sys_select.c revision 1.21 1 1.21 rmind /* $NetBSD: sys_select.c,v 1.21 2009/12/20 23:00:59 rmind Exp $ */
2 1.1 ad
3 1.1 ad /*-
4 1.13 ad * Copyright (c) 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 1.1 ad * All rights reserved.
6 1.1 ad *
7 1.1 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.1 ad * by Andrew Doran.
9 1.1 ad *
10 1.1 ad * Redistribution and use in source and binary forms, with or without
11 1.1 ad * modification, are permitted provided that the following conditions
12 1.1 ad * are met:
13 1.1 ad * 1. Redistributions of source code must retain the above copyright
14 1.1 ad * notice, this list of conditions and the following disclaimer.
15 1.1 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 ad * notice, this list of conditions and the following disclaimer in the
17 1.1 ad * documentation and/or other materials provided with the distribution.
18 1.1 ad *
19 1.1 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.1 ad */
31 1.1 ad
32 1.1 ad /*
33 1.1 ad * Copyright (c) 1982, 1986, 1989, 1993
34 1.1 ad * The Regents of the University of California. All rights reserved.
35 1.1 ad * (c) UNIX System Laboratories, Inc.
36 1.1 ad * All or some portions of this file are derived from material licensed
37 1.1 ad * to the University of California by American Telephone and Telegraph
38 1.1 ad * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39 1.1 ad * the permission of UNIX System Laboratories, Inc.
40 1.1 ad *
41 1.1 ad * Redistribution and use in source and binary forms, with or without
42 1.1 ad * modification, are permitted provided that the following conditions
43 1.1 ad * are met:
44 1.1 ad * 1. Redistributions of source code must retain the above copyright
45 1.1 ad * notice, this list of conditions and the following disclaimer.
46 1.1 ad * 2. Redistributions in binary form must reproduce the above copyright
47 1.1 ad * notice, this list of conditions and the following disclaimer in the
48 1.1 ad * documentation and/or other materials provided with the distribution.
49 1.1 ad * 3. Neither the name of the University nor the names of its contributors
50 1.1 ad * may be used to endorse or promote products derived from this software
51 1.1 ad * without specific prior written permission.
52 1.1 ad *
53 1.1 ad * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 1.1 ad * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 1.1 ad * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 1.1 ad * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 1.1 ad * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 1.1 ad * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 1.1 ad * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 1.1 ad * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 1.1 ad * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 1.1 ad * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 1.1 ad * SUCH DAMAGE.
64 1.1 ad *
65 1.1 ad * @(#)sys_generic.c 8.9 (Berkeley) 2/14/95
66 1.1 ad */
67 1.1 ad
68 1.1 ad /*
69 1.21 rmind * System calls of synchronous I/O multiplexing subsystem.
70 1.21 rmind *
71 1.21 rmind * Locking
72 1.21 rmind *
73 1.21 rmind * Two locks are used: <object-lock> and selcpu_t::sc_lock.
74 1.21 rmind *
75 1.21 rmind * The <object-lock> might be a device driver or another subsystem, e.g.
76 1.21 rmind * socket or pipe. This lock is not exported, and thus invisible to this
77 1.21 rmind * subsystem. Mainly, synchronisation between selrecord() and selnotify()
78 1.21 rmind * routines depends on this lock, as it will be described in the comments.
79 1.21 rmind *
80 1.21 rmind * Lock order
81 1.21 rmind *
82 1.21 rmind * <object-lock> ->
83 1.21 rmind * selcpu_t::sc_lock
84 1.1 ad */
85 1.1 ad
86 1.1 ad #include <sys/cdefs.h>
87 1.21 rmind __KERNEL_RCSID(0, "$NetBSD: sys_select.c,v 1.21 2009/12/20 23:00:59 rmind Exp $");
