Home | History | Annotate | Line # | Download | only in kern
sys_select.c revision 1.16
      1  1.16     rmind /*	$NetBSD: sys_select.c,v 1.16 2009/10/21 21:12:06 rmind Exp $	*/
      2   1.1        ad 
      3   1.1        ad /*-
      4  1.13        ad  * Copyright (c) 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5   1.1        ad  * All rights reserved.
      6   1.1        ad  *
      7   1.1        ad  * This code is derived from software contributed to The NetBSD Foundation
      8   1.1        ad  * by Andrew Doran.
      9   1.1        ad  *
     10   1.1        ad  * Redistribution and use in source and binary forms, with or without
     11   1.1        ad  * modification, are permitted provided that the following conditions
     12   1.1        ad  * are met:
     13   1.1        ad  * 1. Redistributions of source code must retain the above copyright
     14   1.1        ad  *    notice, this list of conditions and the following disclaimer.
     15   1.1        ad  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.1        ad  *    notice, this list of conditions and the following disclaimer in the
     17   1.1        ad  *    documentation and/or other materials provided with the distribution.
     18   1.1        ad  *
     19   1.1        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20   1.1        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21   1.1        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22   1.1        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23   1.1        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24   1.1        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25   1.1        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26   1.1        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27   1.1        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28   1.1        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29   1.1        ad  * POSSIBILITY OF SUCH DAMAGE.
     30   1.1        ad  */
     31   1.1        ad 
     32   1.1        ad /*
     33   1.1        ad  * Copyright (c) 1982, 1986, 1989, 1993
     34   1.1        ad  *	The Regents of the University of California.  All rights reserved.
     35   1.1        ad  * (c) UNIX System Laboratories, Inc.
     36   1.1        ad  * All or some portions of this file are derived from material licensed
     37   1.1        ad  * to the University of California by American Telephone and Telegraph
     38   1.1        ad  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     39   1.1        ad  * the permission of UNIX System Laboratories, Inc.
     40   1.1        ad  *
     41   1.1        ad  * Redistribution and use in source and binary forms, with or without
     42   1.1        ad  * modification, are permitted provided that the following conditions
     43   1.1        ad  * are met:
     44   1.1        ad  * 1. Redistributions of source code must retain the above copyright
     45   1.1        ad  *    notice, this list of conditions and the following disclaimer.
     46   1.1        ad  * 2. Redistributions in binary form must reproduce the above copyright
     47   1.1        ad  *    notice, this list of conditions and the following disclaimer in the
     48   1.1        ad  *    documentation and/or other materials provided with the distribution.
     49   1.1        ad  * 3. Neither the name of the University nor the names of its contributors
     50   1.1        ad  *    may be used to endorse or promote products derived from this software
     51   1.1        ad  *    without specific prior written permission.
     52   1.1        ad  *
     53   1.1        ad  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54   1.1        ad  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55   1.1        ad  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56   1.1        ad  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57   1.1        ad  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58   1.1        ad  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59   1.1        ad  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60   1.1        ad  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61   1.1        ad  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62   1.1        ad  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63   1.1        ad  * SUCH DAMAGE.
     64   1.1        ad  *
     65   1.1        ad  *	@(#)sys_generic.c	8.9 (Berkeley) 2/14/95
     66   1.1        ad  */
     67   1.1        ad 
     68   1.1        ad /*
     69   1.1        ad  * System calls relating to files.
     70   1.1        ad  */
     71   1.1        ad 
     72   1.1        ad #include <sys/cdefs.h>
     73  1.16     rmind __KERNEL_RCSID(0, "$NetBSD: sys_select.c,v 1.16 2009/10/21 21:12:06 rmind Exp $");
     74   1.1        ad 
     75   1.1        ad #include <sys/param.h>
     76   1.1        ad #include <sys/systm.h>
     77   1.1        ad #include <sys/filedesc.h>
     78   1.1        ad #include <sys/ioctl.h>
     79   1.1        ad #include <sys/file.h>
     80   1.1        ad #include <sys/proc.h>
     81   1.1        ad #include <sys/socketvar.h>
     82   1.1        ad #include <sys/signalvar.h>
     83   1.1        ad #include <sys/uio.h>
     84   1.1        ad #include <sys/kernel.h>
     85   1.1        ad #include <sys/stat.h>
     86   1.1        ad #include <sys/poll.h>
     87   1.1        ad #include <sys/vnode.h>
     88   1.1        ad #include <sys/mount.h>
     89   1.1        ad #include <sys/syscallargs.h>
     90   1.1        ad #include <sys/cpu.h>
     91   1.1        ad #include <sys/atomic.h>
     92   1.1        ad #include <sys/socketvar.h>
     93   1.1        ad #include <sys/sleepq.h>
     94   1.1        ad 
     95   1.1        ad /* Flags for lwp::l_selflag. */
     96   1.1        ad #define	SEL_RESET	0	/* awoken, interrupted, or not yet polling */
     97   1.1        ad #define	SEL_SCANNING	1	/* polling descriptors */
     98   1.1        ad #define	SEL_BLOCKING	2	/* about to block on select_cv */
     99   1.1        ad 
    100   1.1        ad /* Per-CPU state for select()/poll(). */
    101   1.1        ad #if MAXCPUS > 32
    102   1.1        ad #error adjust this code
    103   1.1        ad #endif
    104   1.1        ad typedef struct selcpu {
    105  1.13        ad 	kmutex_t	*sc_lock;
    106   1.1        ad 	sleepq_t	sc_sleepq;
    107   1.1        ad 	int		sc_ncoll;
    108   1.1        ad 	uint32_t	sc_mask;
    109   1.1        ad } selcpu_t;
    110   1.1        ad 
    111   1.1        ad static int	selscan(lwp_t *, fd_mask *, fd_mask *, int, register_t *);
    112   1.1        ad static int	pollscan(lwp_t *, struct pollfd *, int, register_t *);
    113   1.1        ad static void	selclear(void);
    114   1.1        ad 
    115   1.1        ad static syncobj_t select_sobj = {
    116   1.1        ad 	SOBJ_SLEEPQ_FIFO,
    117   1.1        ad 	sleepq_unsleep,
    118   1.1        ad 	sleepq_changepri,
    119   1.1        ad 	sleepq_lendpri,
    120   1.1        ad 	syncobj_noowner,
    121   1.1        ad };
    122   1.1        ad 
    123   1.1        ad /*
    124   1.1        ad  * Select system call.
