sys_select.c revision 1.23 1 1.23 rmind /* $NetBSD: sys_select.c,v 1.23 2010/07/08 12:23:31 rmind Exp $ */
2 1.1 ad
3 1.1 ad /*-
4 1.22 ad * Copyright (c) 2007, 2008, 2009, 2010 The NetBSD Foundation, Inc.
5 1.1 ad * All rights reserved.
6 1.1 ad *
7 1.1 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.23 rmind * by Andrew Doran and Mindaugas Rasiukevicius.
9 1.1 ad *
10 1.1 ad * Redistribution and use in source and binary forms, with or without
11 1.1 ad * modification, are permitted provided that the following conditions
12 1.1 ad * are met:
13 1.1 ad * 1. Redistributions of source code must retain the above copyright
14 1.1 ad * notice, this list of conditions and the following disclaimer.
15 1.1 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 ad * notice, this list of conditions and the following disclaimer in the
17 1.1 ad * documentation and/or other materials provided with the distribution.
18 1.1 ad *
19 1.1 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.1 ad */
31 1.1 ad
32 1.1 ad /*
33 1.1 ad * Copyright (c) 1982, 1986, 1989, 1993
34 1.1 ad * The Regents of the University of California. All rights reserved.
35 1.1 ad * (c) UNIX System Laboratories, Inc.
36 1.1 ad * All or some portions of this file are derived from material licensed
37 1.1 ad * to the University of California by American Telephone and Telegraph
38 1.1 ad * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39 1.1 ad * the permission of UNIX System Laboratories, Inc.
40 1.1 ad *
41 1.1 ad * Redistribution and use in source and binary forms, with or without
42 1.1 ad * modification, are permitted provided that the following conditions
43 1.1 ad * are met:
44 1.1 ad * 1. Redistributions of source code must retain the above copyright
45 1.1 ad * notice, this list of conditions and the following disclaimer.
46 1.1 ad * 2. Redistributions in binary form must reproduce the above copyright
47 1.1 ad * notice, this list of conditions and the following disclaimer in the
48 1.1 ad * documentation and/or other materials provided with the distribution.
49 1.1 ad * 3. Neither the name of the University nor the names of its contributors
50 1.1 ad * may be used to endorse or promote products derived from this software
51 1.1 ad * without specific prior written permission.
52 1.1 ad *
53 1.1 ad * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 1.1 ad * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 1.1 ad * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 1.1 ad * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 1.1 ad * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 1.1 ad * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 1.1 ad * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 1.1 ad * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 1.1 ad * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 1.1 ad * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 1.1 ad * SUCH DAMAGE.
64 1.1 ad *
65 1.1 ad * @(#)sys_generic.c 8.9 (Berkeley) 2/14/95
66 1.1 ad */
67 1.1 ad
68 1.1 ad /*
69 1.21 rmind * System calls of synchronous I/O multiplexing subsystem.
70 1.21 rmind *
71 1.21 rmind * Locking
72 1.21 rmind *
73 1.22 ad * Two locks are used: <object-lock> and selcluster_t::sc_lock.
74 1.21 rmind *
75 1.21 rmind * The <object-lock> might be a device driver or another subsystem, e.g.
76 1.21 rmind * socket or pipe. This lock is not exported, and thus invisible to this
77 1.21 rmind * subsystem. Mainly, synchronisation between selrecord() and selnotify()
78 1.21 rmind * routines depends on this lock, as it will be described in the comments.
79 1.21 rmind *
80 1.21 rmind * Lock order
81 1.21 rmind *
82 1.21 rmind * <object-lock> ->
83 1.22 ad * selcluster_t::sc_lock
84 1.1 ad */
85 1.1 ad
86 1.1 ad #include <sys/cdefs.h>
87 1.23 rmind __KERNEL_RCSID(0, "$NetBSD: sys_select.c,v 1.23 2010/07/08 12:23:31 rmind Exp $");
88 1.1 ad
89 1.1 ad #include <sys/param.h>
90 1.1 ad #include <sys/systm.h>
91 1.1 ad #include <sys/filedesc.h>
92 1.1 ad #include <sys/ioctl.h>
93 1.1 ad #include <sys/file.h>
94 1.1 ad #include <sys/proc.h>
95 1.1 ad #include <sys/socketvar.h>
96 1.1 ad #include <sys/signalvar.h>
97 1.1 ad #include <sys/uio.h>
98 1.1 ad #include <sys/kernel.h>
99 1.1 ad #include <sys/stat.h>
100 1.1 ad #include <sys/poll.h>
101 1.1 ad #include <sys/vnode.h>
102 1.1 ad #include <sys/mount.h>
103 1.1 ad #include <sys/syscallargs.h>
104 1.1 ad #include <sys/cpu.h>
105 1.1 ad #include <sys/atomic.h>
106 1.1 ad #include <sys/socketvar.h>
107 1.1 ad #include <sys/sleepq.h>
108 1.1 ad
109 1.1 ad /* Flags for lwp::l_selflag. */
110 1.1 ad #define SEL_RESET 0 /* awoken, interrupted, or not yet polling */
111 1.1 ad #define SEL_SCANNING 1 /* polling descriptors */
112 1.23 rmind #define SEL_BLOCKING 2 /* blocking and waiting for event */
113 1.23 rmind #define SEL_EVENT 3 /* interrupted, events set directly */
114 1.23 rmind
115 1.23 rmind /* Operations: either select() or poll(). */
116 1.23 rmind #define SELOP_SELECT 1
117 1.23 rmind #define SELOP_POLL 2
118 1.1 ad
119 1.22 ad /*
120 1.22 ad * Per-cluster state for select()/poll(). For a system with fewer
121 1.22 ad * than 32 CPUs, this gives us per-CPU clusters.