88 1.1 ad
89 1.1 ad #include <sys/param.h>
90 1.1 ad #include <sys/systm.h>
91 1.1 ad #include <sys/filedesc.h>
92 1.1 ad #include <sys/ioctl.h>
93 1.1 ad #include <sys/file.h>
94 1.1 ad #include <sys/proc.h>
95 1.1 ad #include <sys/socketvar.h>
96 1.1 ad #include <sys/signalvar.h>
97 1.1 ad #include <sys/uio.h>
98 1.1 ad #include <sys/kernel.h>
99 1.1 ad #include <sys/stat.h>
100 1.1 ad #include <sys/poll.h>
101 1.1 ad #include <sys/vnode.h>
102 1.1 ad #include <sys/mount.h>
103 1.1 ad #include <sys/syscallargs.h>
104 1.1 ad #include <sys/cpu.h>
105 1.1 ad #include <sys/atomic.h>
106 1.1 ad #include <sys/socketvar.h>
107 1.1 ad #include <sys/sleepq.h>
108 1.1 ad
109 1.1 ad /* Flags for lwp::l_selflag. */
110 1.1 ad #define SEL_RESET 0 /* awoken, interrupted, or not yet polling */
111 1.1 ad #define SEL_SCANNING 1 /* polling descriptors */
112 1.1 ad #define SEL_BLOCKING 2 /* about to block on select_cv */
113 1.1 ad
114 1.1 ad /* Per-CPU state for select()/poll(). */
115 1.1 ad #if MAXCPUS > 32
116 1.1 ad #error adjust this code
117 1.1 ad #endif
118 1.1 ad typedef struct selcpu {
119 1.13 ad kmutex_t *sc_lock;
120 1.1 ad sleepq_t sc_sleepq;
121 1.1 ad int sc_ncoll;
122 1.1 ad uint32_t sc_mask;
123 1.1 ad } selcpu_t;
124 1.1 ad
125 1.19 rmind static inline int selscan(char *, u_int, register_t *);
126 1.19 rmind static inline int pollscan(struct pollfd *, u_int, register_t *);
127 1.19 rmind static void selclear(void);
128 1.1 ad
129 1.1 ad static syncobj_t select_sobj = {
130 1.1 ad SOBJ_SLEEPQ_FIFO,
131 1.1 ad sleepq_unsleep,
132 1.1 ad sleepq_changepri,
133 1.1 ad sleepq_lendpri,
134 1.1 ad syncobj_noowner,
135 1.1 ad };
136 1.1 ad
137 1.1 ad /*
138 1.1 ad * Select system call.
139 1.1 ad */
140 1.1 ad int
141 1.12 christos sys___pselect50(struct lwp *l, const struct sys___pselect50_args *uap,
142 1.12 christos register_t *retval)
143 1.1 ad {
144 1.1 ad /* {
145 1.1 ad syscallarg(int) nd;
146 1.1 ad syscallarg(fd_set *) in;
147 1.1 ad syscallarg(fd_set *) ou;
148 1.1 ad syscallarg(fd_set *) ex;
149 1.1 ad syscallarg(const struct timespec *) ts;
150 1.1 ad syscallarg(sigset_t *) mask;
151 1.1 ad } */
152 1.14 christos struct timespec ats, *ts = NULL;
153 1.1 ad sigset_t amask, *mask = NULL;
154 1.1 ad int error;
155 1.1 ad
156 1.1 ad if (SCARG(uap, ts)) {
157 1.1 ad error = copyin(SCARG(uap, ts), &ats, sizeof(ats));
158 1.1 ad if (error)
159 1.1 ad return error;
160 1.14 christos ts = &ats;
161 1.1 ad }
162 1.1 ad if (SCARG(uap, mask) != NULL) {
163 1.1 ad error = copyin(SCARG(uap, mask), &amask, sizeof(amask));
164 1.1 ad if (error)
165 1.1 ad return error;
166 1.1 ad mask = &amask;
167 1.1 ad }
168 1.1 ad
169 1.19 rmind return selcommon(retval, SCARG(uap, nd), SCARG(uap, in),
170 1.14 christos SCARG(uap, ou), SCARG(uap, ex), ts, mask);
171 1.1 ad }
172 1.1 ad
173 1.1 ad int
174 1.12 christos sys___select50(struct lwp *l, const struct sys___select50_args *uap,
175 1.12 christos register_t *retval)
176 1.1 ad {
177 1.1 ad /* {
178 1.1 ad syscallarg(int) nd;
179 1.1 ad syscallarg(fd_set *) in;
180 1.1 ad syscallarg(fd_set *) ou;
181 1.1 ad syscallarg(fd_set *) ex;
182 1.1 ad syscallarg(struct timeval *) tv;
183 1.1 ad } */
184 1.14 christos struct timeval atv;
185 1.14 christos struct timespec ats, *ts = NULL;
186 1.1 ad int error;
187 1.1 ad
188 1.1 ad if (SCARG(uap, tv)) {
189 1.14 christos error = copyin(SCARG(uap, tv), (void *)&atv, sizeof(atv));
190 1.1 ad if (error)
191 1.1 ad return error;
192 1.14 christos TIMEVAL_TO_TIMESPEC(&atv, &ats);
193 1.14 christos ts = &ats;
194 1.1 ad }
195 1.1 ad
196 1.19 rmind return selcommon(retval, SCARG(uap, nd), SCARG(uap, in),
197 1.14 christos SCARG(uap, ou), SCARG(uap, ex), ts, NULL);
198 1.1 ad }
199 1.1 ad
200 1.17 rmind /*
201 1.17 rmind * sel_do_scan: common code to perform the scan on descriptors.
