Home | History | Annotate | Line # | Download | only in kern
sys_select.c revision 1.33
      1  1.33  christos /*	$NetBSD: sys_select.c,v 1.33 2011/05/28 15:33:41 christos Exp $	*/
      2   1.1        ad 
      3   1.1        ad /*-
      4  1.22        ad  * Copyright (c) 2007, 2008, 2009, 2010 The NetBSD Foundation, Inc.
      5   1.1        ad  * All rights reserved.
      6   1.1        ad  *
      7   1.1        ad  * This code is derived from software contributed to The NetBSD Foundation
      8  1.23     rmind  * by Andrew Doran and Mindaugas Rasiukevicius.
      9   1.1        ad  *
     10   1.1        ad  * Redistribution and use in source and binary forms, with or without
     11   1.1        ad  * modification, are permitted provided that the following conditions
     12   1.1        ad  * are met:
     13   1.1        ad  * 1. Redistributions of source code must retain the above copyright
     14   1.1        ad  *    notice, this list of conditions and the following disclaimer.
     15   1.1        ad  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.1        ad  *    notice, this list of conditions and the following disclaimer in the
     17   1.1        ad  *    documentation and/or other materials provided with the distribution.
     18   1.1        ad  *
     19   1.1        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20   1.1        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21   1.1        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22   1.1        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23   1.1        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24   1.1        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25   1.1        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26   1.1        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27   1.1        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28   1.1        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29   1.1        ad  * POSSIBILITY OF SUCH DAMAGE.
     30   1.1        ad  */
     31   1.1        ad 
     32   1.1        ad /*
     33   1.1        ad  * Copyright (c) 1982, 1986, 1989, 1993
     34   1.1        ad  *	The Regents of the University of California.  All rights reserved.
     35   1.1        ad  * (c) UNIX System Laboratories, Inc.
     36   1.1        ad  * All or some portions of this file are derived from material licensed
     37   1.1        ad  * to the University of California by American Telephone and Telegraph
     38   1.1        ad  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     39   1.1        ad  * the permission of UNIX System Laboratories, Inc.
     40   1.1        ad  *
     41   1.1        ad  * Redistribution and use in source and binary forms, with or without
     42   1.1        ad  * modification, are permitted provided that the following conditions
     43   1.1        ad  * are met:
     44   1.1        ad  * 1. Redistributions of source code must retain the above copyright
     45   1.1        ad  *    notice, this list of conditions and the following disclaimer.
     46   1.1        ad  * 2. Redistributions in binary form must reproduce the above copyright
     47   1.1        ad  *    notice, this list of conditions and the following disclaimer in the
     48   1.1        ad  *    documentation and/or other materials provided with the distribution.
     49   1.1        ad  * 3. Neither the name of the University nor the names of its contributors
     50   1.1        ad  *    may be used to endorse or promote products derived from this software
     51   1.1        ad  *    without specific prior written permission.
     52   1.1        ad  *
     53   1.1        ad  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54   1.1        ad  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55   1.1        ad  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56   1.1        ad  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57   1.1        ad  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58   1.1        ad  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59   1.1        ad  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60   1.1        ad  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61   1.1        ad  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62   1.1        ad  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63   1.1        ad  * SUCH DAMAGE.
     64   1.1        ad  *
     65   1.1        ad  *	@(#)sys_generic.c	8.9 (Berkeley) 2/14/95
     66   1.1        ad  */
     67   1.1        ad 
     68   1.1        ad /*
     69  1.21     rmind  * System calls of synchronous I/O multiplexing subsystem.
     70  1.21     rmind  *
     71  1.21     rmind  * Locking
     72  1.21     rmind  *
     73  1.22        ad  * Two locks are used: <object-lock> and selcluster_t::sc_lock.
     74  1.21     rmind  *
     75  1.21     rmind  * The <object-lock> might be a device driver or another subsystem, e.g.
     76  1.21     rmind  * socket or pipe.  This lock is not exported, and thus invisible to this
     77  1.21     rmind  * subsystem.  Mainly, synchronisation between selrecord() and selnotify()
     78  1.21     rmind  * routines depends on this lock, as it will be described in the comments.