122 1.22 ad */
123 1.22 ad #define SELCLUSTERS 32
124 1.22 ad #define SELCLUSTERMASK (SELCLUSTERS - 1)
125 1.22 ad
126 1.22 ad typedef struct selcluster {
127 1.13 ad kmutex_t *sc_lock;
128 1.1 ad sleepq_t sc_sleepq;
129 1.1 ad int sc_ncoll;
130 1.1 ad uint32_t sc_mask;
131 1.22 ad } selcluster_t;
132 1.1 ad
133 1.23 rmind static inline int selscan(char *, const int, const size_t, register_t *);
134 1.23 rmind static inline int pollscan(struct pollfd *, const int, register_t *);
135 1.19 rmind static void selclear(void);
136 1.1 ad
137 1.23 rmind static const int sel_flag[] = {
138 1.23 rmind POLLRDNORM | POLLHUP | POLLERR,
139 1.23 rmind POLLWRNORM | POLLHUP | POLLERR,
140 1.23 rmind POLLRDBAND
141 1.23 rmind };
142 1.23 rmind
143 1.1 ad static syncobj_t select_sobj = {
144 1.1 ad SOBJ_SLEEPQ_FIFO,
145 1.1 ad sleepq_unsleep,
146 1.1 ad sleepq_changepri,
147 1.1 ad sleepq_lendpri,
148 1.1 ad syncobj_noowner,
149 1.1 ad };
150 1.1 ad
151 1.23 rmind static selcluster_t *selcluster[SELCLUSTERS] __read_mostly;
152 1.22 ad
153 1.1 ad /*
154 1.1 ad * Select system call.
155 1.1 ad */
156 1.1 ad int
157 1.12 christos sys___pselect50(struct lwp *l, const struct sys___pselect50_args *uap,
158 1.12 christos register_t *retval)
159 1.1 ad {
160 1.1 ad /* {
161 1.1 ad syscallarg(int) nd;
162 1.1 ad syscallarg(fd_set *) in;
163 1.1 ad syscallarg(fd_set *) ou;
164 1.1 ad syscallarg(fd_set *) ex;
165 1.1 ad syscallarg(const struct timespec *) ts;
166 1.1 ad syscallarg(sigset_t *) mask;
167 1.1 ad } */
168 1.14 christos struct timespec ats, *ts = NULL;
169 1.1 ad sigset_t amask, *mask = NULL;
170 1.1 ad int error;
171 1.1 ad
172 1.1 ad if (SCARG(uap, ts)) {
173 1.1 ad error = copyin(SCARG(uap, ts), &ats, sizeof(ats));
174 1.1 ad if (error)
175 1.1 ad return error;
176 1.14 christos ts = &ats;
177 1.1 ad }
178 1.1 ad if (SCARG(uap, mask) != NULL) {
179 1.1 ad error = copyin(SCARG(uap, mask), &amask, sizeof(amask));
180 1.1 ad if (error)
181 1.1 ad return error;
182 1.1 ad mask = &amask;
183 1.1 ad }
184 1.1 ad
185 1.19 rmind return selcommon(retval, SCARG(uap, nd), SCARG(uap, in),
186 1.14 christos SCARG(uap, ou), SCARG(uap, ex), ts, mask);
187 1.1 ad }
188 1.1 ad
189 1.1 ad int
190 1.12 christos sys___select50(struct lwp *l, const struct sys___select50_args *uap,
191 1.12 christos register_t *retval)
192 1.1 ad {
193 1.1 ad /* {
194 1.1 ad syscallarg(int) nd;
195 1.1 ad syscallarg(fd_set *) in;
196 1.1 ad syscallarg(fd_set *) ou;
197 1.1 ad syscallarg(fd_set *) ex;
198 1.1 ad syscallarg(struct timeval *) tv;
199 1.1 ad } */
200 1.14 christos struct timeval atv;
201 1.14 christos struct timespec ats, *ts = NULL;
202 1.1 ad int error;
203 1.1 ad
204 1.1 ad if (SCARG(uap, tv)) {
205 1.14 christos error = copyin(SCARG(uap, tv), (void *)&atv, sizeof(atv));
206 1.1 ad if (error)
207 1.1 ad return error;
208 1.14 christos TIMEVAL_TO_TIMESPEC(&atv, &ats);
209 1.14 christos ts = &ats;
210 1.1 ad }
211 1.1 ad
212 1.19 rmind return selcommon(retval, SCARG(uap, nd), SCARG(uap, in),
213 1.14 christos SCARG(uap, ou), SCARG(uap, ex), ts, NULL);
214 1.1 ad }
215 1.1 ad
216 1.17 rmind /*
217 1.17 rmind * sel_do_scan: common code to perform the scan on descriptors.