202 1.17 rmind */
203 1.17 rmind static int
204 1.17 rmind sel_do_scan(void *fds, u_int nfds, struct timespec *ts, sigset_t *mask,
205 1.17 rmind register_t *retval, int selpoll)
206 1.1 ad {
207 1.17 rmind lwp_t * const l = curlwp;
208 1.1 ad proc_t * const p = l->l_proc;
209 1.1 ad selcpu_t *sc;
210 1.13 ad kmutex_t *lock;
211 1.17 rmind sigset_t oldmask;
212 1.17 rmind struct timespec sleepts;
213 1.17 rmind int error, timo;
214 1.1 ad
215 1.1 ad timo = 0;
216 1.14 christos if (ts && inittimeleft(ts, &sleepts) == -1) {
217 1.17 rmind return EINVAL;
218 1.1 ad }
219 1.1 ad
220 1.17 rmind if (__predict_false(mask)) {
221 1.1 ad sigminusset(&sigcantmask, mask);
222 1.5 ad mutex_enter(p->p_lock);
223 1.1 ad oldmask = l->l_sigmask;
224 1.1 ad l->l_sigmask = *mask;
225 1.5 ad mutex_exit(p->p_lock);
226 1.17 rmind } else {
227 1.17 rmind /* XXXgcc */
228 1.17 rmind oldmask = l->l_sigmask;
229 1.17 rmind }
230 1.1 ad
231 1.1 ad sc = curcpu()->ci_data.cpu_selcpu;
232 1.13 ad lock = sc->sc_lock;
233 1.1 ad l->l_selcpu = sc;
234 1.1 ad SLIST_INIT(&l->l_selwait);
235 1.1 ad for (;;) {
236 1.17 rmind int ncoll;
237 1.17 rmind
238 1.1 ad /*
239 1.17 rmind * No need to lock. If this is overwritten by another value
240 1.17 rmind * while scanning, we will retry below. We only need to see
241 1.17 rmind * exact state from the descriptors that we are about to poll,
242 1.17 rmind * and lock activity resulting from fo_poll is enough to
243 1.17 rmind * provide an up to date value for new polling activity.
244 1.1 ad */
245 1.17 rmind l->l_selflag = SEL_SCANNING;
246 1.1 ad ncoll = sc->sc_ncoll;
247 1.1 ad
248 1.17 rmind if (selpoll) {
249 1.17 rmind error = selscan((char *)fds, nfds, retval);
250 1.17 rmind } else {
251 1.17 rmind error = pollscan((struct pollfd *)fds, nfds, retval);
252 1.17 rmind }
253 1.1 ad
254 1.1 ad if (error || *retval)
255 1.1 ad break;
256 1.14 christos if (ts && (timo = gettimeleft(ts, &sleepts)) <= 0)
257 1.1 ad break;
258 1.13 ad mutex_spin_enter(lock);
259 1.1 ad if (l->l_selflag != SEL_SCANNING || sc->sc_ncoll != ncoll) {
260 1.13 ad mutex_spin_exit(lock);
261 1.1 ad continue;
262 1.1 ad }
263 1.1 ad l->l_selflag = SEL_BLOCKING;
264 1.7 ad l->l_kpriority = true;
265 1.13 ad sleepq_enter(&sc->sc_sleepq, l, lock);
266 1.1 ad sleepq_enqueue(&sc->sc_sleepq, sc, "select", &select_sobj);
267 1.1 ad error = sleepq_block(timo, true);
268 1.1 ad if (error != 0)
269 1.1 ad break;
270 1.1 ad }
271 1.1 ad selclear();
272 1.1 ad
273 1.17 rmind if (__predict_false(mask)) {
274 1.5 ad mutex_enter(p->p_lock);
275 1.1 ad l->l_sigmask = oldmask;
276 1.5 ad mutex_exit(p->p_lock);
277 1.1 ad }
278 1.20 dsl
279 1.20 dsl /* select and poll are not restarted after signals... */
280 1.20 dsl if (error == ERESTART)
281 1.20 dsl return EINTR;
282 1.20 dsl if (error == EWOULDBLOCK)
283 1.20 dsl return 0;
284 1.17 rmind return error;
285 1.17 rmind }
286 1.17 rmind
287 1.17 rmind int
288 1.19 rmind selcommon(register_t *retval, int nd, fd_set *u_in, fd_set *u_ou,
289 1.19 rmind fd_set *u_ex, struct timespec *ts, sigset_t *mask)
290 1.17 rmind {
291 1.17 rmind char smallbits[howmany(FD_SETSIZE, NFDBITS) *
292 1.17 rmind sizeof(fd_mask) * 6];
293 1.17 rmind char *bits;
294 1.17 rmind int error, nf;
295 1.17 rmind size_t ni;
296 1.17 rmind
297 1.17 rmind if (nd < 0)
298 1.17 rmind return (EINVAL);
