sys_select.c revision 1.32 1 1.32 christos /* $NetBSD: sys_select.c,v 1.32 2011/05/18 14:48:04 christos Exp $ */
2 1.1 ad
3 1.1 ad /*-
4 1.22 ad * Copyright (c) 2007, 2008, 2009, 2010 The NetBSD Foundation, Inc.
5 1.1 ad * All rights reserved.
6 1.1 ad *
7 1.1 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.23 rmind * by Andrew Doran and Mindaugas Rasiukevicius.
9 1.1 ad *
10 1.1 ad * Redistribution and use in source and binary forms, with or without
11 1.1 ad * modification, are permitted provided that the following conditions
12 1.1 ad * are met:
13 1.1 ad * 1. Redistributions of source code must retain the above copyright
14 1.1 ad * notice, this list of conditions and the following disclaimer.
15 1.1 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 ad * notice, this list of conditions and the following disclaimer in the
17 1.1 ad * documentation and/or other materials provided with the distribution.
18 1.1 ad *
19 1.1 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.1 ad */
31 1.1 ad
32 1.1 ad /*
33 1.1 ad * Copyright (c) 1982, 1986, 1989, 1993
34 1.1 ad * The Regents of the University of California. All rights reserved.
35 1.1 ad * (c) UNIX System Laboratories, Inc.
36 1.1 ad * All or some portions of this file are derived from material licensed
37 1.1 ad * to the University of California by American Telephone and Telegraph
38 1.1 ad * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39 1.1 ad * the permission of UNIX System Laboratories, Inc.
40 1.1 ad *
41 1.1 ad * Redistribution and use in source and binary forms, with or without
42 1.1 ad * modification, are permitted provided that the following conditions
43 1.1 ad * are met:
44 1.1 ad * 1. Redistributions of source code must retain the above copyright
45 1.1 ad * notice, this list of conditions and the following disclaimer.
46 1.1 ad * 2. Redistributions in binary form must reproduce the above copyright
47 1.1 ad * notice, this list of conditions and the following disclaimer in the
48 1.1 ad * documentation and/or other materials provided with the distribution.
49 1.1 ad * 3. Neither the name of the University nor the names of its contributors
50 1.1 ad * may be used to endorse or promote products derived from this software
51 1.1 ad * without specific prior written permission.
52 1.1 ad *
53 1.1 ad * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 1.1 ad * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 1.1 ad * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 1.1 ad * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 1.1 ad * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 1.1 ad * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 1.1 ad * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 1.1 ad * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 1.1 ad * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 1.1 ad * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 1.1 ad * SUCH DAMAGE.
64 1.1 ad *
65 1.1 ad * @(#)sys_generic.c 8.9 (Berkeley) 2/14/95
66 1.1 ad */
67 1.1 ad
68 1.1 ad /*
69 1.21 rmind * System calls of synchronous I/O multiplexing subsystem.
70 1.21 rmind *
71 1.21 rmind * Locking
72 1.21 rmind *
73 1.22 ad * Two locks are used: <object-lock> and selcluster_t::sc_lock.
74 1.21 rmind *
75 1.21 rmind * The <object-lock> might be a device driver or another subsystem, e.g.
76 1.21 rmind * socket or pipe. This lock is not exported, and thus invisible to this
77 1.21 rmind * subsystem. Mainly, synchronisation between selrecord() and selnotify()
78 1.21 rmind * routines depends on this lock, as it will be described in the comments.
79 1.21 rmind *
80 1.21 rmind * Lock order
81 1.21 rmind *
82 1.21 rmind * <object-lock> ->
83 1.22 ad * selcluster_t::sc_lock
84 1.1 ad */
85 1.1 ad
86 1.1 ad #include <sys/cdefs.h>
87 1.32 christos __KERNEL_RCSID(0, "$NetBSD: sys_select.c,v 1.32 2011/05/18 14:48:04 christos Exp $");
88 1.1 ad
89 1.1 ad #include <sys/param.h>
90 1.1 ad #include <sys/systm.h>
91 1.1 ad #include <sys/filedesc.h>
92 1.1 ad #include <sys/file.h>
93 1.1 ad #include <sys/proc.h>
94 1.1 ad #include <sys/socketvar.h>
95 1.1 ad #include <sys/signalvar.h>
96 1.1 ad #include <sys/uio.h>
97 1.1 ad #include <sys/kernel.h>
98 1.29 rmind #include <sys/lwp.h>
99 1.1 ad #include <sys/poll.h>
100 1.1 ad #include <sys/mount.h>
101 1.1 ad #include <sys/syscallargs.h>
102 1.1 ad #include <sys/cpu.h>
103 1.1 ad #include <sys/atomic.h>
104 1.1 ad #include <sys/socketvar.h>
105 1.1 ad #include <sys/sleepq.h>
106 1.1 ad
107 1.1 ad /* Flags for lwp::l_selflag. */
108 1.1 ad #define SEL_RESET 0 /* awoken, interrupted, or not yet polling */
109 1.1 ad #define SEL_SCANNING 1 /* polling descriptors */
110 1.23 rmind #define SEL_BLOCKING 2 /* blocking and waiting for event */
111 1.23 rmind #define SEL_EVENT 3 /* interrupted, events set directly */
112 1.23 rmind
113 1.23 rmind /* Operations: either select() or poll(). */
114 1.23 rmind #define SELOP_SELECT 1
115 1.23 rmind #define SELOP_POLL 2
116 1.1 ad
117 1.22 ad /*
118 1.22 ad * Per-cluster state for select()/poll(). For a system with fewer
119 1.22 ad * than 32 CPUs, this gives us per-CPU clusters.