     79  1.21     rmind  *
     80  1.21     rmind  * Lock order
     81  1.21     rmind  *
     82  1.21     rmind  *	<object-lock> ->
     83  1.22        ad  *		selcluster_t::sc_lock
     84   1.1        ad  */
     85   1.1        ad 
     86   1.1        ad #include <sys/cdefs.h>
     87  1.33  christos __KERNEL_RCSID(0, "$NetBSD: sys_select.c,v 1.33 2011/05/28 15:33:41 christos Exp $");
     88   1.1        ad 
     89   1.1        ad #include <sys/param.h>
     90   1.1        ad #include <sys/systm.h>
     91   1.1        ad #include <sys/filedesc.h>
     92   1.1        ad #include <sys/file.h>
     93   1.1        ad #include <sys/proc.h>
     94   1.1        ad #include <sys/socketvar.h>
     95   1.1        ad #include <sys/signalvar.h>
     96   1.1        ad #include <sys/uio.h>
     97   1.1        ad #include <sys/kernel.h>
     98  1.29     rmind #include <sys/lwp.h>
     99   1.1        ad #include <sys/poll.h>
    100   1.1        ad #include <sys/mount.h>
    101   1.1        ad #include <sys/syscallargs.h>
    102   1.1        ad #include <sys/cpu.h>
    103   1.1        ad #include <sys/atomic.h>
    104   1.1        ad #include <sys/socketvar.h>
    105   1.1        ad #include <sys/sleepq.h>
    106   1.1        ad 
    107   1.1        ad /* Flags for lwp::l_selflag. */
    108   1.1        ad #define	SEL_RESET	0	/* awoken, interrupted, or not yet polling */
    109   1.1        ad #define	SEL_SCANNING	1	/* polling descriptors */
    110  1.23     rmind #define	SEL_BLOCKING	2	/* blocking and waiting for event */
    111  1.23     rmind #define	SEL_EVENT	3	/* interrupted, events set directly */
    112  1.23     rmind 
    113  1.23     rmind /* Operations: either select() or poll(). */
    114  1.23     rmind #define	SELOP_SELECT	1
    115  1.23     rmind #define	SELOP_POLL	2
    116   1.1        ad 
    117  1.22        ad /*
    118  1.22        ad  * Per-cluster state for select()/poll().  For a system with fewer
    119  1.22        ad  * than 32 CPUs, this gives us per-CPU clusters.
    120  1.22        ad  */
    121  1.22        ad #define	SELCLUSTERS	32
    122  1.22        ad #define	SELCLUSTERMASK	(SELCLUSTERS - 1)
    123  1.22        ad 
    124  1.22        ad typedef struct selcluster {
    125  1.13        ad 	kmutex_t	*sc_lock;
    126   1.1        ad 	sleepq_t	sc_sleepq;
    127   1.1        ad 	int		sc_ncoll;
    128   1.1        ad 	uint32_t	sc_mask;
    129  1.22        ad } selcluster_t;
    130   1.1        ad 
    131  1.23     rmind static inline int	selscan(char *, const int, const size_t, register_t *);
    132  1.23     rmind static inline int	pollscan(struct pollfd *, const int, register_t *);
    133  1.19     rmind static void		selclear(void);
    134   1.1        ad 
    135  1.23     rmind static const int sel_flag[] = {
    136  1.23     rmind 	POLLRDNORM | POLLHUP | POLLERR,
    137  1.23     rmind 	POLLWRNORM | POLLHUP | POLLERR,
    138  1.23     rmind 	POLLRDBAND
    139  1.23     rmind };
    140  1.23     rmind 
    141   1.1        ad static syncobj_t select_sobj = {
    142   1.1        ad 	SOBJ_SLEEPQ_FIFO,
    143   1.1        ad 	sleepq_unsleep,
    144   1.1        ad 	sleepq_changepri,
    145   1.1        ad 	sleepq_lendpri,
    146   1.1        ad 	syncobj_noowner,
    147   1.1        ad };
    148   1.1        ad 
    149  1.23     rmind static selcluster_t	*selcluster[SELCLUSTERS] __read_mostly;
    150  1.22        ad 
    151   1.1        ad /*
    152   1.1        ad  * Select system call.