    125   1.1        ad  */
    126   1.1        ad int
    127  1.12  christos sys___pselect50(struct lwp *l, const struct sys___pselect50_args *uap,
    128  1.12  christos     register_t *retval)
    129   1.1        ad {
    130   1.1        ad 	/* {
    131   1.1        ad 		syscallarg(int)				nd;
    132   1.1        ad 		syscallarg(fd_set *)			in;
    133   1.1        ad 		syscallarg(fd_set *)			ou;
    134   1.1        ad 		syscallarg(fd_set *)			ex;
    135   1.1        ad 		syscallarg(const struct timespec *)	ts;
    136   1.1        ad 		syscallarg(sigset_t *)			mask;
    137   1.1        ad 	} */
    138  1.14  christos 	struct timespec	ats, *ts = NULL;
    139   1.1        ad 	sigset_t	amask, *mask = NULL;
    140   1.1        ad 	int		error;
    141   1.1        ad 
    142   1.1        ad 	if (SCARG(uap, ts)) {
    143   1.1        ad 		error = copyin(SCARG(uap, ts), &ats, sizeof(ats));
    144   1.1        ad 		if (error)
    145   1.1        ad 			return error;
    146  1.14  christos 		ts = &ats;
    147   1.1        ad 	}
    148   1.1        ad 	if (SCARG(uap, mask) != NULL) {
    149   1.1        ad 		error = copyin(SCARG(uap, mask), &amask, sizeof(amask));
    150   1.1        ad 		if (error)
    151   1.1        ad 			return error;
    152   1.1        ad 		mask = &amask;
    153   1.1        ad 	}
    154   1.1        ad 
    155   1.1        ad 	return selcommon(l, retval, SCARG(uap, nd), SCARG(uap, in),
    156  1.14  christos 	    SCARG(uap, ou), SCARG(uap, ex), ts, mask);
    157   1.1        ad }
    158   1.1        ad 
    159   1.1        ad int
    160  1.14  christos inittimeleft(struct timespec *ts, struct timespec *sleepts)
    161   1.1        ad {
    162  1.14  christos 	if (itimespecfix(ts))
    163   1.1        ad 		return -1;
    164  1.14  christos 	getnanouptime(sleepts);
    165   1.1        ad 	return 0;
    166   1.1        ad }
    167   1.1        ad 
    168   1.1        ad int
    169  1.14  christos gettimeleft(struct timespec *ts, struct timespec *sleepts)
    170   1.1        ad {
    171   1.1        ad 	/*
    172   1.1        ad 	 * We have to recalculate the timeout on every retry.
    173   1.1        ad 	 */
    174  1.14  christos 	struct timespec sleptts;
    175   1.1        ad 	/*
    176  1.14  christos 	 * reduce ts by elapsed time
    177   1.1        ad 	 * based on monotonic time scale
    178   1.1        ad 	 */
    179  1.14  christos 	getnanouptime(&sleptts);
    180  1.14  christos 	timespecadd(ts, sleepts, ts);
    181  1.14  christos 	timespecsub(ts, &sleptts, ts);
    182  1.14  christos 	*sleepts = sleptts;
    183  1.14  christos 	return tstohz(ts);
    184   1.1        ad }
    185   1.1        ad 
    186   1.1        ad int
    187  1.12  christos sys___select50(struct lwp *l, const struct sys___select50_args *uap,
    188  1.12  christos     register_t *retval)
    189   1.1        ad {
    190   1.1        ad 	/* {
    191   1.1        ad 		syscallarg(int)			nd;
    192   1.1        ad 		syscallarg(fd_set *)		in;
    193   1.1        ad 		syscallarg(fd_set *)		ou;
    194   1.1        ad 		syscallarg(fd_set *)		ex;
    195   1.1        ad 		syscallarg(struct timeval *)	tv;
    196   1.1        ad 	} */
    197  1.14  christos 	struct timeval atv;
    198  1.14  christos 	struct timespec ats, *ts = NULL;
    199   1.1        ad 	int error;
    200   1.1        ad 
    201   1.1        ad 	if (SCARG(uap, tv)) {
    202  1.14  christos 		error = copyin(SCARG(uap, tv), (void *)&atv, sizeof(atv));
    203   1.1        ad 		if (error)
    204   1.1        ad 			return error;
    205  1.14  christos 		TIMEVAL_TO_TIMESPEC(&atv, &ats);
    206  1.14  christos 		ts = &ats;
    207   1.1        ad 	}
    208   1.1        ad 
    209   1.1        ad 	return selcommon(l, retval, SCARG(uap, nd), SCARG(uap, in),
    210  1.14  christos 	    SCARG(uap, ou), SCARG(uap, ex), ts, NULL);
    211   1.1        ad }
    212   1.1        ad 
    213   1.1        ad int
    214   1.1        ad selcommon(lwp_t *l, register_t *retval, int nd, fd_set *u_in,
    215  1.14  christos 	  fd_set *u_ou, fd_set *u_ex, struct timespec *ts, sigset_t *mask)
    216   1.1        ad {
    217   1.1        ad 	char		smallbits[howmany(FD_SETSIZE, NFDBITS) *
    218   1.1        ad 			    sizeof(fd_mask) * 6];
    219   1.1        ad 	proc_t		* const p = l->l_proc;
    220   1.1        ad 	char 		*bits;
    221  1.15        ad 	int		ncoll, error, timo, nf;
    222   1.1        ad 	size_t		ni;
    223   1.1        ad 	sigset_t	oldmask;
    224  1.14  christos 	struct timespec sleepts;
    225   1.1        ad 	selcpu_t	*sc;
    226  1.13        ad 	kmutex_t	*lock;
    227   1.1        ad 
    228   1.1        ad 	error = 0;
    229   1.1        ad 	if (nd < 0)
    230   1.1        ad 		return (EINVAL);
    231  1.15        ad 	nf = p->p_fd->fd_dt->dt_nfiles;
    232  1.15        ad 	if (nd > nf) {
    233   1.1        ad 		/* forgiving; slightly wrong */
    234  1.15        ad 		nd = nf;
    235   1.1        ad 	}