218 1.17 rmind */
219 1.17 rmind static int
220 1.23 rmind sel_do_scan(const int op, void *fds, const int nf, const size_t ni,
221 1.23 rmind struct timespec *ts, sigset_t *mask, register_t *retval)
222 1.1 ad {
223 1.17 rmind lwp_t * const l = curlwp;
224 1.1 ad proc_t * const p = l->l_proc;
225 1.22 ad selcluster_t *sc;
226 1.13 ad kmutex_t *lock;
227 1.17 rmind sigset_t oldmask;
228 1.17 rmind struct timespec sleepts;
229 1.17 rmind int error, timo;
230 1.1 ad
231 1.1 ad timo = 0;
232 1.14 christos if (ts && inittimeleft(ts, &sleepts) == -1) {
233 1.17 rmind return EINVAL;
234 1.1 ad }
235 1.1 ad
236 1.17 rmind if (__predict_false(mask)) {
237 1.1 ad sigminusset(&sigcantmask, mask);
238 1.5 ad mutex_enter(p->p_lock);
239 1.1 ad oldmask = l->l_sigmask;
240 1.1 ad l->l_sigmask = *mask;
241 1.5 ad mutex_exit(p->p_lock);
242 1.17 rmind } else {
243 1.17 rmind /* XXXgcc */
244 1.17 rmind oldmask = l->l_sigmask;
245 1.17 rmind }
246 1.1 ad
247 1.22 ad sc = curcpu()->ci_data.cpu_selcluster;
248 1.13 ad lock = sc->sc_lock;
249 1.22 ad l->l_selcluster = sc;
250 1.1 ad SLIST_INIT(&l->l_selwait);
251 1.23 rmind
252 1.23 rmind l->l_selret = 0;
253 1.23 rmind if (op == SELOP_SELECT) {
254 1.23 rmind l->l_selbits = (char *)fds + ni * 3;
255 1.23 rmind l->l_selni = ni;
256 1.23 rmind } else {
257 1.23 rmind l->l_selbits = NULL;
258 1.23 rmind }
259 1.1 ad for (;;) {
260 1.17 rmind int ncoll;
261 1.17 rmind
262 1.1 ad /*
263 1.17 rmind * No need to lock. If this is overwritten by another value
264 1.17 rmind * while scanning, we will retry below. We only need to see
265 1.17 rmind * exact state from the descriptors that we are about to poll,
266 1.17 rmind * and lock activity resulting from fo_poll is enough to
267 1.17 rmind * provide an up to date value for new polling activity.
268 1.1 ad */
269 1.17 rmind l->l_selflag = SEL_SCANNING;
270 1.1 ad ncoll = sc->sc_ncoll;
271 1.1 ad
272 1.23 rmind if (op == SELOP_SELECT) {
273 1.23 rmind error = selscan((char *)fds, nf, ni, retval);
274 1.17 rmind } else {
275 1.23 rmind error = pollscan((struct pollfd *)fds, nf, retval);
276 1.17 rmind }
277 1.1 ad if (error || *retval)
278 1.1 ad break;
279 1.14 christos if (ts && (timo = gettimeleft(ts, &sleepts)) <= 0)
280 1.1 ad break;
281 1.23 rmind /*
282 1.23 rmind * Acquire the lock and perform the (re)checks. Note, if
283 1.23 rmind * collision has occured, then our state does not matter,
284 1.23 rmind * as we must perform re-scan. Therefore, check it first.
285 1.23 rmind */
286 1.23 rmind state_check:
287 1.13 ad mutex_spin_enter(lock);
288 1.23 rmind if (__predict_false(sc->sc_ncoll != ncoll)) {
289 1.23 rmind /* Collision: perform re-scan. */
290 1.23 rmind mutex_spin_exit(lock);
291 1.23 rmind continue;
292 1.23 rmind }
293 1.23 rmind if (__predict_true(l->l_selflag == SEL_EVENT)) {
294 1.23 rmind /* Events occured, they are set directly. */
295 1.23 rmind mutex_spin_exit(lock);
296 1.23 rmind KASSERT(l->l_selret != 0);
297 1.23 rmind *retval = l->l_selret;
298 1.23 rmind break;
299 1.23 rmind }
300 1.23 rmind if (__predict_true(l->l_selflag == SEL_RESET)) {
301 1.23 rmind /* Events occured, but re-scan is requested. */
302 1.13 ad mutex_spin_exit(lock);
303 1.1 ad continue;
304 1.1 ad }
305 1.23 rmind KASSERT(l->l_selflag == SEL_SCANNING);
306 1.23 rmind /* Nothing happen, therefore - sleep. */
307 1.1 ad l->l_selflag = SEL_BLOCKING;
308 1.7 ad l->l_kpriority = true;
309 1.13 ad sleepq_enter(&sc->sc_sleepq, l, lock);
310 1.1 ad sleepq_enqueue(&sc->sc_sleepq, sc, "select", &select_sobj);
311 1.1 ad error = sleepq_block(timo, true);
312 1.23 rmind if (error != 0) {
313 1.1 ad break;
314 1.23 rmind }
315 1.23 rmind /* Awoken: need to check the state. */
316 1.23 rmind goto state_check;
317 1.1 ad }
318 1.1 ad selclear();
319 1.1 ad
320 1.17 rmind if (__predict_false(mask)) {
321 1.5 ad mutex_enter(p->p_lock);
322 1.1 ad l->l_sigmask = oldmask;
323 1.5 ad mutex_exit(p->p_lock);
324 1.1 ad }
325 1.20 dsl
326 1.20 dsl /* select and poll are not restarted after signals... */