120 1.22 ad */
121 1.22 ad #define SELCLUSTERS 32
122 1.22 ad #define SELCLUSTERMASK (SELCLUSTERS - 1)
123 1.22 ad
124 1.22 ad typedef struct selcluster {
125 1.13 ad kmutex_t *sc_lock;
126 1.1 ad sleepq_t sc_sleepq;
127 1.1 ad int sc_ncoll;
128 1.1 ad uint32_t sc_mask;
129 1.22 ad } selcluster_t;
130 1.1 ad
131 1.23 rmind static inline int selscan(char *, const int, const size_t, register_t *);
132 1.23 rmind static inline int pollscan(struct pollfd *, const int, register_t *);
133 1.19 rmind static void selclear(void);
134 1.1 ad
135 1.23 rmind static const int sel_flag[] = {
136 1.23 rmind POLLRDNORM | POLLHUP | POLLERR,
137 1.23 rmind POLLWRNORM | POLLHUP | POLLERR,
138 1.23 rmind POLLRDBAND
139 1.23 rmind };
140 1.23 rmind
141 1.1 ad static syncobj_t select_sobj = {
142 1.1 ad SOBJ_SLEEPQ_FIFO,
143 1.1 ad sleepq_unsleep,
144 1.1 ad sleepq_changepri,
145 1.1 ad sleepq_lendpri,
146 1.1 ad syncobj_noowner,
147 1.1 ad };
148 1.1 ad
149 1.23 rmind static selcluster_t *selcluster[SELCLUSTERS] __read_mostly;
150 1.22 ad
151 1.1 ad /*
152 1.1 ad * Select system call.
153 1.1 ad */
154 1.1 ad int
155 1.12 christos sys___pselect50(struct lwp *l, const struct sys___pselect50_args *uap,
156 1.12 christos register_t *retval)
157 1.1 ad {
158 1.1 ad /* {
159 1.1 ad syscallarg(int) nd;
160 1.1 ad syscallarg(fd_set *) in;
161 1.1 ad syscallarg(fd_set *) ou;
162 1.1 ad syscallarg(fd_set *) ex;
163 1.1 ad syscallarg(const struct timespec *) ts;
164 1.1 ad syscallarg(sigset_t *) mask;
165 1.1 ad } */
166 1.14 christos struct timespec ats, *ts = NULL;
167 1.1 ad sigset_t amask, *mask = NULL;
168 1.1 ad int error;
169 1.1 ad
170 1.1 ad if (SCARG(uap, ts)) {
171 1.1 ad error = copyin(SCARG(uap, ts), &ats, sizeof(ats));
172 1.1 ad if (error)
173 1.1 ad return error;
174 1.14 christos ts = &ats;
175 1.1 ad }
176 1.1 ad if (SCARG(uap, mask) != NULL) {
177 1.1 ad error = copyin(SCARG(uap, mask), &amask, sizeof(amask));
178 1.1 ad if (error)
179 1.1 ad return error;
180 1.1 ad mask = &amask;
181 1.1 ad }
182 1.1 ad
183 1.19 rmind return selcommon(retval, SCARG(uap, nd), SCARG(uap, in),
184 1.14 christos SCARG(uap, ou), SCARG(uap, ex), ts, mask);
185 1.1 ad }
186 1.1 ad
187 1.1 ad int
188 1.12 christos sys___select50(struct lwp *l, const struct sys___select50_args *uap,
189 1.12 christos register_t *retval)
190 1.1 ad {
191 1.1 ad /* {
192 1.1 ad syscallarg(int) nd;
193 1.1 ad syscallarg(fd_set *) in;
194 1.1 ad syscallarg(fd_set *) ou;
195 1.1 ad syscallarg(fd_set *) ex;
196 1.1 ad syscallarg(struct timeval *) tv;
197 1.1 ad } */
198 1.14 christos struct timeval atv;
199 1.14 christos struct timespec ats, *ts = NULL;
200 1.1 ad int error;
201 1.1 ad
202 1.1 ad if (SCARG(uap, tv)) {
203 1.14 christos error = copyin(SCARG(uap, tv), (void *)&atv, sizeof(atv));
204 1.1 ad if (error)
205 1.1 ad return error;
206 1.14 christos TIMEVAL_TO_TIMESPEC(&atv, &ats);
207 1.14 christos ts = &ats;
208 1.1 ad }
209 1.1 ad
210 1.19 rmind return selcommon(retval, SCARG(uap, nd), SCARG(uap, in),
211 1.14 christos SCARG(uap, ou), SCARG(uap, ex), ts, NULL);
212 1.1 ad }
213 1.1 ad
214 1.17 rmind /*
215 1.17 rmind * sel_do_scan: common code to perform the scan on descriptors.