    153   1.1        ad  */
    154   1.1        ad int
    155  1.12  christos sys___pselect50(struct lwp *l, const struct sys___pselect50_args *uap,
    156  1.12  christos     register_t *retval)
    157   1.1        ad {
    158   1.1        ad 	/* {
    159   1.1        ad 		syscallarg(int)				nd;
    160   1.1        ad 		syscallarg(fd_set *)			in;
    161   1.1        ad 		syscallarg(fd_set *)			ou;
    162   1.1        ad 		syscallarg(fd_set *)			ex;
    163   1.1        ad 		syscallarg(const struct timespec *)	ts;
    164   1.1        ad 		syscallarg(sigset_t *)			mask;
    165   1.1        ad 	} */
    166  1.14  christos 	struct timespec	ats, *ts = NULL;
    167   1.1        ad 	sigset_t	amask, *mask = NULL;
    168   1.1        ad 	int		error;
    169   1.1        ad 
    170   1.1        ad 	if (SCARG(uap, ts)) {
    171   1.1        ad 		error = copyin(SCARG(uap, ts), &ats, sizeof(ats));
    172   1.1        ad 		if (error)
    173   1.1        ad 			return error;
    174  1.14  christos 		ts = &ats;
    175   1.1        ad 	}
    176   1.1        ad 	if (SCARG(uap, mask) != NULL) {
    177   1.1        ad 		error = copyin(SCARG(uap, mask), &amask, sizeof(amask));
    178   1.1        ad 		if (error)
    179   1.1        ad 			return error;
    180   1.1        ad 		mask = &amask;
    181   1.1        ad 	}
    182   1.1        ad 
    183  1.19     rmind 	return selcommon(retval, SCARG(uap, nd), SCARG(uap, in),
    184  1.14  christos 	    SCARG(uap, ou), SCARG(uap, ex), ts, mask);
    185   1.1        ad }
    186   1.1        ad 
    187   1.1        ad int
    188  1.12  christos sys___select50(struct lwp *l, const struct sys___select50_args *uap,
    189  1.12  christos     register_t *retval)
    190   1.1        ad {
    191   1.1        ad 	/* {
    192   1.1        ad 		syscallarg(int)			nd;
    193   1.1        ad 		syscallarg(fd_set *)		in;
    194   1.1        ad 		syscallarg(fd_set *)		ou;
    195   1.1        ad 		syscallarg(fd_set *)		ex;
    196   1.1        ad 		syscallarg(struct timeval *)	tv;
    197   1.1        ad 	} */
    198  1.14  christos 	struct timeval atv;
    199  1.14  christos 	struct timespec ats, *ts = NULL;
    200   1.1        ad 	int error;
    201   1.1        ad 
    202   1.1        ad 	if (SCARG(uap, tv)) {
    203  1.14  christos 		error = copyin(SCARG(uap, tv), (void *)&atv, sizeof(atv));
    204   1.1        ad 		if (error)
    205   1.1        ad 			return error;
    206  1.14  christos 		TIMEVAL_TO_TIMESPEC(&atv, &ats);
    207  1.14  christos 		ts = &ats;
    208   1.1        ad 	}
    209   1.1        ad 
    210  1.19     rmind 	return selcommon(retval, SCARG(uap, nd), SCARG(uap, in),
    211  1.14  christos 	    SCARG(uap, ou), SCARG(uap, ex), ts, NULL);
    212   1.1        ad }
    213   1.1        ad 
    214  1.17     rmind /*
    215  1.17     rmind  * sel_do_scan: common code to perform the scan on descriptors.
    216  1.17     rmind  */
    217  1.17     rmind static int
    218  1.23     rmind sel_do_scan(const int op, void *fds, const int nf, const size_t ni,
    219  1.23     rmind     struct timespec *ts, sigset_t *mask, register_t *retval)
    220   1.1        ad {
    221  1.17     rmind 	lwp_t		* const l = curlwp;
    222  1.22        ad 	selcluster_t	*sc;
    223  1.13        ad 	kmutex_t	*lock;
    224  1.17     rmind 	struct timespec	sleepts;
    225  1.17     rmind 	int		error, timo;
    226   1.1        ad 
    227   1.1        ad 	timo = 0;
    228  1.14  christos 	if (ts && inittimeleft(ts, &sleepts) == -1) {
    229  1.17     rmind 		return EINVAL;
    230   1.1        ad 	}
    231   1.1        ad 
    232  1.32  christos 	if (__predict_false(mask))
    233  1.31  christos 		sigsuspendsetup(l, mask);
    234   1.1        ad 
    235  1.22        ad 	sc = curcpu()->ci_data.cpu_selcluster;
    236  1.13        ad 	lock = sc->sc_lock;
    237  1.22        ad 	l->l_selcluster = sc;
    238   1.1        ad 	SLIST_INIT(&l->l_selwait);
    239  1.23     rmind 
    240  1.23     rmind 	l->l_selret = 0;
    241  1.23     rmind 	if (op == SELOP_SELECT) {
    242  1.30     rmind 		l->l_selbits = fds;
    243  1.23     rmind 		l->l_selni = ni;
    244  1.23     rmind 	} else {
    245  1.23     rmind 		l->l_selbits = NULL;
    246  1.23     rmind 	}
    247   1.1        ad 	for (;;) {
    248  1.17     rmind 		int ncoll;
    249  1.17     rmind 
    250   1.1        ad 		/*
    251  1.17     rmind 		 * No need to lock.  If this is overwritten by another value
    252  1.17     rmind 		 * while scanning, we will retry below.  We only need to see
    253  1.17     rmind 		 * exact state from the descriptors that we are about to poll,
    254  1.17     rmind 		 * and lock activity resulting from fo_poll is enough to
    255  1.17     rmind 		 * provide an up to date value for new polling activity.