299 1.19 rmind nf = curlwp->l_fd->fd_dt->dt_nfiles;
300 1.17 rmind if (nd > nf) {
301 1.17 rmind /* forgiving; slightly wrong */
302 1.17 rmind nd = nf;
303 1.17 rmind }
304 1.17 rmind ni = howmany(nd, NFDBITS) * sizeof(fd_mask);
305 1.17 rmind if (ni * 6 > sizeof(smallbits)) {
306 1.17 rmind bits = kmem_alloc(ni * 6, KM_SLEEP);
307 1.17 rmind if (bits == NULL)
308 1.17 rmind return ENOMEM;
309 1.17 rmind } else
310 1.17 rmind bits = smallbits;
311 1.17 rmind
312 1.17 rmind #define getbits(name, x) \
313 1.17 rmind if (u_ ## name) { \
314 1.17 rmind error = copyin(u_ ## name, bits + ni * x, ni); \
315 1.17 rmind if (error) \
316 1.20 dsl goto fail; \
317 1.17 rmind } else \
318 1.17 rmind memset(bits + ni * x, 0, ni);
319 1.17 rmind getbits(in, 0);
320 1.17 rmind getbits(ou, 1);
321 1.17 rmind getbits(ex, 2);
322 1.17 rmind #undef getbits
323 1.1 ad
324 1.17 rmind error = sel_do_scan(bits, nd, ts, mask, retval, 1);
325 1.1 ad if (error == 0 && u_in != NULL)
326 1.1 ad error = copyout(bits + ni * 3, u_in, ni);
327 1.1 ad if (error == 0 && u_ou != NULL)
328 1.1 ad error = copyout(bits + ni * 4, u_ou, ni);
329 1.1 ad if (error == 0 && u_ex != NULL)
330 1.1 ad error = copyout(bits + ni * 5, u_ex, ni);
331 1.20 dsl fail:
332 1.1 ad if (bits != smallbits)
333 1.1 ad kmem_free(bits, ni * 6);
334 1.1 ad return (error);
335 1.1 ad }
336 1.1 ad
337 1.19 rmind static inline int
338 1.17 rmind selscan(char *bits, u_int nfd, register_t *retval)
339 1.1 ad {
340 1.1 ad static const int flag[3] = { POLLRDNORM | POLLHUP | POLLERR,
341 1.1 ad POLLWRNORM | POLLHUP | POLLERR,
342 1.1 ad POLLRDBAND };
343 1.17 rmind fd_mask *ibitp, *obitp;
344 1.17 rmind int msk, i, j, fd, ni, n;
345 1.1 ad fd_mask ibits, obits;
346 1.1 ad file_t *fp;
347 1.1 ad
348 1.17 rmind ni = howmany(nfd, NFDBITS) * sizeof(fd_mask);
349 1.17 rmind ibitp = (fd_mask *)(bits + ni * 0);
350 1.17 rmind obitp = (fd_mask *)(bits + ni * 3);
351 1.1 ad n = 0;
352 1.17 rmind
353 1.1 ad for (msk = 0; msk < 3; msk++) {
354 1.1 ad for (i = 0; i < nfd; i += NFDBITS) {
355 1.1 ad ibits = *ibitp++;
356 1.1 ad obits = 0;
357 1.1 ad while ((j = ffs(ibits)) && (fd = i + --j) < nfd) {
358 1.1 ad ibits &= ~(1 << j);
359 1.1 ad if ((fp = fd_getfile(fd)) == NULL)
360 1.1 ad return (EBADF);
361 1.1 ad if ((*fp->f_ops->fo_poll)(fp, flag[msk])) {
362 1.1 ad obits |= (1 << j);
363 1.1 ad n++;
364 1.1 ad }
365 1.1 ad fd_putfile(fd);
366 1.1 ad }
367 1.1 ad *obitp++ = obits;
368 1.1 ad }
369 1.1 ad }
370 1.1 ad *retval = n;
371 1.1 ad return (0);
372 1.1 ad }
373 1.1 ad
374 1.1 ad /*
375 1.1 ad * Poll system call.
376 1.1 ad */
377 1.1 ad int
378 1.1 ad sys_poll(struct lwp *l, const struct sys_poll_args *uap, register_t *retval)
379 1.1 ad {
380 1.1 ad /* {
381 1.1 ad syscallarg(struct pollfd *) fds;
382 1.1 ad syscallarg(u_int) nfds;
383 1.1 ad syscallarg(int) timeout;
384 1.1 ad } */
385 1.14 christos struct timespec ats, *ts = NULL;
386 1.1 ad
387 1.1 ad if (SCARG(uap, timeout) != INFTIM) {
388 1.14 christos ats.tv_sec = SCARG(uap, timeout) / 1000;
389 1.14 christos ats.tv_nsec = (SCARG(uap, timeout) % 1000) * 1000000;
390 1.14 christos ts = &ats;
391 1.1 ad }
392 1.1 ad
393 1.19 rmind return pollcommon(retval, SCARG(uap, fds), SCARG(uap, nfds), ts, NULL);
394 1.1 ad }
395 1.1 ad
396 1.1 ad /*
397 1.1 ad * Poll system call.