216 1.17 rmind */
217 1.17 rmind static int
218 1.23 rmind sel_do_scan(const int op, void *fds, const int nf, const size_t ni,
219 1.23 rmind struct timespec *ts, sigset_t *mask, register_t *retval)
220 1.1 ad {
221 1.17 rmind lwp_t * const l = curlwp;
222 1.22 ad selcluster_t *sc;
223 1.13 ad kmutex_t *lock;
224 1.17 rmind struct timespec sleepts;
225 1.17 rmind int error, timo;
226 1.1 ad
227 1.1 ad timo = 0;
228 1.14 christos if (ts && inittimeleft(ts, &sleepts) == -1) {
229 1.17 rmind return EINVAL;
230 1.1 ad }
231 1.1 ad
232 1.32 christos if (__predict_false(mask))
233 1.31 christos sigsuspendsetup(l, mask);
234 1.1 ad
235 1.22 ad sc = curcpu()->ci_data.cpu_selcluster;
236 1.13 ad lock = sc->sc_lock;
237 1.22 ad l->l_selcluster = sc;
238 1.1 ad SLIST_INIT(&l->l_selwait);
239 1.23 rmind
240 1.23 rmind l->l_selret = 0;
241 1.23 rmind if (op == SELOP_SELECT) {
242 1.30 rmind l->l_selbits = fds;
243 1.23 rmind l->l_selni = ni;
244 1.23 rmind } else {
245 1.23 rmind l->l_selbits = NULL;
246 1.23 rmind }
247 1.1 ad for (;;) {
248 1.17 rmind int ncoll;
249 1.17 rmind
250 1.1 ad /*
251 1.17 rmind * No need to lock. If this is overwritten by another value
252 1.17 rmind * while scanning, we will retry below. We only need to see
253 1.17 rmind * exact state from the descriptors that we are about to poll,
254 1.17 rmind * and lock activity resulting from fo_poll is enough to
255 1.17 rmind * provide an up to date value for new polling activity.
256 1.1 ad */
257 1.17 rmind l->l_selflag = SEL_SCANNING;
258 1.1 ad ncoll = sc->sc_ncoll;
259 1.1 ad
260 1.23 rmind if (op == SELOP_SELECT) {
261 1.23 rmind error = selscan((char *)fds, nf, ni, retval);
262 1.17 rmind } else {
263 1.23 rmind error = pollscan((struct pollfd *)fds, nf, retval);
264 1.17 rmind }
265 1.1 ad if (error || *retval)
266 1.1 ad break;
267 1.14 christos if (ts && (timo = gettimeleft(ts, &sleepts)) <= 0)
268 1.1 ad break;
269 1.23 rmind /*
270 1.23 rmind * Acquire the lock and perform the (re)checks. Note, if
271 1.23 rmind * collision has occured, then our state does not matter,
272 1.23 rmind * as we must perform re-scan. Therefore, check it first.
273 1.23 rmind */
274 1.23 rmind state_check:
275 1.13 ad mutex_spin_enter(lock);
276 1.23 rmind if (__predict_false(sc->sc_ncoll != ncoll)) {
277 1.23 rmind /* Collision: perform re-scan. */
278 1.23 rmind mutex_spin_exit(lock);
279 1.23 rmind continue;
280 1.23 rmind }
281 1.23 rmind if (__predict_true(l->l_selflag == SEL_EVENT)) {
282 1.23 rmind /* Events occured, they are set directly. */
283 1.23 rmind mutex_spin_exit(lock);
284 1.23 rmind KASSERT(l->l_selret != 0);
285 1.23 rmind *retval = l->l_selret;
286 1.23 rmind break;
287 1.23 rmind }
288 1.23 rmind if (__predict_true(l->l_selflag == SEL_RESET)) {
289 1.23 rmind /* Events occured, but re-scan is requested. */
290 1.13 ad mutex_spin_exit(lock);
291 1.1 ad continue;
292 1.1 ad }
293 1.23 rmind /* Nothing happen, therefore - sleep. */
294 1.1 ad l->l_selflag = SEL_BLOCKING;
295 1.7 ad l->l_kpriority = true;
296 1.13 ad sleepq_enter(&sc->sc_sleepq, l, lock);
297 1.1 ad sleepq_enqueue(&sc->sc_sleepq, sc, "select", &select_sobj);
298 1.1 ad error = sleepq_block(timo, true);
299 1.23 rmind if (error != 0) {
300 1.1 ad break;
301 1.23 rmind }
302 1.23 rmind /* Awoken: need to check the state. */
303 1.23 rmind goto state_check;
304 1.1 ad }
305 1.1 ad selclear();
306 1.1 ad
307 1.20 dsl /* select and poll are not restarted after signals... */
308 1.20 dsl if (error == ERESTART)
309 1.20 dsl return EINTR;
310 1.20 dsl if (error == EWOULDBLOCK)
311 1.20 dsl return 0;
312 1.17 rmind return error;
313 1.17 rmind }
314 1.17 rmind
315 1.17 rmind int
316 1.19 rmind selcommon(register_t *retval, int nd, fd_set *u_in, fd_set *u_ou,
317 1.19 rmind fd_set *u_ex, struct timespec *ts, sigset_t *mask)
318 1.17 rmind {
319 1.17 rmind char smallbits[howmany(FD_SETSIZE, NFDBITS) *
320 1.17 rmind sizeof(fd_mask) * 6];
321 1.17 rmind char *bits;
322 1.17 rmind int error, nf;
323 1.17 rmind size_t ni;
324 1.17 rmind
325 1.17 rmind if (nd < 0)
326 1.17 rmind return (EINVAL);
327 1.19 rmind nf = curlwp->l_fd->fd_dt->dt_nfiles;
328 1.17 rmind if (nd > nf) {
329 1.17 rmind /* forgiving; slightly wrong */
330 1.17 rmind nd = nf;
331 1.17 rmind }
332 1.17 rmind ni = howmany(nd, NFDBITS) * sizeof(fd_mask);
333 1.17 rmind if (ni * 6 > sizeof(smallbits)) {
334 1.17 rmind bits = kmem_alloc(ni * 6, KM_SLEEP);
335 1.17 rmind if (bits == NULL)