327 1.20 dsl if (error == ERESTART)
328 1.20 dsl return EINTR;
329 1.20 dsl if (error == EWOULDBLOCK)
330 1.20 dsl return 0;
331 1.17 rmind return error;
332 1.17 rmind }
333 1.17 rmind
334 1.17 rmind int
335 1.19 rmind selcommon(register_t *retval, int nd, fd_set *u_in, fd_set *u_ou,
336 1.19 rmind fd_set *u_ex, struct timespec *ts, sigset_t *mask)
337 1.17 rmind {
338 1.17 rmind char smallbits[howmany(FD_SETSIZE, NFDBITS) *
339 1.17 rmind sizeof(fd_mask) * 6];
340 1.17 rmind char *bits;
341 1.17 rmind int error, nf;
342 1.17 rmind size_t ni;
343 1.17 rmind
344 1.17 rmind if (nd < 0)
345 1.17 rmind return (EINVAL);
346 1.19 rmind nf = curlwp->l_fd->fd_dt->dt_nfiles;
347 1.17 rmind if (nd > nf) {
348 1.17 rmind /* forgiving; slightly wrong */
349 1.17 rmind nd = nf;
350 1.17 rmind }
351 1.17 rmind ni = howmany(nd, NFDBITS) * sizeof(fd_mask);
352 1.17 rmind if (ni * 6 > sizeof(smallbits)) {
353 1.17 rmind bits = kmem_alloc(ni * 6, KM_SLEEP);
354 1.17 rmind if (bits == NULL)
355 1.17 rmind return ENOMEM;
356 1.17 rmind } else
357 1.17 rmind bits = smallbits;
358 1.17 rmind
359 1.17 rmind #define getbits(name, x) \
360 1.17 rmind if (u_ ## name) { \
361 1.17 rmind error = copyin(u_ ## name, bits + ni * x, ni); \
362 1.17 rmind if (error) \
363 1.20 dsl goto fail; \
364 1.17 rmind } else \
365 1.17 rmind memset(bits + ni * x, 0, ni);
366 1.17 rmind getbits(in, 0);
367 1.17 rmind getbits(ou, 1);
368 1.17 rmind getbits(ex, 2);
369 1.17 rmind #undef getbits
370 1.1 ad
371 1.23 rmind error = sel_do_scan(SELOP_SELECT, bits, nd, ni, ts, mask, retval);
372 1.1 ad if (error == 0 && u_in != NULL)
373 1.1 ad error = copyout(bits + ni * 3, u_in, ni);
374 1.1 ad if (error == 0 && u_ou != NULL)
375 1.1 ad error = copyout(bits + ni * 4, u_ou, ni);
376 1.1 ad if (error == 0 && u_ex != NULL)
377 1.1 ad error = copyout(bits + ni * 5, u_ex, ni);
378 1.20 dsl fail:
379 1.1 ad if (bits != smallbits)
380 1.1 ad kmem_free(bits, ni * 6);
381 1.1 ad return (error);
382 1.1 ad }
383 1.1 ad
384 1.19 rmind static inline int
385 1.23 rmind selscan(char *bits, const int nfd, const size_t ni, register_t *retval)
386 1.1 ad {
387 1.17 rmind fd_mask *ibitp, *obitp;
388 1.23 rmind int msk, i, j, fd, n;
389 1.1 ad file_t *fp;
390 1.1 ad
391 1.17 rmind ibitp = (fd_mask *)(bits + ni * 0);
392 1.17 rmind obitp = (fd_mask *)(bits + ni * 3);
393 1.1 ad n = 0;
394 1.17 rmind
395 1.1 ad for (msk = 0; msk < 3; msk++) {
396 1.1 ad for (i = 0; i < nfd; i += NFDBITS) {
397 1.23 rmind fd_mask ibits, obits;
398 1.23 rmind
399 1.1 ad ibits = *ibitp++;
400 1.1 ad obits = 0;
401 1.1 ad while ((j = ffs(ibits)) && (fd = i + --j) < nfd) {
402 1.1 ad ibits &= ~(1 << j);
403 1.1 ad if ((fp = fd_getfile(fd)) == NULL)
404 1.1 ad return (EBADF);
405 1.23 rmind /*
406 1.23 rmind * Setup an argument to selrecord(), which is
407 1.23 rmind * a file descriptor number.
408 1.23 rmind */
409 1.23 rmind curlwp->l_selrec = fd;
410 1.23 rmind if ((*fp->f_ops->fo_poll)(fp, sel_flag[msk])) {
411 1.1 ad obits |= (1 << j);
412 1.1 ad n++;
413 1.1 ad }
414 1.1 ad fd_putfile(fd);
415 1.1 ad }
416 1.1 ad *obitp++ = obits;
417 1.1 ad }
418 1.1 ad }
419 1.1 ad *retval = n;
420 1.1 ad return (0);
421 1.1 ad }
422 1.1 ad
423 1.1 ad /*
424 1.1 ad * Poll system call.
425 1.1 ad */
426 1.1 ad int
427 1.1 ad sys_poll(struct lwp *l, const struct sys_poll_args *uap, register_t *retval)
428 1.1 ad {
429 1.1 ad /* {
430 1.1 ad syscallarg(struct pollfd *) fds;
431 1.1 ad syscallarg(u_int) nfds;
432 1.1 ad syscallarg(int) timeout;
433 1.1 ad } */
434 1.14 christos struct timespec ats, *ts = NULL;
435 1.1 ad
436 1.1 ad if (SCARG(uap, timeout) != INFTIM) {
437 1.14 christos ats.tv_sec = SCARG(uap, timeout) / 1000;
438 1.14 christos ats.tv_nsec = (SCARG(uap, timeout) % 1000) * 1000000;
439 1.14 christos ts = &ats;
440 1.1 ad }
441 1.1 ad
442 1.19 rmind return pollcommon(retval, SCARG(uap, fds), SCARG(uap, nfds), ts, NULL);
443 1.1 ad }
444 1.1 ad
445 1.1 ad /*
446 1.1 ad * Poll system call.