398 1.1 ad */
399 1.1 ad int
400 1.12 christos sys___pollts50(struct lwp *l, const struct sys___pollts50_args *uap,
401 1.12 christos register_t *retval)
402 1.1 ad {
403 1.1 ad /* {
404 1.1 ad syscallarg(struct pollfd *) fds;
405 1.1 ad syscallarg(u_int) nfds;
406 1.1 ad syscallarg(const struct timespec *) ts;
407 1.1 ad syscallarg(const sigset_t *) mask;
408 1.1 ad } */
409 1.14 christos struct timespec ats, *ts = NULL;
410 1.1 ad sigset_t amask, *mask = NULL;
411 1.1 ad int error;
412 1.1 ad
413 1.1 ad if (SCARG(uap, ts)) {
414 1.1 ad error = copyin(SCARG(uap, ts), &ats, sizeof(ats));
415 1.1 ad if (error)
416 1.1 ad return error;
417 1.14 christos ts = &ats;
418 1.1 ad }
419 1.1 ad if (SCARG(uap, mask)) {
420 1.1 ad error = copyin(SCARG(uap, mask), &amask, sizeof(amask));
421 1.1 ad if (error)
422 1.1 ad return error;
423 1.1 ad mask = &amask;
424 1.1 ad }
425 1.1 ad
426 1.19 rmind return pollcommon(retval, SCARG(uap, fds), SCARG(uap, nfds), ts, mask);
427 1.1 ad }
428 1.1 ad
429 1.1 ad int
430 1.19 rmind pollcommon(register_t *retval, struct pollfd *u_fds, u_int nfds,
431 1.14 christos struct timespec *ts, sigset_t *mask)
432 1.1 ad {
433 1.11 yamt struct pollfd smallfds[32];
434 1.11 yamt struct pollfd *fds;
435 1.17 rmind int error;
436 1.20 dsl size_t ni;
437 1.1 ad
438 1.20 dsl if (nfds > 1000 + curlwp->l_fd->fd_dt->dt_nfiles) {
439 1.20 dsl /*
440 1.20 dsl * Either the user passed in a very sparse 'fds' or junk!
441 1.20 dsl * The kmem_alloc() call below would be bad news.
442 1.20 dsl * We could process the 'fds' array in chunks, but that
443 1.20 dsl * is a lot of code that isn't normally useful.
444 1.20 dsl * (Or just move the copyin/out into pollscan().)
445 1.20 dsl * Historically the code silently truncated 'fds' to
446 1.20 dsl * dt_nfiles entries - but that does cause issues.
447 1.20 dsl */
448 1.20 dsl return EINVAL;
449 1.1 ad }
450 1.1 ad ni = nfds * sizeof(struct pollfd);
451 1.11 yamt if (ni > sizeof(smallfds)) {
452 1.11 yamt fds = kmem_alloc(ni, KM_SLEEP);
453 1.11 yamt if (fds == NULL)
454 1.9 rmind return ENOMEM;
455 1.9 rmind } else
456 1.11 yamt fds = smallfds;
457 1.1 ad
458 1.11 yamt error = copyin(u_fds, fds, ni);
459 1.1 ad if (error)
460 1.20 dsl goto fail;
461 1.1 ad
462 1.17 rmind error = sel_do_scan(fds, nfds, ts, mask, retval, 0);
463 1.1 ad if (error == 0)
464 1.11 yamt error = copyout(fds, u_fds, ni);
465 1.20 dsl fail:
466 1.11 yamt if (fds != smallfds)
467 1.11 yamt kmem_free(fds, ni);
468 1.1 ad return (error);
469 1.1 ad }
470 1.1 ad
471 1.19 rmind static inline int
472 1.17 rmind pollscan(struct pollfd *fds, u_int nfd, register_t *retval)
473 1.1 ad {
474 1.1 ad int i, n;
475 1.1 ad file_t *fp;
476 1.1 ad
477 1.1 ad n = 0;
478 1.1 ad for (i = 0; i < nfd; i++, fds++) {
479 1.1 ad if (fds->fd < 0) {
480 1.1 ad fds->revents = 0;
481 1.1 ad } else if ((fp = fd_getfile(fds->fd)) == NULL) {
482 1.1 ad fds->revents = POLLNVAL;
483 1.1 ad n++;
484 1.1 ad } else {
485 1.1 ad fds->revents = (*fp->f_ops->fo_poll)(fp,
486 1.1 ad fds->events | POLLERR | POLLHUP);
487 1.1 ad if (fds->revents != 0)
488 1.1 ad n++;
489 1.1 ad fd_putfile(fds->fd);
490 1.1 ad }
491 1.1 ad }
492 1.1 ad *retval = n;
493 1.1 ad return (0);
494 1.1 ad }
495 1.1 ad
496 1.1 ad /*ARGSUSED*/
497 1.1 ad int
498 1.1 ad seltrue(dev_t dev, int events, lwp_t *l)
499 1.1 ad {
500 1.1 ad
501 1.1 ad return (events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
502 1.1 ad }
503 1.1 ad
504 1.1 ad /*
505 1.1 ad * Record a select request. Concurrency issues:
506 1.1 ad *
507 1.1 ad * The caller holds the same lock across calls to selrecord() and
508 1.4 yamt * selnotify(), so we don't need to consider a concurrent wakeup
509 1.1 ad * while in this routine.