336 1.17 rmind return ENOMEM;
337 1.17 rmind } else
338 1.17 rmind bits = smallbits;
339 1.17 rmind
340 1.17 rmind #define getbits(name, x) \
341 1.17 rmind if (u_ ## name) { \
342 1.17 rmind error = copyin(u_ ## name, bits + ni * x, ni); \
343 1.17 rmind if (error) \
344 1.20 dsl goto fail; \
345 1.17 rmind } else \
346 1.17 rmind memset(bits + ni * x, 0, ni);
347 1.17 rmind getbits(in, 0);
348 1.17 rmind getbits(ou, 1);
349 1.17 rmind getbits(ex, 2);
350 1.17 rmind #undef getbits
351 1.1 ad
352 1.23 rmind error = sel_do_scan(SELOP_SELECT, bits, nd, ni, ts, mask, retval);
353 1.1 ad if (error == 0 && u_in != NULL)
354 1.1 ad error = copyout(bits + ni * 3, u_in, ni);
355 1.1 ad if (error == 0 && u_ou != NULL)
356 1.1 ad error = copyout(bits + ni * 4, u_ou, ni);
357 1.1 ad if (error == 0 && u_ex != NULL)
358 1.1 ad error = copyout(bits + ni * 5, u_ex, ni);
359 1.20 dsl fail:
360 1.1 ad if (bits != smallbits)
361 1.1 ad kmem_free(bits, ni * 6);
362 1.1 ad return (error);
363 1.1 ad }
364 1.1 ad
365 1.19 rmind static inline int
366 1.23 rmind selscan(char *bits, const int nfd, const size_t ni, register_t *retval)
367 1.1 ad {
368 1.17 rmind fd_mask *ibitp, *obitp;
369 1.23 rmind int msk, i, j, fd, n;
370 1.1 ad file_t *fp;
371 1.1 ad
372 1.17 rmind ibitp = (fd_mask *)(bits + ni * 0);
373 1.17 rmind obitp = (fd_mask *)(bits + ni * 3);
374 1.1 ad n = 0;
375 1.17 rmind
376 1.1 ad for (msk = 0; msk < 3; msk++) {
377 1.1 ad for (i = 0; i < nfd; i += NFDBITS) {
378 1.23 rmind fd_mask ibits, obits;
379 1.23 rmind
380 1.1 ad ibits = *ibitp++;
381 1.1 ad obits = 0;
382 1.1 ad while ((j = ffs(ibits)) && (fd = i + --j) < nfd) {
383 1.1 ad ibits &= ~(1 << j);
384 1.1 ad if ((fp = fd_getfile(fd)) == NULL)
385 1.1 ad return (EBADF);
386 1.23 rmind /*
387 1.23 rmind * Setup an argument to selrecord(), which is
388 1.23 rmind * a file descriptor number.
389 1.23 rmind */
390 1.23 rmind curlwp->l_selrec = fd;
391 1.23 rmind if ((*fp->f_ops->fo_poll)(fp, sel_flag[msk])) {
392 1.1 ad obits |= (1 << j);
393 1.1 ad n++;
394 1.1 ad }
395 1.1 ad fd_putfile(fd);
396 1.1 ad }
397 1.1 ad *obitp++ = obits;
398 1.1 ad }
399 1.1 ad }
400 1.1 ad *retval = n;
401 1.1 ad return (0);
402 1.1 ad }
403 1.1 ad
404 1.1 ad /*
405 1.1 ad * Poll system call.
406 1.1 ad */
407 1.1 ad int
408 1.1 ad sys_poll(struct lwp *l, const struct sys_poll_args *uap, register_t *retval)
409 1.1 ad {
410 1.1 ad /* {
411 1.1 ad syscallarg(struct pollfd *) fds;
412 1.1 ad syscallarg(u_int) nfds;
413 1.1 ad syscallarg(int) timeout;
414 1.1 ad } */
415 1.14 christos struct timespec ats, *ts = NULL;
416 1.1 ad
417 1.1 ad if (SCARG(uap, timeout) != INFTIM) {
418 1.14 christos ats.tv_sec = SCARG(uap, timeout) / 1000;
419 1.14 christos ats.tv_nsec = (SCARG(uap, timeout) % 1000) * 1000000;
420 1.14 christos ts = &ats;
421 1.1 ad }
422 1.1 ad
423 1.19 rmind return pollcommon(retval, SCARG(uap, fds), SCARG(uap, nfds), ts, NULL);
424 1.1 ad }
425 1.1 ad
426 1.1 ad /*
427 1.1 ad * Poll system call.
428 1.1 ad */
429 1.1 ad int
430 1.12 christos sys___pollts50(struct lwp *l, const struct sys___pollts50_args *uap,
431 1.12 christos register_t *retval)
432 1.1 ad {
433 1.1 ad /* {
434 1.1 ad syscallarg(struct pollfd *) fds;
435 1.1 ad syscallarg(u_int) nfds;
436 1.1 ad syscallarg(const struct timespec *) ts;
437 1.1 ad syscallarg(const sigset_t *) mask;
438 1.1 ad } */
439 1.14 christos struct timespec ats, *ts = NULL;
440 1.1 ad sigset_t amask, *mask = NULL;
441 1.1 ad int error;
442 1.1 ad
443 1.1 ad if (SCARG(uap, ts)) {
444 1.1 ad error = copyin(SCARG(uap, ts), &ats, sizeof(ats));
445 1.1 ad if (error)
446 1.1 ad return error;
447 1.14 christos ts = &ats;
448 1.1 ad }
449 1.1 ad if (SCARG(uap, mask)) {
450 1.1 ad error = copyin(SCARG(uap, mask), &amask, sizeof(amask));
451 1.1 ad if (error)
452 1.1 ad return error;
453 1.1 ad mask = &amask;
454 1.1 ad }
455 1.1 ad
456 1.19 rmind return pollcommon(retval, SCARG(uap, fds), SCARG(uap, nfds), ts, mask);
457 1.1 ad }
458 1.1 ad
459 1.1 ad int
460 1.19 rmind pollcommon(register_t *retval, struct pollfd *u_fds, u_int nfds,
461 1.14 christos struct timespec *ts, sigset_t *mask)
462 1.1 ad {
463 1.11 yamt struct pollfd smallfds[32];
464 1.11 yamt struct pollfd *fds;
465 1.17 rmind int error;
466 1.20 dsl size_t ni;
467 1.1 ad
468 1.20 dsl if (nfds > 1000 + curlwp->l_fd->fd_dt->dt_nfiles) {
469 1.20 dsl /*
470 1.20 dsl * Either the user passed in a very sparse 'fds' or junk!