    236   1.1        ad 	ni = howmany(nd, NFDBITS) * sizeof(fd_mask);
    237   1.9     rmind 	if (ni * 6 > sizeof(smallbits)) {
    238   1.1        ad 		bits = kmem_alloc(ni * 6, KM_SLEEP);
    239   1.9     rmind 		if (bits == NULL)
    240   1.9     rmind 			return ENOMEM;
    241   1.9     rmind 	} else
    242   1.1        ad 		bits = smallbits;
    243   1.1        ad 
    244   1.1        ad #define	getbits(name, x)						\
    245   1.1        ad 	if (u_ ## name) {						\
    246   1.1        ad 		error = copyin(u_ ## name, bits + ni * x, ni);		\
    247   1.1        ad 		if (error)						\
    248   1.1        ad 			goto done;					\
    249   1.1        ad 	} else								\
    250   1.1        ad 		memset(bits + ni * x, 0, ni);
    251   1.1        ad 	getbits(in, 0);
    252   1.1        ad 	getbits(ou, 1);
    253   1.1        ad 	getbits(ex, 2);
    254   1.1        ad #undef	getbits
    255   1.1        ad 
    256   1.1        ad 	timo = 0;
    257  1.14  christos 	if (ts && inittimeleft(ts, &sleepts) == -1) {
    258   1.1        ad 		error = EINVAL;
    259   1.1        ad 		goto done;
    260   1.1        ad 	}
    261   1.1        ad 
    262   1.1        ad 	if (mask) {
    263   1.1        ad 		sigminusset(&sigcantmask, mask);
    264   1.5        ad 		mutex_enter(p->p_lock);
    265   1.1        ad 		oldmask = l->l_sigmask;
    266   1.1        ad 		l->l_sigmask = *mask;
    267   1.5        ad 		mutex_exit(p->p_lock);
    268   1.1        ad 	} else
    269   1.1        ad 		oldmask = l->l_sigmask;	/* XXXgcc */
    270   1.1        ad 
    271   1.1        ad 	sc = curcpu()->ci_data.cpu_selcpu;
    272  1.13        ad 	lock = sc->sc_lock;
    273   1.1        ad 	l->l_selcpu = sc;
    274   1.1        ad 	SLIST_INIT(&l->l_selwait);
    275   1.1        ad 	for (;;) {
    276   1.1        ad 		/*
    277   1.1        ad 		 * No need to lock.  If this is overwritten by another
    278   1.1        ad 		 * value while scanning, we will retry below.  We only
    279   1.1        ad 		 * need to see exact state from the descriptors that
    280   1.1        ad 		 * we are about to poll, and lock activity resulting
    281   1.1        ad 		 * from fo_poll is enough to provide an up to date value
    282   1.1        ad 		 * for new polling activity.
    283   1.1        ad 		 */
    284   1.1        ad 	 	l->l_selflag = SEL_SCANNING;
    285   1.1        ad 		ncoll = sc->sc_ncoll;
    286   1.1        ad 
    287   1.1        ad 		error = selscan(l, (fd_mask *)(bits + ni * 0),
    288   1.1        ad 		    (fd_mask *)(bits + ni * 3), nd, retval);
    289   1.1        ad 
    290   1.1        ad 		if (error || *retval)
    291   1.1        ad 			break;
    292  1.14  christos 		if (ts && (timo = gettimeleft(ts, &sleepts)) <= 0)
    293   1.1        ad 			break;
    294  1.13        ad 		mutex_spin_enter(lock);
    295   1.1        ad 		if (l->l_selflag != SEL_SCANNING || sc->sc_ncoll != ncoll) {
    296  1.13        ad 			mutex_spin_exit(lock);
    297   1.1        ad 			continue;
    298   1.1        ad 		}
    299   1.1        ad 		l->l_selflag = SEL_BLOCKING;
    300   1.7        ad 		l->l_kpriority = true;
    301  1.13        ad 		sleepq_enter(&sc->sc_sleepq, l, lock);
    302   1.1        ad 		sleepq_enqueue(&sc->sc_sleepq, sc, "select", &select_sobj);
    303   1.1        ad 		error = sleepq_block(timo, true);
    304   1.1        ad 		if (error != 0)
    305   1.1        ad 			break;
    306   1.1        ad 	}
    307   1.1        ad 	selclear();
    308   1.1        ad 
    309   1.1        ad 	if (mask) {
    310   1.5        ad 		mutex_enter(p->p_lock);
    311   1.1        ad 		l->l_sigmask = oldmask;
    312   1.5        ad 		mutex_exit(p->p_lock);
    313   1.1        ad 	}
    314   1.1        ad 
    315   1.1        ad  done:
    316   1.1        ad 	/* select is not restarted after signals... */
    317   1.1        ad 	if (error == ERESTART)
    318   1.1        ad 		error = EINTR;
    319   1.1        ad 	if (error == EWOULDBLOCK)
    320   1.1        ad 		error = 0;
    321   1.1        ad 	if (error == 0 && u_in != NULL)
    322   1.1        ad 		error = copyout(bits + ni * 3, u_in, ni);
    323   1.1        ad 	if (error == 0 && u_ou != NULL)
    324   1.1        ad 		error = copyout(bits + ni * 4, u_ou, ni);
    325   1.1        ad 	if (error == 0 && u_ex != NULL)
    326   1.1        ad 		error = copyout(bits + ni * 5, u_ex, ni);
    327   1.1        ad 	if (bits != smallbits)
    328   1.1        ad 		kmem_free(bits, ni * 6);
    329   1.1        ad 	return (error);
    330   1.1        ad }
    331   1.1        ad 
    332   1.1        ad int
    333   1.1        ad selscan(lwp_t *l, fd_mask *ibitp, fd_mask *obitp, int nfd,
    334   1.1        ad 	register_t *retval)
    335   1.1        ad {
    336   1.1        ad 	static const int flag[3] = { POLLRDNORM | POLLHUP | POLLERR,
    337   1.1        ad 			       POLLWRNORM | POLLHUP | POLLERR,
    338   1.1        ad 			       POLLRDBAND };
    339   1.1        ad 	int msk, i, j, fd, n;