    256   1.1        ad 		 */
    257  1.17     rmind 		l->l_selflag = SEL_SCANNING;
    258   1.1        ad 		ncoll = sc->sc_ncoll;
    259   1.1        ad 
    260  1.23     rmind 		if (op == SELOP_SELECT) {
    261  1.23     rmind 			error = selscan((char *)fds, nf, ni, retval);
    262  1.17     rmind 		} else {
    263  1.23     rmind 			error = pollscan((struct pollfd *)fds, nf, retval);
    264  1.17     rmind 		}
    265   1.1        ad 		if (error || *retval)
    266   1.1        ad 			break;
    267  1.14  christos 		if (ts && (timo = gettimeleft(ts, &sleepts)) <= 0)
    268   1.1        ad 			break;
    269  1.23     rmind 		/*
    270  1.23     rmind 		 * Acquire the lock and perform the (re)checks.  Note, if
    271  1.23     rmind 		 * collision has occured, then our state does not matter,
    272  1.23     rmind 		 * as we must perform re-scan.  Therefore, check it first.
    273  1.23     rmind 		 */
    274  1.23     rmind state_check:
    275  1.13        ad 		mutex_spin_enter(lock);
    276  1.23     rmind 		if (__predict_false(sc->sc_ncoll != ncoll)) {
    277  1.23     rmind 			/* Collision: perform re-scan. */
    278  1.23     rmind 			mutex_spin_exit(lock);
    279  1.23     rmind 			continue;
    280  1.23     rmind 		}
    281  1.23     rmind 		if (__predict_true(l->l_selflag == SEL_EVENT)) {
    282  1.23     rmind 			/* Events occured, they are set directly. */
    283  1.23     rmind 			mutex_spin_exit(lock);
    284  1.23     rmind 			KASSERT(l->l_selret != 0);
    285  1.23     rmind 			*retval = l->l_selret;
    286  1.23     rmind 			break;
    287  1.23     rmind 		}
    288  1.23     rmind 		if (__predict_true(l->l_selflag == SEL_RESET)) {
    289  1.23     rmind 			/* Events occured, but re-scan is requested. */
    290  1.13        ad 			mutex_spin_exit(lock);
    291   1.1        ad 			continue;
    292   1.1        ad 		}
    293  1.23     rmind 		/* Nothing happen, therefore - sleep. */
    294   1.1        ad 		l->l_selflag = SEL_BLOCKING;
    295   1.7        ad 		l->l_kpriority = true;
    296  1.13        ad 		sleepq_enter(&sc->sc_sleepq, l, lock);
    297   1.1        ad 		sleepq_enqueue(&sc->sc_sleepq, sc, "select", &select_sobj);
    298   1.1        ad 		error = sleepq_block(timo, true);
    299  1.23     rmind 		if (error != 0) {
    300   1.1        ad 			break;
    301  1.23     rmind 		}
    302  1.23     rmind 		/* Awoken: need to check the state. */
    303  1.23     rmind 		goto state_check;
    304   1.1        ad 	}
    305   1.1        ad 	selclear();
    306   1.1        ad 
    307  1.33  christos 	if (__predict_false(mask))
    308  1.33  christos 		sigsuspendteardown(l);
    309  1.33  christos 
    310  1.20       dsl 	/* select and poll are not restarted after signals... */
    311  1.20       dsl 	if (error == ERESTART)
    312  1.20       dsl 		return EINTR;
    313  1.20       dsl 	if (error == EWOULDBLOCK)
    314  1.20       dsl 		return 0;
    315  1.17     rmind 	return error;
    316  1.17     rmind }
    317  1.17     rmind 
    318  1.17     rmind int
    319  1.19     rmind selcommon(register_t *retval, int nd, fd_set *u_in, fd_set *u_ou,
    320  1.19     rmind     fd_set *u_ex, struct timespec *ts, sigset_t *mask)
    321  1.17     rmind {
    322  1.17     rmind 	char		smallbits[howmany(FD_SETSIZE, NFDBITS) *
    323  1.17     rmind 			    sizeof(fd_mask) * 6];
    324  1.17     rmind 	char 		*bits;
    325  1.17     rmind 	int		error, nf;
    326  1.17     rmind 	size_t		ni;
    327  1.17     rmind 
    328  1.17     rmind 	if (nd < 0)
    329  1.17     rmind 		return (EINVAL);
    330  1.19     rmind 	nf = curlwp->l_fd->fd_dt->dt_nfiles;
    331  1.17     rmind 	if (nd > nf) {
    332  1.17     rmind 		/* forgiving; slightly wrong */
    333  1.17     rmind 		nd = nf;
    334  1.17     rmind 	}
    335  1.17     rmind 	ni = howmany(nd, NFDBITS) * sizeof(fd_mask);
    336  1.17     rmind 	if (ni * 6 > sizeof(smallbits)) {
    337  1.17     rmind 		bits = kmem_alloc(ni * 6, KM_SLEEP);
    338  1.17     rmind 		if (bits == NULL)
    339  1.17     rmind 			return ENOMEM;
    340  1.17     rmind 	} else