510 1.1 ad *
511 1.1 ad * The only activity we need to guard against is selclear(), called by
512 1.17 rmind * another thread that is exiting sel_do_scan().
513 1.1 ad * `sel_lwp' can only become non-NULL while the caller's lock is held,
514 1.1 ad * so it cannot become non-NULL due to a change made by another thread
515 1.1 ad * while we are in this routine. It can only become _NULL_ due to a
516 1.1 ad * call to selclear().
517 1.1 ad *
518 1.1 ad * If it is non-NULL and != selector there is the potential for
519 1.1 ad * selclear() to be called by another thread. If either of those
520 1.1 ad * conditions are true, we're not interested in touching the `named
521 1.1 ad * waiter' part of the selinfo record because we need to record a
522 1.1 ad * collision. Hence there is no need for additional locking in this
523 1.1 ad * routine.
524 1.1 ad */
525 1.1 ad void
526 1.1 ad selrecord(lwp_t *selector, struct selinfo *sip)
527 1.1 ad {
528 1.1 ad selcpu_t *sc;
529 1.1 ad lwp_t *other;
530 1.1 ad
531 1.1 ad KASSERT(selector == curlwp);
532 1.1 ad
533 1.1 ad sc = selector->l_selcpu;
534 1.1 ad other = sip->sel_lwp;
535 1.1 ad
536 1.1 ad if (other == selector) {
537 1.1 ad /* `selector' has already claimed it. */
538 1.1 ad KASSERT(sip->sel_cpu = sc);
539 1.1 ad } else if (other == NULL) {
540 1.1 ad /*
541 1.1 ad * First named waiter, although there may be unnamed
542 1.1 ad * waiters (collisions). Issue a memory barrier to
543 1.1 ad * ensure that we access sel_lwp (above) before other
544 1.1 ad * fields - this guards against a call to selclear().
545 1.1 ad */
546 1.1 ad membar_enter();
547 1.1 ad sip->sel_lwp = selector;
548 1.1 ad SLIST_INSERT_HEAD(&selector->l_selwait, sip, sel_chain);
549 1.1 ad /* Replace selinfo's lock with our chosen CPU's lock. */
550 1.1 ad sip->sel_cpu = sc;
551 1.1 ad } else {
552 1.1 ad /* Multiple waiters: record a collision. */
553 1.1 ad sip->sel_collision |= sc->sc_mask;
554 1.1 ad KASSERT(sip->sel_cpu != NULL);
555 1.1 ad }
556 1.1 ad }
557 1.1 ad
558 1.1 ad /*
559 1.1 ad * Do a wakeup when a selectable event occurs. Concurrency issues:
560 1.1 ad *
561 1.1 ad * As per selrecord(), the caller's object lock is held. If there
562 1.1 ad * is a named waiter, we must acquire the associated selcpu's lock
563 1.1 ad * in order to synchronize with selclear() and pollers going to sleep
564 1.17 rmind * in sel_do_scan().
565 1.1 ad *
566 1.1 ad * sip->sel_cpu cannot change at this point, as it is only changed
567 1.1 ad * in selrecord(), and concurrent calls to selrecord() are locked
568 1.1 ad * out by the caller.
569 1.1 ad */
570 1.1 ad void
571 1.1 ad selnotify(struct selinfo *sip, int events, long knhint)
572 1.1 ad {
573 1.1 ad selcpu_t *sc;
574 1.1 ad uint32_t mask;
575 1.16 rmind int index, oflag;
576 1.1 ad lwp_t *l;
577 1.13 ad kmutex_t *lock;
578 1.1 ad
579 1.1 ad KNOTE(&sip->sel_klist, knhint);
580 1.1 ad
581 1.1 ad if (sip->sel_lwp != NULL) {
582 1.1 ad /* One named LWP is waiting. */
583 1.1 ad sc = sip->sel_cpu;
584 1.13 ad lock = sc->sc_lock;
585 1.13 ad mutex_spin_enter(lock);
586 1.1 ad /* Still there? */
587 1.1 ad if (sip->sel_lwp != NULL) {
588 1.1 ad l = sip->sel_lwp;
589 1.1 ad /*
590 1.1 ad * If thread is sleeping, wake it up. If it's not
591 1.1 ad * yet asleep, it will notice the change in state
592 1.1 ad * and will re-poll the descriptors.