    340   1.1        ad 	fd_mask ibits, obits;
    341   1.1        ad 	file_t *fp;
    342   1.1        ad 
    343   1.1        ad 	n = 0;
    344   1.1        ad 	for (msk = 0; msk < 3; msk++) {
    345   1.1        ad 		for (i = 0; i < nfd; i += NFDBITS) {
    346   1.1        ad 			ibits = *ibitp++;
    347   1.1        ad 			obits = 0;
    348   1.1        ad 			while ((j = ffs(ibits)) && (fd = i + --j) < nfd) {
    349   1.1        ad 				ibits &= ~(1 << j);
    350   1.1        ad 				if ((fp = fd_getfile(fd)) == NULL)
    351   1.1        ad 					return (EBADF);
    352   1.1        ad 				if ((*fp->f_ops->fo_poll)(fp, flag[msk])) {
    353   1.1        ad 					obits |= (1 << j);
    354   1.1        ad 					n++;
    355   1.1        ad 				}
    356   1.1        ad 				fd_putfile(fd);
    357   1.1        ad 			}
    358   1.1        ad 			*obitp++ = obits;
    359   1.1        ad 		}
    360   1.1        ad 	}
    361   1.1        ad 	*retval = n;
    362   1.1        ad 	return (0);
    363   1.1        ad }
    364   1.1        ad 
    365   1.1        ad /*
    366   1.1        ad  * Poll system call.
    367   1.1        ad  */
    368   1.1        ad int
    369   1.1        ad sys_poll(struct lwp *l, const struct sys_poll_args *uap, register_t *retval)
    370   1.1        ad {
    371   1.1        ad 	/* {
    372   1.1        ad 		syscallarg(struct pollfd *)	fds;
    373   1.1        ad 		syscallarg(u_int)		nfds;
    374   1.1        ad 		syscallarg(int)			timeout;
    375   1.1        ad 	} */
    376  1.14  christos 	struct timespec	ats, *ts = NULL;
    377   1.1        ad 
    378   1.1        ad 	if (SCARG(uap, timeout) != INFTIM) {
    379  1.14  christos 		ats.tv_sec = SCARG(uap, timeout) / 1000;
    380  1.14  christos 		ats.tv_nsec = (SCARG(uap, timeout) % 1000) * 1000000;
    381  1.14  christos 		ts = &ats;
    382   1.1        ad 	}
    383   1.1        ad 
    384   1.1        ad 	return pollcommon(l, retval, SCARG(uap, fds), SCARG(uap, nfds),
    385  1.14  christos 		ts, NULL);
    386   1.1        ad }
    387   1.1        ad 
    388   1.1        ad /*
    389   1.1        ad  * Poll system call.
    390   1.1        ad  */
    391   1.1        ad int
    392  1.12  christos sys___pollts50(struct lwp *l, const struct sys___pollts50_args *uap,
    393  1.12  christos     register_t *retval)
    394   1.1        ad {
    395   1.1        ad 	/* {
    396   1.1        ad 		syscallarg(struct pollfd *)		fds;
    397   1.1        ad 		syscallarg(u_int)			nfds;
    398   1.1        ad 		syscallarg(const struct timespec *)	ts;
    399   1.1        ad 		syscallarg(const sigset_t *)		mask;
    400   1.1        ad 	} */
    401  1.14  christos 	struct timespec	ats, *ts = NULL;
    402   1.1        ad 	sigset_t	amask, *mask = NULL;
    403   1.1        ad 	int		error;
    404   1.1        ad 
    405   1.1        ad 	if (SCARG(uap, ts)) {
    406   1.1        ad 		error = copyin(SCARG(uap, ts), &ats, sizeof(ats));
    407   1.1        ad 		if (error)
    408   1.1        ad 			return error;
    409  1.14  christos 		ts = &ats;
    410   1.1        ad 	}
    411   1.1        ad 	if (SCARG(uap, mask)) {
    412   1.1        ad 		error = copyin(SCARG(uap, mask), &amask, sizeof(amask));
    413   1.1        ad 		if (error)
    414   1.1        ad 			return error;
    415   1.1        ad 		mask = &amask;
    416   1.1        ad 	}
    417   1.1        ad 
    418   1.1        ad 	return pollcommon(l, retval, SCARG(uap, fds), SCARG(uap, nfds),
    419  1.14  christos 	    ts, mask);
    420   1.1        ad }
    421   1.1        ad 
    422   1.1        ad int
    423  1.14  christos pollcommon(lwp_t *l, register_t *retval, struct pollfd *u_fds, u_int nfds,
    424  1.14  christos     struct timespec *ts, sigset_t *mask)
    425   1.1        ad {
    426  1.11      yamt 	struct pollfd	smallfds[32];
    427  1.11      yamt 	struct pollfd	*fds;
    428   1.1        ad 	proc_t		* const p = l->l_proc;
    429   1.1        ad 	sigset_t	oldmask;
    430   1.1        ad 	int		ncoll, error, timo;
    431  1.15        ad 	size_t		ni, nf;
    432  1.14  christos 	struct timespec	sleepts;
    433   1.1        ad 	selcpu_t	*sc;
    434  1.13        ad 	kmutex_t	*lock;
    435   1.1        ad 
    436  1.15        ad 	nf = p->p_fd->fd_dt->dt_nfiles;
    437  1.15        ad 	if (nfds > nf) {
    438   1.1        ad 		/* forgiving; slightly wrong */
    439  1.15        ad 		nfds = nf;
    440   1.1        ad 	}
    441   1.1        ad 	ni = nfds * sizeof(struct pollfd);
    442  1.11      yamt 	if (ni > sizeof(smallfds)) {
    443  1.11      yamt 		fds = kmem_alloc(ni, KM_SLEEP);
    444  1.11      yamt 		if (fds == NULL)
    445   1.9     rmind 			return ENOMEM;
    446   1.9     rmind 	} else
    447  1.11      yamt 		fds = smallfds;
    448   1.1        ad 
    449  1.11      yamt 	error = copyin(u_fds, fds, ni);
    450   1.1        ad 	if (error)
    451   1.1        ad 		goto done;
    452   1.1        ad 
    453   1.1        ad 	timo = 0;