    341  1.17     rmind 		bits = smallbits;
    342  1.17     rmind 
    343  1.17     rmind #define	getbits(name, x)						\
    344  1.17     rmind 	if (u_ ## name) {						\
    345  1.17     rmind 		error = copyin(u_ ## name, bits + ni * x, ni);		\
    346  1.17     rmind 		if (error)						\
    347  1.20       dsl 			goto fail;					\
    348  1.17     rmind 	} else								\
    349  1.17     rmind 		memset(bits + ni * x, 0, ni);
    350  1.17     rmind 	getbits(in, 0);
    351  1.17     rmind 	getbits(ou, 1);
    352  1.17     rmind 	getbits(ex, 2);
    353  1.17     rmind #undef	getbits
    354   1.1        ad 
    355  1.23     rmind 	error = sel_do_scan(SELOP_SELECT, bits, nd, ni, ts, mask, retval);
    356   1.1        ad 	if (error == 0 && u_in != NULL)
    357   1.1        ad 		error = copyout(bits + ni * 3, u_in, ni);
    358   1.1        ad 	if (error == 0 && u_ou != NULL)
    359   1.1        ad 		error = copyout(bits + ni * 4, u_ou, ni);
    360   1.1        ad 	if (error == 0 && u_ex != NULL)
    361   1.1        ad 		error = copyout(bits + ni * 5, u_ex, ni);
    362  1.20       dsl  fail:
    363   1.1        ad 	if (bits != smallbits)
    364   1.1        ad 		kmem_free(bits, ni * 6);
    365   1.1        ad 	return (error);
    366   1.1        ad }
    367   1.1        ad 
    368  1.19     rmind static inline int
    369  1.23     rmind selscan(char *bits, const int nfd, const size_t ni, register_t *retval)
    370   1.1        ad {
    371  1.17     rmind 	fd_mask *ibitp, *obitp;
    372  1.23     rmind 	int msk, i, j, fd, n;
    373   1.1        ad 	file_t *fp;
    374   1.1        ad 
    375  1.17     rmind 	ibitp = (fd_mask *)(bits + ni * 0);
    376  1.17     rmind 	obitp = (fd_mask *)(bits + ni * 3);
    377   1.1        ad 	n = 0;
    378  1.17     rmind 
    379   1.1        ad 	for (msk = 0; msk < 3; msk++) {
    380   1.1        ad 		for (i = 0; i < nfd; i += NFDBITS) {
    381  1.23     rmind 			fd_mask ibits, obits;
    382  1.23     rmind 
    383   1.1        ad 			ibits = *ibitp++;
    384   1.1        ad 			obits = 0;
    385   1.1        ad 			while ((j = ffs(ibits)) && (fd = i + --j) < nfd) {
    386   1.1        ad 				ibits &= ~(1 << j);
    387   1.1        ad 				if ((fp = fd_getfile(fd)) == NULL)
    388   1.1        ad 					return (EBADF);
    389  1.23     rmind 				/*
    390  1.23     rmind 				 * Setup an argument to selrecord(), which is
    391  1.23     rmind 				 * a file descriptor number.
    392  1.23     rmind 				 */
    393  1.23     rmind 				curlwp->l_selrec = fd;
    394  1.23     rmind 				if ((*fp->f_ops->fo_poll)(fp, sel_flag[msk])) {
    395   1.1        ad 					obits |= (1 << j);
    396   1.1        ad 					n++;
    397   1.1        ad 				}
    398   1.1        ad 				fd_putfile(fd);
    399   1.1        ad 			}
    400   1.1        ad 			*obitp++ = obits;
    401   1.1        ad 		}
    402   1.1        ad 	}
    403   1.1        ad 	*retval = n;
    404   1.1        ad 	return (0);
    405   1.1        ad }
    406   1.1        ad 
    407   1.1        ad /*
    408   1.1        ad  * Poll system call.
    409   1.1        ad  */
    410   1.1        ad int
    411   1.1        ad sys_poll(struct lwp *l, const struct sys_poll_args *uap, register_t *retval)
    412   1.1        ad {
    413   1.1        ad 	/* {
    414   1.1        ad 		syscallarg(struct pollfd *)	fds;
    415   1.1        ad 		syscallarg(u_int)		nfds;
    416   1.1        ad 		syscallarg(int)			timeout;
    417   1.1        ad 	} */
    418  1.14  christos 	struct timespec	ats, *ts = NULL;
    419   1.1        ad 
    420   1.1        ad 	if (SCARG(uap, timeout) != INFTIM) {
    421  1.14  christos 		ats.tv_sec = SCARG(uap, timeout) / 1000;
    422  1.14  christos 		ats.tv_nsec = (SCARG(uap, timeout) % 1000) * 1000000;
    423  1.14  christos 		ts = &ats;
    424   1.1        ad 	}
    425   1.1        ad 
    426  1.19     rmind 	return pollcommon(retval, SCARG(uap, fds), SCARG(uap, nfds), ts, NULL);
    427   1.1        ad }
    428   1.1        ad 
    429   1.1        ad /*
    430   1.1        ad  * Poll system call.