471 1.20 dsl * The kmem_alloc() call below would be bad news.
472 1.20 dsl * We could process the 'fds' array in chunks, but that
473 1.20 dsl * is a lot of code that isn't normally useful.
474 1.20 dsl * (Or just move the copyin/out into pollscan().)
475 1.20 dsl * Historically the code silently truncated 'fds' to
476 1.20 dsl * dt_nfiles entries - but that does cause issues.
477 1.20 dsl */
478 1.20 dsl return EINVAL;
479 1.1 ad }
480 1.1 ad ni = nfds * sizeof(struct pollfd);
481 1.11 yamt if (ni > sizeof(smallfds)) {
482 1.11 yamt fds = kmem_alloc(ni, KM_SLEEP);
483 1.11 yamt if (fds == NULL)
484 1.9 rmind return ENOMEM;
485 1.9 rmind } else
486 1.11 yamt fds = smallfds;
487 1.1 ad
488 1.11 yamt error = copyin(u_fds, fds, ni);
489 1.1 ad if (error)
490 1.20 dsl goto fail;
491 1.1 ad
492 1.23 rmind error = sel_do_scan(SELOP_POLL, fds, nfds, ni, ts, mask, retval);
493 1.1 ad if (error == 0)
494 1.11 yamt error = copyout(fds, u_fds, ni);
495 1.20 dsl fail:
496 1.11 yamt if (fds != smallfds)
497 1.11 yamt kmem_free(fds, ni);
498 1.1 ad return (error);
499 1.1 ad }
500 1.1 ad
501 1.19 rmind static inline int
502 1.23 rmind pollscan(struct pollfd *fds, const int nfd, register_t *retval)
503 1.1 ad {
504 1.1 ad file_t *fp;
505 1.23 rmind int i, n = 0;
506 1.1 ad
507 1.1 ad for (i = 0; i < nfd; i++, fds++) {
508 1.1 ad if (fds->fd < 0) {
509 1.1 ad fds->revents = 0;
510 1.1 ad } else if ((fp = fd_getfile(fds->fd)) == NULL) {
511 1.1 ad fds->revents = POLLNVAL;
512 1.1 ad n++;
513 1.1 ad } else {
514 1.23 rmind /*
515 1.23 rmind * Perform poll: registers select request or returns
516 1.23 rmind * the events which are set. Setup an argument for
517 1.23 rmind * selrecord(), which is a pointer to struct pollfd.
518 1.23 rmind */
519 1.23 rmind curlwp->l_selrec = (uintptr_t)fds;
520 1.1 ad fds->revents = (*fp->f_ops->fo_poll)(fp,
521 1.1 ad fds->events | POLLERR | POLLHUP);
522 1.1 ad if (fds->revents != 0)
523 1.1 ad n++;
524 1.1 ad fd_putfile(fds->fd);
525 1.1 ad }
526 1.1 ad }
527 1.1 ad *retval = n;
528 1.1 ad return (0);
529 1.1 ad }
530 1.1 ad
531 1.1 ad int
532 1.1 ad seltrue(dev_t dev, int events, lwp_t *l)
533 1.1 ad {
534 1.1 ad
535 1.1 ad return (events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
536 1.1 ad }
537 1.1 ad
538 1.1 ad /*
539 1.1 ad * Record a select request. Concurrency issues:
540 1.1 ad *
541 1.1 ad * The caller holds the same lock across calls to selrecord() and
542 1.4 yamt * selnotify(), so we don't need to consider a concurrent wakeup
543 1.1 ad * while in this routine.
544 1.1 ad *
545 1.1 ad * The only activity we need to guard against is selclear(), called by
546 1.17 rmind * another thread that is exiting sel_do_scan().
547 1.1 ad * `sel_lwp' can only become non-NULL while the caller's lock is held,
548 1.1 ad * so it cannot become non-NULL due to a change made by another thread
549 1.1 ad * while we are in this routine. It can only become _NULL_ due to a
550 1.1 ad * call to selclear().
551 1.1 ad *
552 1.1 ad * If it is non-NULL and != selector there is the potential for
553 1.1 ad * selclear() to be called by another thread. If either of those
554 1.1 ad * conditions are true, we're not interested in touching the `named
555 1.1 ad * waiter' part of the selinfo record because we need to record a
556 1.1 ad * collision. Hence there is no need for additional locking in this
557 1.1 ad * routine.
558 1.1 ad */
559 1.1 ad void
560 1.1 ad selrecord(lwp_t *selector, struct selinfo *sip)
561 1.1 ad {
562 1.22 ad selcluster_t *sc;
563 1.1 ad lwp_t *other;
564 1.1 ad
565 1.1 ad KASSERT(selector == curlwp);
566 1.1 ad
567 1.22 ad sc = selector->l_selcluster;
568 1.1 ad other = sip->sel_lwp;
569 1.1 ad
570 1.1 ad if (other == selector) {
571 1.23 rmind /* 1. We (selector) already claimed to be the first LWP. */
572 1.22 ad KASSERT(sip->sel_cluster = sc);
573 1.1 ad } else if (other == NULL) {
574 1.1 ad /*
575 1.23 rmind * 2. No first LWP, therefore we (selector) are the first.