    454  1.14  christos 	if (ts && inittimeleft(ts, &sleepts) == -1) {
    455   1.1        ad 		error = EINVAL;
    456   1.1        ad 		goto done;
    457   1.1        ad 	}
    458   1.1        ad 
    459   1.1        ad 	if (mask) {
    460   1.1        ad 		sigminusset(&sigcantmask, mask);
    461   1.5        ad 		mutex_enter(p->p_lock);
    462   1.1        ad 		oldmask = l->l_sigmask;
    463   1.1        ad 		l->l_sigmask = *mask;
    464   1.5        ad 		mutex_exit(p->p_lock);
    465   1.1        ad 	} else
    466   1.1        ad 		oldmask = l->l_sigmask;	/* XXXgcc */
    467   1.1        ad 
    468   1.1        ad 	sc = curcpu()->ci_data.cpu_selcpu;
    469  1.13        ad 	lock = sc->sc_lock;
    470   1.1        ad 	l->l_selcpu = sc;
    471   1.1        ad 	SLIST_INIT(&l->l_selwait);
    472   1.1        ad 	for (;;) {
    473   1.1        ad 		/*
    474   1.1        ad 		 * No need to lock.  If this is overwritten by another
    475   1.1        ad 		 * value while scanning, we will retry below.  We only
    476   1.1        ad 		 * need to see exact state from the descriptors that
    477   1.1        ad 		 * we are about to poll, and lock activity resulting
    478   1.1        ad 		 * from fo_poll is enough to provide an up to date value
    479   1.1        ad 		 * for new polling activity.
    480   1.1        ad 		 */
    481   1.1        ad 		ncoll = sc->sc_ncoll;
    482   1.1        ad 		l->l_selflag = SEL_SCANNING;
    483   1.1        ad 
    484  1.11      yamt 		error = pollscan(l, fds, nfds, retval);
    485   1.1        ad 
    486   1.1        ad 		if (error || *retval)
    487   1.1        ad 			break;
    488  1.14  christos 		if (ts && (timo = gettimeleft(ts, &sleepts)) <= 0)
    489   1.1        ad 			break;
    490  1.13        ad 		mutex_spin_enter(lock);
    491   1.1        ad 		if (l->l_selflag != SEL_SCANNING || sc->sc_ncoll != ncoll) {
    492  1.13        ad 			mutex_spin_exit(lock);
    493   1.1        ad 			continue;
    494   1.1        ad 		}
    495   1.1        ad 		l->l_selflag = SEL_BLOCKING;
    496   1.7        ad 		l->l_kpriority = true;
    497  1.13        ad 		sleepq_enter(&sc->sc_sleepq, l, lock);
    498   1.1        ad 		sleepq_enqueue(&sc->sc_sleepq, sc, "select", &select_sobj);
    499   1.1        ad 		error = sleepq_block(timo, true);
    500   1.1        ad 		if (error != 0)
    501   1.1        ad 			break;
    502   1.1        ad 	}
    503   1.1        ad 	selclear();
    504   1.1        ad 
    505   1.1        ad 	if (mask) {
    506   1.5        ad 		mutex_enter(p->p_lock);
    507   1.1        ad 		l->l_sigmask = oldmask;
    508   1.5        ad 		mutex_exit(p->p_lock);
    509   1.1        ad 	}
    510   1.1        ad  done:
    511   1.1        ad 	/* poll is not restarted after signals... */
    512   1.1        ad 	if (error == ERESTART)
    513   1.1        ad 		error = EINTR;
    514   1.1        ad 	if (error == EWOULDBLOCK)
    515   1.1        ad 		error = 0;
    516   1.1        ad 	if (error == 0)
    517  1.11      yamt 		error = copyout(fds, u_fds, ni);
    518  1.11      yamt 	if (fds != smallfds)
    519  1.11      yamt 		kmem_free(fds, ni);
    520   1.1        ad 	return (error);
    521   1.1        ad }
    522   1.1        ad 
    523   1.1        ad int
    524   1.1        ad pollscan(lwp_t *l, struct pollfd *fds, int nfd, register_t *retval)
    525   1.1        ad {
    526   1.1        ad 	int i, n;
    527   1.1        ad 	file_t *fp;
    528   1.1        ad 
    529   1.1        ad 	n = 0;
    530   1.1        ad 	for (i = 0; i < nfd; i++, fds++) {
    531   1.1        ad 		if (fds->fd < 0) {
    532   1.1        ad 			fds->revents = 0;
    533   1.1        ad 		} else if ((fp = fd_getfile(fds->fd)) == NULL) {
    534   1.1        ad 			fds->revents = POLLNVAL;
    535   1.1        ad 			n++;
    536   1.1        ad 		} else {
    537   1.1        ad 			fds->revents = (*fp->f_ops->fo_poll)(fp,
    538   1.1        ad 			    fds->events | POLLERR | POLLHUP);
    539   1.1        ad 			if (fds->revents != 0)
    540   1.1        ad 				n++;
    541   1.1        ad 			fd_putfile(fds->fd);
    542   1.1        ad 		}
    543   1.1        ad 	}
    544   1.1        ad 	*retval = n;
    545   1.1        ad 	return (0);
    546   1.1        ad }
    547   1.1        ad 
    548   1.1        ad /*ARGSUSED*/
    549   1.1        ad int
    550   1.1        ad seltrue(dev_t dev, int events, lwp_t *l)
    551   1.1        ad {
    552   1.1        ad 
    553   1.1        ad 	return (events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
    554   1.1        ad }
    555   1.1        ad 
    556   1.1        ad /*
    557   1.1        ad  * Record a select request.  Concurrency issues:
    558   1.1        ad  *
    559   1.1        ad  * The caller holds the same lock across calls to selrecord() and
    560   1.4      yamt  * selnotify(), so we don't need to consider a concurrent wakeup
    561   1.1        ad  * while in this routine.