447 1.1 ad */
448 1.1 ad int
449 1.12 christos sys___pollts50(struct lwp *l, const struct sys___pollts50_args *uap,
450 1.12 christos register_t *retval)
451 1.1 ad {
452 1.1 ad /* {
453 1.1 ad syscallarg(struct pollfd *) fds;
454 1.1 ad syscallarg(u_int) nfds;
455 1.1 ad syscallarg(const struct timespec *) ts;
456 1.1 ad syscallarg(const sigset_t *) mask;
457 1.1 ad } */
458 1.14 christos struct timespec ats, *ts = NULL;
459 1.1 ad sigset_t amask, *mask = NULL;
460 1.1 ad int error;
461 1.1 ad
462 1.1 ad if (SCARG(uap, ts)) {
463 1.1 ad error = copyin(SCARG(uap, ts), &ats, sizeof(ats));
464 1.1 ad if (error)
465 1.1 ad return error;
466 1.14 christos ts = &ats;
467 1.1 ad }
468 1.1 ad if (SCARG(uap, mask)) {
469 1.1 ad error = copyin(SCARG(uap, mask), &amask, sizeof(amask));
470 1.1 ad if (error)
471 1.1 ad return error;
472 1.1 ad mask = &amask;
473 1.1 ad }
474 1.1 ad
475 1.19 rmind return pollcommon(retval, SCARG(uap, fds), SCARG(uap, nfds), ts, mask);
476 1.1 ad }
477 1.1 ad
478 1.1 ad int
479 1.19 rmind pollcommon(register_t *retval, struct pollfd *u_fds, u_int nfds,
480 1.14 christos struct timespec *ts, sigset_t *mask)
481 1.1 ad {
482 1.11 yamt struct pollfd smallfds[32];
483 1.11 yamt struct pollfd *fds;
484 1.17 rmind int error;
485 1.20 dsl size_t ni;
486 1.1 ad
487 1.20 dsl if (nfds > 1000 + curlwp->l_fd->fd_dt->dt_nfiles) {
488 1.20 dsl /*
489 1.20 dsl * Either the user passed in a very sparse 'fds' or junk!
490 1.20 dsl * The kmem_alloc() call below would be bad news.
491 1.20 dsl * We could process the 'fds' array in chunks, but that
492 1.20 dsl * is a lot of code that isn't normally useful.
493 1.20 dsl * (Or just move the copyin/out into pollscan().)
494 1.20 dsl * Historically the code silently truncated 'fds' to
495 1.20 dsl * dt_nfiles entries - but that does cause issues.
496 1.20 dsl */
497 1.20 dsl return EINVAL;
498 1.1 ad }
499 1.1 ad ni = nfds * sizeof(struct pollfd);
500 1.11 yamt if (ni > sizeof(smallfds)) {
501 1.11 yamt fds = kmem_alloc(ni, KM_SLEEP);
502 1.11 yamt if (fds == NULL)
503 1.9 rmind return ENOMEM;
504 1.9 rmind } else
505 1.11 yamt fds = smallfds;
506 1.1 ad
507 1.11 yamt error = copyin(u_fds, fds, ni);
508 1.1 ad if (error)
509 1.20 dsl goto fail;
510 1.1 ad
511 1.23 rmind error = sel_do_scan(SELOP_POLL, fds, nfds, ni, ts, mask, retval);
512 1.1 ad if (error == 0)
513 1.11 yamt error = copyout(fds, u_fds, ni);
514 1.20 dsl fail:
515 1.11 yamt if (fds != smallfds)
516 1.11 yamt kmem_free(fds, ni);
517 1.1 ad return (error);
518 1.1 ad }
519 1.1 ad
520 1.19 rmind static inline int
521 1.23 rmind pollscan(struct pollfd *fds, const int nfd, register_t *retval)
522 1.1 ad {
523 1.1 ad file_t *fp;
524 1.23 rmind int i, n = 0;
525 1.1 ad
526 1.1 ad for (i = 0; i < nfd; i++, fds++) {
527 1.1 ad if (fds->fd < 0) {
528 1.1 ad fds->revents = 0;
529 1.1 ad } else if ((fp = fd_getfile(fds->fd)) == NULL) {
530 1.1 ad fds->revents = POLLNVAL;
531 1.1 ad n++;
532 1.1 ad } else {
533 1.23 rmind /*
534 1.23 rmind * Perform poll: registers select request or returns
535 1.23 rmind * the events which are set. Setup an argument for
536 1.23 rmind * selrecord(), which is a pointer to struct pollfd.
537 1.23 rmind */
538 1.23 rmind curlwp->l_selrec = (uintptr_t)fds;
539 1.1 ad fds->revents = (*fp->f_ops->fo_poll)(fp,
540 1.1 ad fds->events | POLLERR | POLLHUP);
541 1.1 ad if (fds->revents != 0)
542 1.1 ad n++;
543 1.1 ad fd_putfile(fds->fd);
544 1.1 ad }
545 1.1 ad }
546 1.1 ad *retval = n;
547 1.1 ad return (0);
548 1.1 ad }
549 1.1 ad
550 1.1 ad int
551 1.1 ad seltrue(dev_t dev, int events, lwp_t *l)
552 1.1 ad {
553 1.1 ad
554 1.1 ad return (events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
555 1.1 ad }
556 1.1 ad
557 1.1 ad /*
558 1.1 ad * Record a select request. Concurrency issues:
559 1.1 ad *
560 1.1 ad * The caller holds the same lock across calls to selrecord() and
561 1.4 yamt * selnotify(), so we don't need to consider a concurrent wakeup
562 1.1 ad * while in this routine.
563 1.1 ad *
564 1.1 ad * The only activity we need to guard against is selclear(), called by
565 1.17 rmind * another thread that is exiting sel_do_scan().