    431   1.1        ad  */
    432   1.1        ad int
    433  1.12  christos sys___pollts50(struct lwp *l, const struct sys___pollts50_args *uap,
    434  1.12  christos     register_t *retval)
    435   1.1        ad {
    436   1.1        ad 	/* {
    437   1.1        ad 		syscallarg(struct pollfd *)		fds;
    438   1.1        ad 		syscallarg(u_int)			nfds;
    439   1.1        ad 		syscallarg(const struct timespec *)	ts;
    440   1.1        ad 		syscallarg(const sigset_t *)		mask;
    441   1.1        ad 	} */
    442  1.14  christos 	struct timespec	ats, *ts = NULL;
    443   1.1        ad 	sigset_t	amask, *mask = NULL;
    444   1.1        ad 	int		error;
    445   1.1        ad 
    446   1.1        ad 	if (SCARG(uap, ts)) {
    447   1.1        ad 		error = copyin(SCARG(uap, ts), &ats, sizeof(ats));
    448   1.1        ad 		if (error)
    449   1.1        ad 			return error;
    450  1.14  christos 		ts = &ats;
    451   1.1        ad 	}
    452   1.1        ad 	if (SCARG(uap, mask)) {
    453   1.1        ad 		error = copyin(SCARG(uap, mask), &amask, sizeof(amask));
    454   1.1        ad 		if (error)
    455   1.1        ad 			return error;
    456   1.1        ad 		mask = &amask;
    457   1.1        ad 	}
    458   1.1        ad 
    459  1.19     rmind 	return pollcommon(retval, SCARG(uap, fds), SCARG(uap, nfds), ts, mask);
    460   1.1        ad }
    461   1.1        ad 
    462   1.1        ad int
    463  1.19     rmind pollcommon(register_t *retval, struct pollfd *u_fds, u_int nfds,
    464  1.14  christos     struct timespec *ts, sigset_t *mask)
    465   1.1        ad {
    466  1.11      yamt 	struct pollfd	smallfds[32];
    467  1.11      yamt 	struct pollfd	*fds;
    468  1.17     rmind 	int		error;
    469  1.20       dsl 	size_t		ni;
    470   1.1        ad 
    471  1.20       dsl 	if (nfds > 1000 + curlwp->l_fd->fd_dt->dt_nfiles) {
    472  1.20       dsl 		/*
    473  1.20       dsl 		 * Either the user passed in a very sparse 'fds' or junk!
    474  1.20       dsl 		 * The kmem_alloc() call below would be bad news.
    475  1.20       dsl 		 * We could process the 'fds' array in chunks, but that
    476  1.20       dsl 		 * is a lot of code that isn't normally useful.
    477  1.20       dsl 		 * (Or just move the copyin/out into pollscan().)
    478  1.20       dsl 		 * Historically the code silently truncated 'fds' to
    479  1.20       dsl 		 * dt_nfiles entries - but that does cause issues.
    480  1.20       dsl 		 */
    481  1.20       dsl 		return EINVAL;
    482   1.1        ad 	}
    483   1.1        ad 	ni = nfds * sizeof(struct pollfd);
    484  1.11      yamt 	if (ni > sizeof(smallfds)) {
    485  1.11      yamt 		fds = kmem_alloc(ni, KM_SLEEP);
    486  1.11      yamt 		if (fds == NULL)
    487   1.9     rmind 			return ENOMEM;
    488   1.9     rmind 	} else
    489  1.11      yamt 		fds = smallfds;
    490   1.1        ad 
    491  1.11      yamt 	error = copyin(u_fds, fds, ni);
    492   1.1        ad 	if (error)
    493  1.20       dsl 		goto fail;
    494   1.1        ad 
    495  1.23     rmind 	error = sel_do_scan(SELOP_POLL, fds, nfds, ni, ts, mask, retval);
    496   1.1        ad 	if (error == 0)
    497  1.11      yamt 		error = copyout(fds, u_fds, ni);
    498  1.20       dsl  fail:
    499  1.11      yamt 	if (fds != smallfds)
    500  1.11      yamt 		kmem_free(fds, ni);
    501   1.1        ad 	return (error);
    502   1.1        ad }
    503   1.1        ad 
    504  1.19     rmind static inline int
    505  1.23     rmind pollscan(struct pollfd *fds, const int nfd, register_t *retval)
    506   1.1        ad {
    507   1.1        ad 	file_t *fp;
    508  1.23     rmind 	int i, n = 0;
    509   1.1        ad 
    510   1.1        ad 	for (i = 0; i < nfd; i++, fds++) {
    511   1.1        ad 		if (fds->fd < 0) {
    512   1.1        ad 			fds->revents = 0;
    513   1.1        ad 		} else if ((fp = fd_getfile(fds->fd)) == NULL) {
    514   1.1        ad 			fds->revents = POLLNVAL;
    515   1.1        ad 			n++;
    516   1.1        ad 		} else {
    517  1.23     rmind 			/*
    518  1.23     rmind 			 * Perform poll: registers select request or returns
    519  1.23     rmind 			 * the events which are set.  Setup an argument for
    520  1.23     rmind 			 * selrecord(), which is a pointer to struct pollfd.