    562   1.1        ad  *
    563   1.1        ad  * The only activity we need to guard against is selclear(), called by
    564   1.1        ad  * another thread that is exiting selcommon() or pollcommon().
    565   1.1        ad  * `sel_lwp' can only become non-NULL while the caller's lock is held,
    566   1.1        ad  * so it cannot become non-NULL due to a change made by another thread
    567   1.1        ad  * while we are in this routine.  It can only become _NULL_ due to a
    568   1.1        ad  * call to selclear().
    569   1.1        ad  *
    570   1.1        ad  * If it is non-NULL and != selector there is the potential for
    571   1.1        ad  * selclear() to be called by another thread.  If either of those
    572   1.1        ad  * conditions are true, we're not interested in touching the `named
    573   1.1        ad  * waiter' part of the selinfo record because we need to record a
    574   1.1        ad  * collision.  Hence there is no need for additional locking in this
    575   1.1        ad  * routine.
    576   1.1        ad  */
    577   1.1        ad void
    578   1.1        ad selrecord(lwp_t *selector, struct selinfo *sip)
    579   1.1        ad {
    580   1.1        ad 	selcpu_t *sc;
    581   1.1        ad 	lwp_t *other;
    582   1.1        ad 
    583   1.1        ad 	KASSERT(selector == curlwp);
    584   1.1        ad 
    585   1.1        ad 	sc = selector->l_selcpu;
    586   1.1        ad 	other = sip->sel_lwp;
    587   1.1        ad 
    588   1.1        ad 	if (other == selector) {
    589   1.1        ad 		/* `selector' has already claimed it. */
    590   1.1        ad 		KASSERT(sip->sel_cpu = sc);
    591   1.1        ad 	} else if (other == NULL) {
    592   1.1        ad 		/*
    593   1.1        ad 		 * First named waiter, although there may be unnamed
    594   1.1        ad 		 * waiters (collisions).  Issue a memory barrier to
    595   1.1        ad 		 * ensure that we access sel_lwp (above) before other
    596   1.1        ad 		 * fields - this guards against a call to selclear().
    597   1.1        ad 		 */
    598   1.1        ad 		membar_enter();
    599   1.1        ad 		sip->sel_lwp = selector;
    600   1.1        ad 		SLIST_INSERT_HEAD(&selector->l_selwait, sip, sel_chain);
    601   1.1        ad 		/* Replace selinfo's lock with our chosen CPU's lock. */
    602   1.1        ad 		sip->sel_cpu = sc;
    603   1.1        ad 	} else {
    604   1.1        ad 		/* Multiple waiters: record a collision. */
    605   1.1        ad 		sip->sel_collision |= sc->sc_mask;
    606   1.1        ad 		KASSERT(sip->sel_cpu != NULL);
    607   1.1        ad 	}
    608   1.1        ad }
    609   1.1        ad 
    610   1.1        ad /*
    611   1.1        ad  * Do a wakeup when a selectable event occurs.  Concurrency issues:
    612   1.1        ad  *
    613   1.1        ad  * As per selrecord(), the caller's object lock is held.  If there
    614   1.1        ad  * is a named waiter, we must acquire the associated selcpu's lock
    615   1.1        ad  * in order to synchronize with selclear() and pollers going to sleep
    616   1.1        ad  * in selcommon() and/or pollcommon().
    617   1.1        ad  *
    618   1.1        ad  * sip->sel_cpu cannot change at this point, as it is only changed
    619   1.1        ad  * in selrecord(), and concurrent calls to selrecord() are locked
    620   1.1        ad  * out by the caller.
    621   1.1        ad  */
    622   1.1        ad void
    623   1.1        ad selnotify(struct selinfo *sip, int events, long knhint)
    624   1.1        ad {
    625   1.1        ad 	selcpu_t *sc;
    626   1.1        ad 	uint32_t mask;
    627  1.16     rmind 	int index, oflag;
    628   1.1        ad 	lwp_t *l;
    629  1.13        ad 	kmutex_t *lock;
    630   1.1        ad 
    631   1.1        ad 	KNOTE(&sip->sel_klist, knhint);
    632   1.1        ad 
    633   1.1        ad 	if (sip->sel_lwp != NULL) {
    634   1.1        ad 		/* One named LWP is waiting. */
    635   1.1        ad 		sc = sip->sel_cpu;
    636  1.13        ad 		lock = sc->sc_lock;
    637  1.13        ad 		mutex_spin_enter(lock);
    638   1.1        ad 		/* Still there? */
    639   1.1        ad 		if (sip->sel_lwp != NULL) {
    640   1.1        ad 			l = sip->sel_lwp;
    641   1.1        ad 			/*
    642   1.1        ad 			 * If thread is sleeping, wake it up.  If it's not
    643   1.1        ad 			 * yet asleep, it will notice the change in state
    644   1.1        ad 			 * and will re-poll the descriptors.