576 1.23 rmind *
577 1.23 rmind * There may be unnamed waiters (collisions). Issue a memory
578 1.23 rmind * barrier to ensure that we access sel_lwp (above) before
579 1.23 rmind * other fields - this guards against a call to selclear().
580 1.1 ad */
581 1.1 ad membar_enter();
582 1.1 ad sip->sel_lwp = selector;
583 1.1 ad SLIST_INSERT_HEAD(&selector->l_selwait, sip, sel_chain);
584 1.23 rmind /* Copy the argument, which is for selnotify(). */
585 1.23 rmind sip->sel_fdinfo = selector->l_selrec;
586 1.22 ad /* Replace selinfo's lock with the chosen cluster's lock. */
587 1.22 ad sip->sel_cluster = sc;
588 1.1 ad } else {
589 1.23 rmind /* 3. Multiple waiters: record a collision. */
590 1.1 ad sip->sel_collision |= sc->sc_mask;
591 1.22 ad KASSERT(sip->sel_cluster != NULL);
592 1.1 ad }
593 1.1 ad }
594 1.1 ad
595 1.1 ad /*
596 1.23 rmind * sel_setevents: a helper function for selnotify(), to set the events
597 1.23 rmind * for LWP sleeping in selcommon() or pollcommon().
598 1.23 rmind */
599 1.30 rmind static inline bool
600 1.23 rmind sel_setevents(lwp_t *l, struct selinfo *sip, const int events)
601 1.23 rmind {
602 1.23 rmind const int oflag = l->l_selflag;
603 1.30 rmind int ret = 0;
604 1.23 rmind
605 1.23 rmind /*
606 1.23 rmind * If we require re-scan or it was required by somebody else,
607 1.23 rmind * then just (re)set SEL_RESET and return.
608 1.23 rmind */
609 1.23 rmind if (__predict_false(events == 0 || oflag == SEL_RESET)) {
610 1.23 rmind l->l_selflag = SEL_RESET;
611 1.30 rmind return true;
612 1.23 rmind }
613 1.23 rmind /*
614 1.23 rmind * Direct set. Note: select state of LWP is locked. First,
615 1.23 rmind * determine whether it is selcommon() or pollcommon().
616 1.23 rmind */
617 1.23 rmind if (l->l_selbits != NULL) {
618 1.30 rmind const size_t ni = l->l_selni;
619 1.23 rmind fd_mask *fds = (fd_mask *)l->l_selbits;
620 1.30 rmind fd_mask *ofds = (fd_mask *)((char *)fds + ni * 3);
621 1.30 rmind const int fd = sip->sel_fdinfo, fbit = 1 << (fd & __NFDMASK);
622 1.25 rmind const int idx = fd >> __NFDSHIFT;
623 1.23 rmind int n;
624 1.23 rmind
625 1.23 rmind for (n = 0; n < 3; n++) {
626 1.30 rmind if ((fds[idx] & fbit) != 0 && (sel_flag[n] & events)) {
627 1.30 rmind ofds[idx] |= fbit;
628 1.30 rmind ret++;
629 1.23 rmind }
630 1.23 rmind fds = (fd_mask *)((char *)fds + ni);
631 1.30 rmind ofds = (fd_mask *)((char *)ofds + ni);
632 1.23 rmind }
633 1.23 rmind } else {
634 1.23 rmind struct pollfd *pfd = (void *)sip->sel_fdinfo;
635 1.30 rmind int revents = events & (pfd->events | POLLERR | POLLHUP);
636 1.30 rmind
637 1.30 rmind if (revents) {
638 1.30 rmind pfd->revents |= revents;
639 1.30 rmind ret = 1;
640 1.30 rmind }
641 1.30 rmind }
642 1.30 rmind /* Check whether there are any events to return. */
643 1.30 rmind if (!ret) {
644 1.30 rmind return false;
645 1.23 rmind }
646 1.23 rmind /* Indicate direct set and note the event (cluster lock is held). */
647 1.23 rmind l->l_selflag = SEL_EVENT;
648 1.30 rmind l->l_selret += ret;
649 1.30 rmind return true;
650 1.23 rmind }
651 1.23 rmind
652 1.23 rmind /*
653 1.1 ad * Do a wakeup when a selectable event occurs. Concurrency issues:
654 1.1 ad *
655 1.1 ad * As per selrecord(), the caller's object lock is held. If there
656 1.22 ad * is a named waiter, we must acquire the associated selcluster's lock
657 1.1 ad * in order to synchronize with selclear() and pollers going to sleep
658 1.17 rmind * in sel_do_scan().
659 1.1 ad *
660 1.22 ad * sip->sel_cluser cannot change at this point, as it is only changed
661 1.1 ad * in selrecord(), and concurrent calls to selrecord() are locked
662 1.1 ad * out by the caller.
663 1.1 ad */
664 1.1 ad void
665 1.1 ad selnotify(struct selinfo *sip, int events, long knhint)
666 1.1 ad {
667 1.22 ad selcluster_t *sc;
668 1.1 ad uint32_t mask;
669 1.16 rmind int index, oflag;
670 1.1 ad lwp_t *l;
671 1.13 ad kmutex_t *lock;
672 1.1 ad
673 1.1 ad KNOTE(&sip->sel_klist, knhint);
674 1.1 ad
675 1.1 ad if (sip->sel_lwp != NULL) {
676 1.1 ad /* One named LWP is waiting. */
677 1.22 ad sc = sip->sel_cluster;
678 1.13 ad lock = sc->sc_lock;
679 1.13 ad mutex_spin_enter(lock);
680 1.1 ad /* Still there? */
681 1.1 ad if (sip->sel_lwp != NULL) {
682 1.23 rmind /*
683 1.23 rmind * Set the events for our LWP and indicate that.