566 1.1 ad * `sel_lwp' can only become non-NULL while the caller's lock is held,
567 1.1 ad * so it cannot become non-NULL due to a change made by another thread
568 1.1 ad * while we are in this routine. It can only become _NULL_ due to a
569 1.1 ad * call to selclear().
570 1.1 ad *
571 1.1 ad * If it is non-NULL and != selector there is the potential for
572 1.1 ad * selclear() to be called by another thread. If either of those
573 1.1 ad * conditions are true, we're not interested in touching the `named
574 1.1 ad * waiter' part of the selinfo record because we need to record a
575 1.1 ad * collision. Hence there is no need for additional locking in this
576 1.1 ad * routine.
577 1.1 ad */
578 1.1 ad void
579 1.1 ad selrecord(lwp_t *selector, struct selinfo *sip)
580 1.1 ad {
581 1.22 ad selcluster_t *sc;
582 1.1 ad lwp_t *other;
583 1.1 ad
584 1.1 ad KASSERT(selector == curlwp);
585 1.1 ad
586 1.22 ad sc = selector->l_selcluster;
587 1.1 ad other = sip->sel_lwp;
588 1.1 ad
589 1.1 ad if (other == selector) {
590 1.23 rmind /* 1. We (selector) already claimed to be the first LWP. */
591 1.22 ad KASSERT(sip->sel_cluster = sc);
592 1.1 ad } else if (other == NULL) {
593 1.1 ad /*
594 1.23 rmind * 2. No first LWP, therefore we (selector) are the first.
595 1.23 rmind *
596 1.23 rmind * There may be unnamed waiters (collisions). Issue a memory
597 1.23 rmind * barrier to ensure that we access sel_lwp (above) before
598 1.23 rmind * other fields - this guards against a call to selclear().
599 1.1 ad */
600 1.1 ad membar_enter();
601 1.1 ad sip->sel_lwp = selector;
602 1.1 ad SLIST_INSERT_HEAD(&selector->l_selwait, sip, sel_chain);
603 1.23 rmind /* Copy the argument, which is for selnotify(). */
604 1.23 rmind sip->sel_fdinfo = selector->l_selrec;
605 1.22 ad /* Replace selinfo's lock with the chosen cluster's lock. */
606 1.22 ad sip->sel_cluster = sc;
607 1.1 ad } else {
608 1.23 rmind /* 3. Multiple waiters: record a collision. */
609 1.1 ad sip->sel_collision |= sc->sc_mask;
610 1.22 ad KASSERT(sip->sel_cluster != NULL);
611 1.1 ad }
612 1.1 ad }
613 1.1 ad
614 1.1 ad /*
615 1.23 rmind * sel_setevents: a helper function for selnotify(), to set the events
616 1.23 rmind * for LWP sleeping in selcommon() or pollcommon().
617 1.23 rmind */
618 1.23 rmind static inline void
619 1.23 rmind sel_setevents(lwp_t *l, struct selinfo *sip, const int events)
620 1.23 rmind {
621 1.23 rmind const int oflag = l->l_selflag;
622 1.23 rmind
623 1.23 rmind /*
624 1.23 rmind * If we require re-scan or it was required by somebody else,
625 1.23 rmind * then just (re)set SEL_RESET and return.
626 1.23 rmind */
627 1.23 rmind if (__predict_false(events == 0 || oflag == SEL_RESET)) {
628 1.23 rmind l->l_selflag = SEL_RESET;
629 1.23 rmind return;
630 1.23 rmind }
631 1.23 rmind /*
632 1.23 rmind * Direct set. Note: select state of LWP is locked. First,
633 1.23 rmind * determine whether it is selcommon() or pollcommon().
634 1.23 rmind */
635 1.23 rmind if (l->l_selbits != NULL) {
636 1.23 rmind fd_mask *fds = (fd_mask *)l->l_selbits;
637 1.23 rmind const int ni = l->l_selni;
638 1.23 rmind const int fd = sip->sel_fdinfo;
639 1.23 rmind int n;
640 1.23 rmind
641 1.23 rmind for (n = 0; n < 3; n++) {
642 1.23 rmind if (sel_flag[n] | events) {
643 1.23 rmind fds[fd >> __NFDSHIFT] |= (fd & __NFDMASK);
644 1.23 rmind }
645 1.23 rmind fds = (fd_mask *)((char *)fds + ni);
646 1.23 rmind }
647 1.23 rmind } else {
648 1.23 rmind struct pollfd *pfd = (void *)sip->sel_fdinfo;
649 1.23 rmind pfd->revents |= events;
650 1.23 rmind }
651 1.23 rmind /* Indicate direct set and note the event (cluster lock is held). */
652 1.23 rmind l->l_selflag = SEL_EVENT;
653 1.23 rmind l->l_selret++;
654 1.23 rmind }
655 1.23 rmind
656 1.23 rmind /*
657 1.1 ad * Do a wakeup when a selectable event occurs. Concurrency issues:
658 1.1 ad *
659 1.1 ad * As per selrecord(), the caller's object lock is held. If there
660 1.22 ad * is a named waiter, we must acquire the associated selcluster's lock
661 1.1 ad * in order to synchronize with selclear() and pollers going to sleep
662 1.17 rmind * in sel_do_scan().
663 1.1 ad *
664 1.22 ad * sip->sel_cluser cannot change at this point, as it is only changed
665 1.1 ad * in selrecord(), and concurrent calls to selrecord() are locked
666 1.1 ad * out by the caller.