    645   1.1        ad 			 */
    646   1.1        ad 			oflag = l->l_selflag;
    647   1.1        ad 			l->l_selflag = SEL_RESET;
    648  1.13        ad 			if (oflag == SEL_BLOCKING && l->l_mutex == lock) {
    649   1.1        ad 				KASSERT(l->l_wchan == sc);
    650  1.16     rmind 				sleepq_unsleep(l, false);
    651   1.1        ad 			}
    652   1.1        ad 		}
    653  1.13        ad 		mutex_spin_exit(lock);
    654   1.1        ad 	}
    655   1.1        ad 
    656   1.1        ad 	if ((mask = sip->sel_collision) != 0) {
    657   1.1        ad 		/*
    658   1.1        ad 		 * There was a collision (multiple waiters): we must
    659   1.1        ad 		 * inform all potentially interested waiters.
    660   1.1        ad 		 */
    661   1.1        ad 		sip->sel_collision = 0;
    662   1.3        ad 		do {
    663   1.1        ad 			index = ffs(mask) - 1;
    664   1.1        ad 			mask &= ~(1 << index);
    665  1.10        ad 			sc = cpu_lookup(index)->ci_data.cpu_selcpu;
    666  1.13        ad 			lock = sc->sc_lock;
    667  1.13        ad 			mutex_spin_enter(lock);
    668   1.1        ad 			sc->sc_ncoll++;
    669  1.13        ad 			sleepq_wake(&sc->sc_sleepq, sc, (u_int)-1, lock);
    670   1.3        ad 		} while (__predict_false(mask != 0));
    671   1.1        ad 	}
    672   1.1        ad }
    673   1.1        ad 
    674   1.1        ad /*
    675   1.1        ad  * Remove an LWP from all objects that it is waiting for.  Concurrency
    676   1.1        ad  * issues:
    677   1.1        ad  *
    678   1.1        ad  * The object owner's (e.g. device driver) lock is not held here.  Calls
    679   1.1        ad  * can be made to selrecord() and we do not synchronize against those
    680   1.1        ad  * directly using locks.  However, we use `sel_lwp' to lock out changes.
    681   1.1        ad  * Before clearing it we must use memory barriers to ensure that we can
    682   1.1        ad  * safely traverse the list of selinfo records.
    683   1.1        ad  */
    684   1.1        ad static void
    685   1.1        ad selclear(void)
    686   1.1        ad {
    687   1.1        ad 	struct selinfo *sip, *next;
    688   1.1        ad 	selcpu_t *sc;
    689   1.1        ad 	lwp_t *l;
    690  1.13        ad 	kmutex_t *lock;
    691   1.1        ad 
    692   1.1        ad 	l = curlwp;
    693   1.1        ad 	sc = l->l_selcpu;
    694  1.13        ad 	lock = sc->sc_lock;
    695   1.1        ad 
    696  1.13        ad 	mutex_spin_enter(lock);
    697   1.1        ad 	for (sip = SLIST_FIRST(&l->l_selwait); sip != NULL; sip = next) {
    698   1.1        ad 		KASSERT(sip->sel_lwp == l);
    699   1.1        ad 		KASSERT(sip->sel_cpu == l->l_selcpu);
    700   1.1        ad 		/*
    701   1.1        ad 		 * Read link to next selinfo record, if any.
    702   1.1        ad 		 * It's no longer safe to touch `sip' after clearing
    703   1.1        ad 		 * `sel_lwp', so ensure that the read of `sel_chain'
    704   1.1        ad 		 * completes before the clearing of sel_lwp becomes
    705   1.1        ad 		 * globally visible.
    706   1.1        ad 		 */
    707   1.1        ad 		next = SLIST_NEXT(sip, sel_chain);
    708   1.1        ad 		membar_exit();
    709   1.1        ad 		/* Release the record for another named waiter to use. */
    710   1.1        ad 		sip->sel_lwp = NULL;
    711   1.1        ad 	}
    712  1.13        ad 	mutex_spin_exit(lock);
    713   1.1        ad }
    714   1.1        ad 
    715   1.1        ad /*
    716   1.1        ad  * Initialize the select/poll system calls.  Called once for each
    717   1.1        ad  * CPU in the system, as they are attached.
    718   1.1        ad  */
    719   1.1        ad void
    720   1.1        ad selsysinit(struct cpu_info *ci)
    721   1.1        ad {
    722   1.1        ad 	selcpu_t *sc;
    723   1.1        ad 
    724   1.2        ad 	sc = kmem_alloc(roundup2(sizeof(selcpu_t), coherency_unit) +
    725   1.2        ad 	    coherency_unit, KM_SLEEP);
    726   1.2        ad 	sc = (void *)roundup2((uintptr_t)sc, coherency_unit);
    727  1.13        ad 	sc->sc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
    728   1.8        ad 	sleepq_init(&sc->sc_sleepq);
    729   1.1        ad 	sc->sc_ncoll = 0;
    730   1.1        ad 	sc->sc_mask = (1 << cpu_index(ci));
    731   1.1        ad 	ci->ci_data.cpu_selcpu = sc;
    732   1.1        ad }
    733   1.1        ad 
    734   1.1        ad /*
    735   1.1        ad  * Initialize a selinfo record.