684 1.23 rmind * Otherwise, request for a full re-scan.
685 1.23 rmind */
686 1.1 ad l = sip->sel_lwp;
687 1.23 rmind oflag = l->l_selflag;
688 1.28 rmind #ifndef NO_DIRECT_SELECT
689 1.30 rmind if (!sel_setevents(l, sip, events)) {
690 1.30 rmind /* No events to return. */
691 1.30 rmind mutex_spin_exit(lock);
692 1.30 rmind return;
693 1.30 rmind }
694 1.26 rmind #else
695 1.26 rmind l->l_selflag = SEL_RESET;
696 1.26 rmind #endif
697 1.1 ad /*
698 1.1 ad * If thread is sleeping, wake it up. If it's not
699 1.1 ad * yet asleep, it will notice the change in state
700 1.1 ad * and will re-poll the descriptors.
701 1.1 ad */
702 1.13 ad if (oflag == SEL_BLOCKING && l->l_mutex == lock) {
703 1.1 ad KASSERT(l->l_wchan == sc);
704 1.16 rmind sleepq_unsleep(l, false);
705 1.1 ad }
706 1.1 ad }
707 1.13 ad mutex_spin_exit(lock);
708 1.1 ad }
709 1.1 ad
710 1.1 ad if ((mask = sip->sel_collision) != 0) {
711 1.1 ad /*
712 1.1 ad * There was a collision (multiple waiters): we must
713 1.1 ad * inform all potentially interested waiters.
714 1.1 ad */
715 1.1 ad sip->sel_collision = 0;
716 1.3 ad do {
717 1.1 ad index = ffs(mask) - 1;
718 1.1 ad mask &= ~(1 << index);
719 1.22 ad sc = selcluster[index];
720 1.13 ad lock = sc->sc_lock;
721 1.13 ad mutex_spin_enter(lock);
722 1.1 ad sc->sc_ncoll++;
723 1.13 ad sleepq_wake(&sc->sc_sleepq, sc, (u_int)-1, lock);
724 1.3 ad } while (__predict_false(mask != 0));
725 1.1 ad }
726 1.1 ad }
727 1.1 ad
728 1.1 ad /*
729 1.1 ad * Remove an LWP from all objects that it is waiting for. Concurrency
730 1.1 ad * issues:
731 1.1 ad *
732 1.1 ad * The object owner's (e.g. device driver) lock is not held here. Calls
733 1.1 ad * can be made to selrecord() and we do not synchronize against those
734 1.1 ad * directly using locks. However, we use `sel_lwp' to lock out changes.
735 1.1 ad * Before clearing it we must use memory barriers to ensure that we can
736 1.1 ad * safely traverse the list of selinfo records.
737 1.1 ad */
738 1.1 ad static void
739 1.1 ad selclear(void)
740 1.1 ad {
741 1.1 ad struct selinfo *sip, *next;
742 1.22 ad selcluster_t *sc;
743 1.1 ad lwp_t *l;
744 1.13 ad kmutex_t *lock;
745 1.1 ad
746 1.1 ad l = curlwp;
747 1.22 ad sc = l->l_selcluster;
748 1.13 ad lock = sc->sc_lock;
749 1.1 ad
750 1.13 ad mutex_spin_enter(lock);
751 1.1 ad for (sip = SLIST_FIRST(&l->l_selwait); sip != NULL; sip = next) {
752 1.1 ad KASSERT(sip->sel_lwp == l);
753 1.22 ad KASSERT(sip->sel_cluster == l->l_selcluster);
754 1.22 ad
755 1.1 ad /*
756 1.1 ad * Read link to next selinfo record, if any.
757 1.1 ad * It's no longer safe to touch `sip' after clearing
758 1.1 ad * `sel_lwp', so ensure that the read of `sel_chain'
759 1.1 ad * completes before the clearing of sel_lwp becomes
760 1.1 ad * globally visible.
761 1.1 ad */
762 1.1 ad next = SLIST_NEXT(sip, sel_chain);
763 1.1 ad membar_exit();
764 1.1 ad /* Release the record for another named waiter to use. */
765 1.1 ad sip->sel_lwp = NULL;
766 1.1 ad }
767 1.13 ad mutex_spin_exit(lock);
768 1.1 ad }
769 1.1 ad
770 1.1 ad /*
771 1.1 ad * Initialize the select/poll system calls. Called once for each
772 1.1 ad * CPU in the system, as they are attached.
773 1.1 ad */
774 1.1 ad void
775 1.1 ad selsysinit(struct cpu_info *ci)
776 1.1 ad {
777 1.22 ad selcluster_t *sc;
778 1.22 ad u_int index;
779 1.1 ad
780 1.22 ad /* If already a cluster in place for this bit, re-use. */
781 1.22 ad index = cpu_index(ci) & SELCLUSTERMASK;
782 1.22 ad sc = selcluster[index];
783 1.22 ad if (sc == NULL) {
784 1.22 ad sc = kmem_alloc(roundup2(sizeof(selcluster_t),
785 1.22 ad coherency_unit) + coherency_unit, KM_SLEEP);
786 1.22 ad sc = (void *)roundup2((uintptr_t)sc, coherency_unit);
787 1.22 ad sc->sc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
788 1.22 ad sleepq_init(&sc->sc_sleepq);
789 1.22 ad sc->sc_ncoll = 0;
790 1.22 ad sc->sc_mask = (1 << index);
791 1.22 ad selcluster[index] = sc;
792 1.22 ad }
793 1.22 ad ci->ci_data.cpu_selcluster = sc;
794 1.1 ad }
795 1.1 ad
796 1.1 ad /*
797 1.1 ad * Initialize a selinfo record.