593 1.1 ad */
594 1.1 ad oflag = l->l_selflag;
595 1.1 ad l->l_selflag = SEL_RESET;
596 1.13 ad if (oflag == SEL_BLOCKING && l->l_mutex == lock) {
597 1.1 ad KASSERT(l->l_wchan == sc);
598 1.16 rmind sleepq_unsleep(l, false);
599 1.1 ad }
600 1.1 ad }
601 1.13 ad mutex_spin_exit(lock);
602 1.1 ad }
603 1.1 ad
604 1.1 ad if ((mask = sip->sel_collision) != 0) {
605 1.1 ad /*
606 1.1 ad * There was a collision (multiple waiters): we must
607 1.1 ad * inform all potentially interested waiters.
608 1.1 ad */
609 1.1 ad sip->sel_collision = 0;
610 1.3 ad do {
611 1.1 ad index = ffs(mask) - 1;
612 1.1 ad mask &= ~(1 << index);
613 1.10 ad sc = cpu_lookup(index)->ci_data.cpu_selcpu;
614 1.13 ad lock = sc->sc_lock;
615 1.13 ad mutex_spin_enter(lock);
616 1.1 ad sc->sc_ncoll++;
617 1.13 ad sleepq_wake(&sc->sc_sleepq, sc, (u_int)-1, lock);
618 1.3 ad } while (__predict_false(mask != 0));
619 1.1 ad }
620 1.1 ad }
621 1.1 ad
622 1.1 ad /*
623 1.1 ad * Remove an LWP from all objects that it is waiting for. Concurrency
624 1.1 ad * issues:
625 1.1 ad *
626 1.1 ad * The object owner's (e.g. device driver) lock is not held here. Calls
627 1.1 ad * can be made to selrecord() and we do not synchronize against those
628 1.1 ad * directly using locks. However, we use `sel_lwp' to lock out changes.
629 1.1 ad * Before clearing it we must use memory barriers to ensure that we can
630 1.1 ad * safely traverse the list of selinfo records.
631 1.1 ad */
632 1.1 ad static void
633 1.1 ad selclear(void)
634 1.1 ad {
635 1.1 ad struct selinfo *sip, *next;
636 1.1 ad selcpu_t *sc;
637 1.1 ad lwp_t *l;
638 1.13 ad kmutex_t *lock;
639 1.1 ad
640 1.1 ad l = curlwp;
641 1.1 ad sc = l->l_selcpu;
642 1.13 ad lock = sc->sc_lock;
643 1.1 ad
644 1.13 ad mutex_spin_enter(lock);
645 1.1 ad for (sip = SLIST_FIRST(&l->l_selwait); sip != NULL; sip = next) {
646 1.1 ad KASSERT(sip->sel_lwp == l);
647 1.1 ad KASSERT(sip->sel_cpu == l->l_selcpu);
648 1.1 ad /*
649 1.1 ad * Read link to next selinfo record, if any.
650 1.1 ad * It's no longer safe to touch `sip' after clearing
651 1.1 ad * `sel_lwp', so ensure that the read of `sel_chain'
652 1.1 ad * completes before the clearing of sel_lwp becomes
653 1.1 ad * globally visible.
654 1.1 ad */
655 1.1 ad next = SLIST_NEXT(sip, sel_chain);
656 1.1 ad membar_exit();
657 1.1 ad /* Release the record for another named waiter to use. */
658 1.1 ad sip->sel_lwp = NULL;
659 1.1 ad }
660 1.13 ad mutex_spin_exit(lock);
661 1.1 ad }
662 1.1 ad
663 1.1 ad /*
664 1.1 ad * Initialize the select/poll system calls. Called once for each
665 1.1 ad * CPU in the system, as they are attached.
666 1.1 ad */
667 1.1 ad void
668 1.1 ad selsysinit(struct cpu_info *ci)
669 1.1 ad {
670 1.1 ad selcpu_t *sc;
671 1.1 ad
672 1.2 ad sc = kmem_alloc(roundup2(sizeof(selcpu_t), coherency_unit) +
673 1.2 ad coherency_unit, KM_SLEEP);
674 1.2 ad sc = (void *)roundup2((uintptr_t)sc, coherency_unit);
675 1.13 ad sc->sc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
676 1.8 ad sleepq_init(&sc->sc_sleepq);
677 1.1 ad sc->sc_ncoll = 0;
678 1.1 ad sc->sc_mask = (1 << cpu_index(ci));
679 1.1 ad ci->ci_data.cpu_selcpu = sc;
680 1.1 ad }
681 1.1 ad
682 1.1 ad /*
683 1.1 ad * Initialize a selinfo record.
684 1.1 ad */
685 1.1 ad void
686 1.1 ad selinit(struct selinfo *sip)
687 1.1 ad {
688 1.1 ad
689 1.1 ad memset(sip, 0, sizeof(*sip));
690 1.1 ad }
691 1.1 ad
692 1.1 ad /*
693 1.1 ad * Destroy a selinfo record. The owning object must not gain new
694 1.1 ad * references while this is in progress: all activity on the record
695 1.1 ad * must be stopped.