    736   1.1        ad  */
    737   1.1        ad void
    738   1.1        ad selinit(struct selinfo *sip)
    739   1.1        ad {
    740   1.1        ad 
    741   1.1        ad 	memset(sip, 0, sizeof(*sip));
    742   1.1        ad }
    743   1.1        ad 
    744   1.1        ad /*
    745   1.1        ad  * Destroy a selinfo record.  The owning object must not gain new
    746   1.1        ad  * references while this is in progress: all activity on the record
    747   1.1        ad  * must be stopped.
    748   1.1        ad  *
    749   1.1        ad  * Concurrency issues: we only need guard against a call to selclear()
    750   1.1        ad  * by a thread exiting selcommon() and/or pollcommon().  The caller has
    751   1.1        ad  * prevented further references being made to the selinfo record via
    752   1.1        ad  * selrecord(), and it won't call selwakeup() again.
    753   1.1        ad  */
    754   1.1        ad void
    755   1.1        ad seldestroy(struct selinfo *sip)
    756   1.1        ad {
    757   1.1        ad 	selcpu_t *sc;
    758  1.13        ad 	kmutex_t *lock;
    759   1.1        ad 	lwp_t *l;
    760   1.1        ad 
    761   1.1        ad 	if (sip->sel_lwp == NULL)
    762   1.1        ad 		return;
    763   1.1        ad 
    764   1.1        ad 	/*
    765   1.1        ad 	 * Lock out selclear().  The selcpu pointer can't change while
    766   1.1        ad 	 * we are here since it is only ever changed in selrecord(),
    767   1.1        ad 	 * and that will not be entered again for this record because
    768   1.1        ad 	 * it is dying.
    769   1.1        ad 	 */
    770   1.1        ad 	KASSERT(sip->sel_cpu != NULL);
    771   1.1        ad 	sc = sip->sel_cpu;
    772  1.13        ad 	lock = sc->sc_lock;
    773  1.13        ad 	mutex_spin_enter(lock);
    774   1.1        ad 	if ((l = sip->sel_lwp) != NULL) {
    775   1.1        ad 		/*
    776   1.1        ad 		 * This should rarely happen, so although SLIST_REMOVE()
    777   1.1        ad 		 * is slow, using it here is not a problem.
    778   1.1        ad 		 */
    779   1.1        ad 		KASSERT(l->l_selcpu == sc);
    780   1.1        ad 		SLIST_REMOVE(&l->l_selwait, sip, selinfo, sel_chain);
    781   1.1        ad 		sip->sel_lwp = NULL;
    782   1.1        ad 	}
    783  1.13        ad 	mutex_spin_exit(lock);
    784   1.1        ad }
    785   1.1        ad 
    786   1.1        ad int
    787  1.14  christos pollsock(struct socket *so, const struct timespec *tsp, int events)
    788   1.1        ad {
    789   1.1        ad 	int		ncoll, error, timo;
    790  1.14  christos 	struct timespec	sleepts, ts;
    791   1.1        ad 	selcpu_t	*sc;
    792   1.1        ad 	lwp_t		*l;
    793  1.13        ad 	kmutex_t	*lock;
    794   1.1        ad 
    795   1.1        ad 	timo = 0;
    796  1.14  christos 	if (tsp != NULL) {
    797  1.14  christos 		ts = *tsp;
    798  1.14  christos 		if (inittimeleft(&ts, &sleepts) == -1)
    799   1.1        ad 			return EINVAL;
    800   1.1        ad 	}
    801   1.1        ad 
    802   1.1        ad 	l = curlwp;
    803   1.1        ad 	sc = l->l_cpu->ci_data.cpu_selcpu;
    804  1.13        ad 	lock = sc->sc_lock;
    805   1.1        ad 	l->l_selcpu = sc;
    806   1.1        ad 	SLIST_INIT(&l->l_selwait);
    807   1.1        ad 	error = 0;
    808   1.1        ad 	for (;;) {
    809   1.1        ad 		/*
    810   1.1        ad 		 * No need to lock.  If this is overwritten by another
    811   1.1        ad 		 * value while scanning, we will retry below.  We only
    812   1.1        ad 		 * need to see exact state from the descriptors that
    813   1.1        ad 		 * we are about to poll, and lock activity resulting
    814   1.1        ad 		 * from fo_poll is enough to provide an up to date value
    815   1.1        ad 		 * for new polling activity.
    816   1.1        ad 		 */
    817   1.1        ad 		ncoll = sc->sc_ncoll;
    818   1.1        ad 		l->l_selflag = SEL_SCANNING;
    819   1.1        ad 		if (sopoll(so, events) != 0)
    820   1.1        ad 			break;
    821  1.14  christos 		if (tsp && (timo = gettimeleft(&ts, &sleepts)) <= 0)
    822   1.1        ad 			break;
    823  1.13        ad 		mutex_spin_enter(lock);
    824   1.1        ad 		if (l->l_selflag != SEL_SCANNING || sc->sc_ncoll != ncoll) {
    825  1.13        ad 			mutex_spin_exit(lock);
    826   1.1        ad 			continue;
    827   1.1        ad 		}
    828   1.1        ad 		l->l_selflag = SEL_BLOCKING;
    829  1.13        ad 		sleepq_enter(&sc->sc_sleepq, l, lock);
    830   1.1        ad 		sleepq_enqueue(&sc->sc_sleepq, sc, "pollsock", &select_sobj);
    831   1.1        ad 		error = sleepq_block(timo, true);
    832   1.1        ad 		if (error != 0)
    833   1.1        ad 			break;
    834   1.1        ad 	}
    835   1.1        ad 	selclear();
    836   1.1        ad 	/* poll is not restarted after signals... */
    837   1.1        ad 	if (error == ERESTART)
    838   1.1        ad 		error = EINTR;
    839   1.1        ad 	if (error == EWOULDBLOCK)
    840   1.1        ad 		error = 0;
    841   1.1        ad 	return (error);
    842   1.1        ad }
    843