    521  1.23     rmind 			 */
    522  1.23     rmind 			curlwp->l_selrec = (uintptr_t)fds;
    523   1.1        ad 			fds->revents = (*fp->f_ops->fo_poll)(fp,
    524   1.1        ad 			    fds->events | POLLERR | POLLHUP);
    525   1.1        ad 			if (fds->revents != 0)
    526   1.1        ad 				n++;
    527   1.1        ad 			fd_putfile(fds->fd);
    528   1.1        ad 		}
    529   1.1        ad 	}
    530   1.1        ad 	*retval = n;
    531   1.1        ad 	return (0);
    532   1.1        ad }
    533   1.1        ad 
    534   1.1        ad int
    535   1.1        ad seltrue(dev_t dev, int events, lwp_t *l)
    536   1.1        ad {
    537   1.1        ad 
    538   1.1        ad 	return (events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
    539   1.1        ad }
    540   1.1        ad 
    541   1.1        ad /*
    542   1.1        ad  * Record a select request.  Concurrency issues:
    543   1.1        ad  *
    544   1.1        ad  * The caller holds the same lock across calls to selrecord() and
    545   1.4      yamt  * selnotify(), so we don't need to consider a concurrent wakeup
    546   1.1        ad  * while in this routine.
    547   1.1        ad  *
    548   1.1        ad  * The only activity we need to guard against is selclear(), called by
    549  1.17     rmind  * another thread that is exiting sel_do_scan().
    550   1.1        ad  * `sel_lwp' can only become non-NULL while the caller's lock is held,
    551   1.1        ad  * so it cannot become non-NULL due to a change made by another thread
    552   1.1        ad  * while we are in this routine.  It can only become _NULL_ due to a
    553   1.1        ad  * call to selclear().
    554   1.1        ad  *
    555   1.1        ad  * If it is non-NULL and != selector there is the potential for
    556   1.1        ad  * selclear() to be called by another thread.  If either of those
    557   1.1        ad  * conditions are true, we're not interested in touching the `named
    558   1.1        ad  * waiter' part of the selinfo record because we need to record a
    559   1.1        ad  * collision.  Hence there is no need for additional locking in this
    560   1.1        ad  * routine.
    561   1.1        ad  */
    562   1.1        ad void
    563   1.1        ad selrecord(lwp_t *selector, struct selinfo *sip)
    564   1.1        ad {
    565  1.22        ad 	selcluster_t *sc;
    566   1.1        ad 	lwp_t *other;
    567   1.1        ad 
    568   1.1        ad 	KASSERT(selector == curlwp);
    569   1.1        ad 
    570  1.22        ad 	sc = selector->l_selcluster;
    571   1.1        ad 	other = sip->sel_lwp;
    572   1.1        ad 
    573   1.1        ad 	if (other == selector) {
    574  1.23     rmind 		/* 1. We (selector) already claimed to be the first LWP. */
    575  1.22        ad 		KASSERT(sip->sel_cluster = sc);
    576   1.1        ad 	} else if (other == NULL) {
    577   1.1        ad 		/*
    578  1.23     rmind 		 * 2. No first LWP, therefore we (selector) are the first.
    579  1.23     rmind 		 *
    580  1.23     rmind 		 * There may be unnamed waiters (collisions).  Issue a memory
    581  1.23     rmind 		 * barrier to ensure that we access sel_lwp (above) before
    582  1.23     rmind 		 * other fields - this guards against a call to selclear().
    583   1.1        ad 		 */
    584   1.1        ad 		membar_enter();
    585   1.1        ad 		sip->sel_lwp = selector;
    586   1.1        ad 		SLIST_INSERT_HEAD(&selector->l_selwait, sip, sel_chain);
    587  1.23     rmind 		/* Copy the argument, which is for selnotify(). */
    588  1.23     rmind 		sip->sel_fdinfo = selector->l_selrec;
    589  1.22        ad 		/* Replace selinfo's lock with the chosen cluster's lock. */
    590  1.22        ad 		sip->sel_cluster = sc;
    591   1.1        ad 	} else {
    592  1.23     rmind 		/* 3. Multiple waiters: record a collision. */
    593   1.1        ad 		sip->sel_collision |= sc->sc_mask;
    594  1.22        ad 		KASSERT(sip->sel_cluster != NULL);
    595   1.1        ad 	}
    596   1.1        ad }
    597   1.1        ad 
    598   1.1        ad /*
    599  1.23     rmind  * sel_setevents: a helper function for selnotify(), to set the events
    600  1.23     rmind  * for LWP sleeping in selcommon() or pollcommon().