667 1.1 ad */
668 1.1 ad void
669 1.1 ad selnotify(struct selinfo *sip, int events, long knhint)
670 1.1 ad {
671 1.22 ad selcluster_t *sc;
672 1.1 ad uint32_t mask;
673 1.16 rmind int index, oflag;
674 1.1 ad lwp_t *l;
675 1.13 ad kmutex_t *lock;
676 1.1 ad
677 1.1 ad KNOTE(&sip->sel_klist, knhint);
678 1.1 ad
679 1.1 ad if (sip->sel_lwp != NULL) {
680 1.1 ad /* One named LWP is waiting. */
681 1.22 ad sc = sip->sel_cluster;
682 1.13 ad lock = sc->sc_lock;
683 1.13 ad mutex_spin_enter(lock);
684 1.1 ad /* Still there? */
685 1.1 ad if (sip->sel_lwp != NULL) {
686 1.23 rmind /*
687 1.23 rmind * Set the events for our LWP and indicate that.
688 1.23 rmind * Otherwise, request for a full re-scan.
689 1.23 rmind */
690 1.1 ad l = sip->sel_lwp;
691 1.23 rmind oflag = l->l_selflag;
692 1.23 rmind sel_setevents(l, sip, events);
693 1.1 ad /*
694 1.1 ad * If thread is sleeping, wake it up. If it's not
695 1.1 ad * yet asleep, it will notice the change in state
696 1.1 ad * and will re-poll the descriptors.
697 1.1 ad */
698 1.13 ad if (oflag == SEL_BLOCKING && l->l_mutex == lock) {
699 1.1 ad KASSERT(l->l_wchan == sc);
700 1.16 rmind sleepq_unsleep(l, false);
701 1.1 ad }
702 1.1 ad }
703 1.13 ad mutex_spin_exit(lock);
704 1.1 ad }
705 1.1 ad
706 1.1 ad if ((mask = sip->sel_collision) != 0) {
707 1.1 ad /*
708 1.1 ad * There was a collision (multiple waiters): we must
709 1.1 ad * inform all potentially interested waiters.
710 1.1 ad */
711 1.1 ad sip->sel_collision = 0;
712 1.3 ad do {
713 1.1 ad index = ffs(mask) - 1;
714 1.1 ad mask &= ~(1 << index);
715 1.22 ad sc = selcluster[index];
716 1.13 ad lock = sc->sc_lock;
717 1.13 ad mutex_spin_enter(lock);
718 1.1 ad sc->sc_ncoll++;
719 1.13 ad sleepq_wake(&sc->sc_sleepq, sc, (u_int)-1, lock);
720 1.3 ad } while (__predict_false(mask != 0));
721 1.1 ad }
722 1.1 ad }
723 1.1 ad
724 1.1 ad /*
725 1.1 ad * Remove an LWP from all objects that it is waiting for. Concurrency
726 1.1 ad * issues:
727 1.1 ad *
728 1.1 ad * The object owner's (e.g. device driver) lock is not held here. Calls
729 1.1 ad * can be made to selrecord() and we do not synchronize against those
730 1.1 ad * directly using locks. However, we use `sel_lwp' to lock out changes.
731 1.1 ad * Before clearing it we must use memory barriers to ensure that we can
732 1.1 ad * safely traverse the list of selinfo records.
733 1.1 ad */
734 1.1 ad static void
735 1.1 ad selclear(void)
736 1.1 ad {
737 1.1 ad struct selinfo *sip, *next;
738 1.22 ad selcluster_t *sc;
739 1.1 ad lwp_t *l;
740 1.13 ad kmutex_t *lock;
741 1.1 ad
742 1.1 ad l = curlwp;
743 1.22 ad sc = l->l_selcluster;
744 1.13 ad lock = sc->sc_lock;
745 1.1 ad
746 1.13 ad mutex_spin_enter(lock);
747 1.1 ad for (sip = SLIST_FIRST(&l->l_selwait); sip != NULL; sip = next) {
748 1.1 ad KASSERT(sip->sel_lwp == l);
749 1.22 ad KASSERT(sip->sel_cluster == l->l_selcluster);
750 1.22 ad
751 1.1 ad /*
752 1.1 ad * Read link to next selinfo record, if any.
753 1.1 ad * It's no longer safe to touch `sip' after clearing
754 1.1 ad * `sel_lwp', so ensure that the read of `sel_chain'
755 1.1 ad * completes before the clearing of sel_lwp becomes
756 1.1 ad * globally visible.
757 1.1 ad */
758 1.1 ad next = SLIST_NEXT(sip, sel_chain);
759 1.1 ad membar_exit();
760 1.1 ad /* Release the record for another named waiter to use. */
761 1.1 ad sip->sel_lwp = NULL;
762 1.1 ad }
763 1.13 ad mutex_spin_exit(lock);
764 1.1 ad }
765 1.1 ad
766 1.1 ad /*
767 1.1 ad * Initialize the select/poll system calls. Called once for each
768 1.1 ad * CPU in the system, as they are attached.
769 1.1 ad */
770 1.1 ad void
771 1.1 ad selsysinit(struct cpu_info *ci)
772 1.1 ad {
773 1.22 ad selcluster_t *sc;
774 1.22 ad u_int index;
775 1.1 ad
776 1.22 ad /* If already a cluster in place for this bit, re-use. */
777 1.22 ad index = cpu_index(ci) & SELCLUSTERMASK;
778 1.22 ad sc = selcluster[index];
779 1.22 ad if (sc == NULL) {
780 1.22 ad sc = kmem_alloc(roundup2(sizeof(selcluster_t),
781 1.22 ad coherency_unit) + coherency_unit, KM_SLEEP);
782 1.22 ad sc = (void *)roundup2((uintptr_t)sc, coherency_unit);
783 1.22 ad sc->sc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
784 1.22 ad sleepq_init(&sc->sc_sleepq);
785 1.22 ad sc->sc_ncoll = 0;
786 1.22 ad sc->sc_mask = (1 << index);
787 1.22 ad selcluster[index] = sc;
788 1.22 ad }
789 1.22 ad ci->ci_data.cpu_selcluster = sc;
790 1.1 ad }
791 1.1 ad
792 1.1 ad /*
793 1.1 ad * Initialize a selinfo record.