798 1.1 ad */
799 1.1 ad void
800 1.1 ad selinit(struct selinfo *sip)
801 1.1 ad {
802 1.1 ad
803 1.1 ad memset(sip, 0, sizeof(*sip));
804 1.1 ad }
805 1.1 ad
806 1.1 ad /*
807 1.1 ad * Destroy a selinfo record. The owning object must not gain new
808 1.1 ad * references while this is in progress: all activity on the record
809 1.1 ad * must be stopped.
810 1.1 ad *
811 1.1 ad * Concurrency issues: we only need guard against a call to selclear()
812 1.17 rmind * by a thread exiting sel_do_scan(). The caller has prevented further
813 1.17 rmind * references being made to the selinfo record via selrecord(), and it
814 1.23 rmind * will not call selnotify() again.
815 1.1 ad */
816 1.1 ad void
817 1.1 ad seldestroy(struct selinfo *sip)
818 1.1 ad {
819 1.22 ad selcluster_t *sc;
820 1.13 ad kmutex_t *lock;
821 1.1 ad lwp_t *l;
822 1.1 ad
823 1.1 ad if (sip->sel_lwp == NULL)
824 1.1 ad return;
825 1.1 ad
826 1.1 ad /*
827 1.22 ad * Lock out selclear(). The selcluster pointer can't change while
828 1.1 ad * we are here since it is only ever changed in selrecord(),
829 1.1 ad * and that will not be entered again for this record because
830 1.1 ad * it is dying.
831 1.1 ad */
832 1.22 ad KASSERT(sip->sel_cluster != NULL);
833 1.22 ad sc = sip->sel_cluster;
834 1.13 ad lock = sc->sc_lock;
835 1.13 ad mutex_spin_enter(lock);
836 1.1 ad if ((l = sip->sel_lwp) != NULL) {
837 1.1 ad /*
838 1.1 ad * This should rarely happen, so although SLIST_REMOVE()
839 1.1 ad * is slow, using it here is not a problem.
840 1.1 ad */
841 1.22 ad KASSERT(l->l_selcluster == sc);
842 1.1 ad SLIST_REMOVE(&l->l_selwait, sip, selinfo, sel_chain);
843 1.1 ad sip->sel_lwp = NULL;
844 1.1 ad }
845 1.13 ad mutex_spin_exit(lock);
846 1.1 ad }
847 1.1 ad
848 1.1 ad int
849 1.14 christos pollsock(struct socket *so, const struct timespec *tsp, int events)
850 1.1 ad {
851 1.1 ad int ncoll, error, timo;
852 1.14 christos struct timespec sleepts, ts;
853 1.22 ad selcluster_t *sc;
854 1.1 ad lwp_t *l;
855 1.13 ad kmutex_t *lock;
856 1.1 ad
857 1.1 ad timo = 0;
858 1.14 christos if (tsp != NULL) {
859 1.14 christos ts = *tsp;
860 1.14 christos if (inittimeleft(&ts, &sleepts) == -1)
861 1.1 ad return EINVAL;
862 1.1 ad }
863 1.1 ad
864 1.1 ad l = curlwp;
865 1.22 ad sc = curcpu()->ci_data.cpu_selcluster;
866 1.13 ad lock = sc->sc_lock;
867 1.22 ad l->l_selcluster = sc;
868 1.1 ad SLIST_INIT(&l->l_selwait);
869 1.1 ad error = 0;
870 1.1 ad for (;;) {
871 1.1 ad /*
872 1.1 ad * No need to lock. If this is overwritten by another
873 1.1 ad * value while scanning, we will retry below. We only
874 1.1 ad * need to see exact state from the descriptors that
875 1.1 ad * we are about to poll, and lock activity resulting
876 1.1 ad * from fo_poll is enough to provide an up to date value
877 1.1 ad * for new polling activity.
878 1.1 ad */
879 1.1 ad ncoll = sc->sc_ncoll;
880 1.1 ad l->l_selflag = SEL_SCANNING;
881 1.1 ad if (sopoll(so, events) != 0)
882 1.1 ad break;
883 1.14 christos if (tsp && (timo = gettimeleft(&ts, &sleepts)) <= 0)
884 1.1 ad break;
885 1.13 ad mutex_spin_enter(lock);
886 1.1 ad if (l->l_selflag != SEL_SCANNING || sc->sc_ncoll != ncoll) {
887 1.13 ad mutex_spin_exit(lock);
888 1.1 ad continue;
889 1.1 ad }
890 1.1 ad l->l_selflag = SEL_BLOCKING;
891 1.13 ad sleepq_enter(&sc->sc_sleepq, l, lock);
892 1.1 ad sleepq_enqueue(&sc->sc_sleepq, sc, "pollsock", &select_sobj);
893 1.1 ad error = sleepq_block(timo, true);
894 1.1 ad if (error != 0)
895 1.1 ad break;
896 1.1 ad }
897 1.1 ad selclear();
898 1.1 ad /* poll is not restarted after signals... */
899 1.1 ad if (error == ERESTART)
900 1.1 ad error = EINTR;
901 1.1 ad if (error == EWOULDBLOCK)
902 1.1 ad error = 0;
903 1.1 ad return (error);
904 1.1 ad }
905