   1.1        ad 	return (error);
    849   1.1        ad }
    850