794 1.1 ad */
795 1.1 ad void
796 1.1 ad selinit(struct selinfo *sip)
797 1.1 ad {
798 1.1 ad
799 1.1 ad memset(sip, 0, sizeof(*sip));
800 1.1 ad }
801 1.1 ad
802 1.1 ad /*
803 1.1 ad * Destroy a selinfo record. The owning object must not gain new
804 1.1 ad * references while this is in progress: all activity on the record
805 1.1 ad * must be stopped.
806 1.1 ad *
807 1.1 ad * Concurrency issues: we only need guard against a call to selclear()
808 1.17 rmind * by a thread exiting sel_do_scan(). The caller has prevented further
809 1.17 rmind * references being made to the selinfo record via selrecord(), and it
810 1.23 rmind * will not call selnotify() again.
811 1.1 ad */
812 1.1 ad void
813 1.1 ad seldestroy(struct selinfo *sip)
814 1.1 ad {
815 1.22 ad selcluster_t *sc;
816 1.13 ad kmutex_t *lock;
817 1.1 ad lwp_t *l;
818 1.1 ad
819 1.1 ad if (sip->sel_lwp == NULL)
820 1.1 ad return;
821 1.1 ad
822 1.1 ad /*
823 1.22 ad * Lock out selclear(). The selcluster pointer can't change while
824 1.1 ad * we are here since it is only ever changed in selrecord(),
825 1.1 ad * and that will not be entered again for this record because
826 1.1 ad * it is dying.
827 1.1 ad */
828 1.22 ad KASSERT(sip->sel_cluster != NULL);
829 1.22 ad sc = sip->sel_cluster;
830 1.13 ad lock = sc->sc_lock;
831 1.13 ad mutex_spin_enter(lock);
832 1.1 ad if ((l = sip->sel_lwp) != NULL) {
833 1.1 ad /*
834 1.1 ad * This should rarely happen, so although SLIST_REMOVE()
835 1.1 ad * is slow, using it here is not a problem.
836 1.1 ad */
837 1.22 ad KASSERT(l->l_selcluster == sc);
838 1.1 ad SLIST_REMOVE(&l->l_selwait, sip, selinfo, sel_chain);
839 1.1 ad sip->sel_lwp = NULL;
840 1.1 ad }
841 1.13 ad mutex_spin_exit(lock);
842 1.1 ad }
843 1.1 ad
844 1.1 ad int
845 1.14 christos pollsock(struct socket *so, const struct timespec *tsp, int events)
846 1.1 ad {
847 1.1 ad int ncoll, error, timo;
848 1.14 christos struct timespec sleepts, ts;
849 1.22 ad selcluster_t *sc;
850 1.1 ad lwp_t *l;
851 1.13 ad kmutex_t *lock;
852 1.1 ad
853 1.1 ad timo = 0;
854 1.14 christos if (tsp != NULL) {
855 1.14 christos ts = *tsp;
856 1.14 christos if (inittimeleft(&ts, &sleepts) == -1)
857 1.1 ad return EINVAL;
858 1.1 ad }
859 1.1 ad
860 1.1 ad l = curlwp;
861 1.22 ad sc = curcpu()->ci_data.cpu_selcluster;
862 1.13 ad lock = sc->sc_lock;
863 1.22 ad l->l_selcluster = sc;
864 1.1 ad SLIST_INIT(&l->l_selwait);
865 1.1 ad error = 0;
866 1.1 ad for (;;) {
867 1.1 ad /*
868 1.1 ad * No need to lock. If this is overwritten by another
869 1.1 ad * value while scanning, we will retry below. We only
870 1.1 ad * need to see exact state from the descriptors that
871 1.1 ad * we are about to poll, and lock activity resulting
872 1.1 ad * from fo_poll is enough to provide an up to date value
873 1.1 ad * for new polling activity.
874 1.1 ad */
875 1.1 ad ncoll = sc->sc_ncoll;
876 1.1 ad l->l_selflag = SEL_SCANNING;
877 1.1 ad if (sopoll(so, events) != 0)
878 1.1 ad break;
879 1.14 christos if (tsp && (timo = gettimeleft(&ts, &sleepts)) <= 0)
880 1.1 ad break;
881 1.13 ad mutex_spin_enter(lock);
882 1.1 ad if (l->l_selflag != SEL_SCANNING || sc->sc_ncoll != ncoll) {
883 1.13 ad mutex_spin_exit(lock);
884 1.1 ad continue;
885 1.1 ad }
886 1.1 ad l->l_selflag = SEL_BLOCKING;
887 1.13 ad sleepq_enter(&sc->sc_sleepq, l, lock);
888 1.1 ad sleepq_enqueue(&sc->sc_sleepq, sc, "pollsock", &select_sobj);
889 1.1 ad error = sleepq_block(timo, true);
890 1.1 ad if (error != 0)
891 1.1 ad break;
892 1.1 ad }
893 1.1 ad selclear();
894 1.1 ad /* poll is not restarted after signals... */
895 1.1 ad if (error == ERESTART)
896 1.1 ad error = EINTR;
897 1.1 ad if (error == EWOULDBLOCK)
898 1.1 ad error = 0;
899 1.1 ad return (error);
900 1.1 ad }
901