696 1.1 ad *
697 1.1 ad * Concurrency issues: we only need guard against a call to selclear()
698 1.17 rmind * by a thread exiting sel_do_scan(). The caller has prevented further
699 1.17 rmind * references being made to the selinfo record via selrecord(), and it
700 1.17 rmind * won't call selwakeup() again.
701 1.1 ad */
702 1.1 ad void
703 1.1 ad seldestroy(struct selinfo *sip)
704 1.1 ad {
705 1.1 ad selcpu_t *sc;
706 1.13 ad kmutex_t *lock;
707 1.1 ad lwp_t *l;
708 1.1 ad
709 1.1 ad if (sip->sel_lwp == NULL)
710 1.1 ad return;
711 1.1 ad
712 1.1 ad /*
713 1.1 ad * Lock out selclear(). The selcpu pointer can't change while
714 1.1 ad * we are here since it is only ever changed in selrecord(),
715 1.1 ad * and that will not be entered again for this record because
716 1.1 ad * it is dying.
717 1.1 ad */
718 1.1 ad KASSERT(sip->sel_cpu != NULL);
719 1.1 ad sc = sip->sel_cpu;
720 1.13 ad lock = sc->sc_lock;
721 1.13 ad mutex_spin_enter(lock);
722 1.1 ad if ((l = sip->sel_lwp) != NULL) {
723 1.1 ad /*
724 1.1 ad * This should rarely happen, so although SLIST_REMOVE()
725 1.1 ad * is slow, using it here is not a problem.
726 1.1 ad */
727 1.1 ad KASSERT(l->l_selcpu == sc);
728 1.1 ad SLIST_REMOVE(&l->l_selwait, sip, selinfo, sel_chain);
729 1.1 ad sip->sel_lwp = NULL;
730 1.1 ad }
731 1.13 ad mutex_spin_exit(lock);
732 1.1 ad }
733 1.1 ad
734 1.1 ad int
735 1.14 christos pollsock(struct socket *so, const struct timespec *tsp, int events)
736 1.1 ad {
737 1.1 ad int ncoll, error, timo;
738 1.14 christos struct timespec sleepts, ts;
739 1.1 ad selcpu_t *sc;
740 1.1 ad lwp_t *l;
741 1.13 ad kmutex_t *lock;
742 1.1 ad
743 1.1 ad timo = 0;
744 1.14 christos if (tsp != NULL) {
745 1.14 christos ts = *tsp;
746 1.14 christos if (inittimeleft(&ts, &sleepts) == -1)
747 1.1 ad return EINVAL;
748 1.1 ad }
749 1.1 ad
750 1.1 ad l = curlwp;
751 1.1 ad sc = l->l_cpu->ci_data.cpu_selcpu;
752 1.13 ad lock = sc->sc_lock;
753 1.1 ad l->l_selcpu = sc;
754 1.1 ad SLIST_INIT(&l->l_selwait);
755 1.1 ad error = 0;
756 1.1 ad for (;;) {
757 1.1 ad /*
758 1.1 ad * No need to lock. If this is overwritten by another
759 1.1 ad * value while scanning, we will retry below. We only
760 1.1 ad * need to see exact state from the descriptors that
761 1.1 ad * we are about to poll, and lock activity resulting
762 1.1 ad * from fo_poll is enough to provide an up to date value
763 1.1 ad * for new polling activity.
764 1.1 ad */
765 1.1 ad ncoll = sc->sc_ncoll;
766 1.1 ad l->l_selflag = SEL_SCANNING;
767 1.1 ad if (sopoll(so, events) != 0)
768 1.1 ad break;
769 1.14 christos if (tsp && (timo = gettimeleft(&ts, &sleepts)) <= 0)
770 1.1 ad break;
771 1.13 ad mutex_spin_enter(lock);
772 1.1 ad if (l->l_selflag != SEL_SCANNING || sc->sc_ncoll != ncoll) {
773 1.13 ad mutex_spin_exit(lock);
774 1.1 ad continue;
775 1.1 ad }
776 1.1 ad l->l_selflag = SEL_BLOCKING;
777 1.13 ad sleepq_enter(&sc->sc_sleepq, l, lock);
778 1.1 ad sleepq_enqueue(&sc->sc_sleepq, sc, "pollsock", &select_sobj);
779 1.1 ad error = sleepq_block(timo, true);
780 1.1 ad if (error != 0)
781 1.1 ad break;
782 1.1 ad }
783 1.1 ad selclear();
784 1.1 ad /* poll is not restarted after signals... */
785 1.1 ad if (error == ERESTART)
786 1.1 ad error = EINTR;
787 1.1 ad if (error == EWOULDBLOCK)
788 1.1 ad error = 0;
789 1.1 ad return (error);
790 1.1 ad }
791