    601  1.23     rmind  */
    602  1.30     rmind static inline bool
    603  1.23     rmind sel_setevents(lwp_t *l, struct selinfo *sip, const int events)
    604  1.23     rmind {
    605  1.23     rmind 	const int oflag = l->l_selflag;
    606  1.30     rmind 	int ret = 0;
    607  1.23     rmind 
    608  1.23     rmind 	/*
    609  1.23     rmind 	 * If we require re-scan or it was required by somebody else,
    610  1.23     rmind 	 * then just (re)set SEL_RESET and return.
    611  1.23     rmind 	 */
    612  1.23     rmind 	if (__predict_false(events == 0 || oflag == SEL_RESET)) {
    613  1.23     rmind 		l->l_selflag = SEL_RESET;
    614  1.30     rmind 		return true;
    615  1.23     rmind 	}
    616  1.23     rmind 	/*
    617  1.23     rmind 	 * Direct set.  Note: select state of LWP is locked.  First,
    618  1.23     rmind 	 * determine whether it is selcommon() or pollcommon().
    619  1.23     rmind 	 */
    620  1.23     rmind 	if (l->l_selbits != NULL) {
    621  1.30     rmind 		const size_t ni = l->l_selni;
    622  1.23     rmind 		fd_mask *fds = (fd_mask *)l->l_selbits;
    623  1.30     rmind 		fd_mask *ofds = (fd_mask *)((char *)fds + ni * 3);
    624  1.30     rmind 		const int fd = sip->sel_fdinfo, fbit = 1 << (fd & __NFDMASK);
    625  1.25     rmind 		const int idx = fd >> __NFDSHIFT;
    626  1.23     rmind 		int n;
    627  1.23     rmind 
    628  1.23     rmind 		for (n = 0; n < 3; n++) {
    629  1.30     rmind 			if ((fds[idx] & fbit) != 0 && (sel_flag[n] & events)) {
    630  1.30     rmind 				ofds[idx] |= fbit;
    631  1.30     rmind 				ret++;
    632  1.23     rmind 			}
    633  1.23     rmind 			fds = (fd_mask *)((char *)fds + ni);
    634  1.30     rmind 			ofds = (fd_mask *)((char *)ofds + ni);
    635  1.23     rmind 		}
    636  1.23     rmind 	} else {
    637  1.23     rmind 		struct pollfd *pfd = (void *)sip->sel_fdinfo;
    638  1.30     rmind 		int revents = events & (pfd->events | POLLERR | POLLHUP);
    639  1.30     rmind 
    640  1.30     rmind 		if (revents) {
    641  1.30     rmind 			pfd->revents |= revents;
    642  1.30     rmind 			ret = 1;
    643  1.30     rmind 		}
    644  1.30     rmind 	}
    645  1.30     rmind 	/* Check whether there are any events to return. */
    646  1.30     rmind 	if (!ret) {
    647  1.30     rmind 		return false;
    648  1.23     rmind 	}
    649  1.23     rmind 	/* Indicate direct set and note the event (cluster lock is held). */
    650  1.23     rmind 	l->l_selflag = SEL_EVENT;
    651  1.30     rmind 	l->l_selret += ret;
    652  1.30     rmind 	return true;
    653  1.23     rmind }
    654  1.23     rmind 
    655  1.23     rmind /*
    656   1.1        ad  * Do a wakeup when a selectable event occurs.  Concurrency issues:
    657   1.1        ad  *
    658   1.1        ad  * As per selrecord(), the caller's object lock is held.  If there
    659  1.22        ad  * is a named waiter, we must acquire the associated selcluster's lock
    660   1.1        ad  * in order to synchronize with selclear() and pollers going to sleep
    661  1.17     rmind  * in sel_do_scan().
    662   1.1        ad  *
    663  1.22        ad  * sip->sel_cluser cannot change at this point, as it is only changed
    664   1.1        ad  * in selrecord(), and concurrent calls to selrecord() are locked
    665   1.1        ad  * out by the caller.
    666   1.1        ad  */
    667   1.1        ad void
    668   1.1        ad selnotify(struct selinfo *sip, int events, long knhint)
    669   1.1        ad {
    670  1.22        ad 	selcluster_t *sc;
    671   1.1        ad 	uint32_t mask;
    672  1.16     rmind 	int index, oflag;
    673   1.1        ad 	lwp_t *l;
    674  1.13        ad 	kmutex_t *lock;
    675   1.1        ad 
    676   1.1        ad 	KNOTE(&sip->sel_klist, knhint);
    677   1.1        ad 
    678   1.1        ad 	if (sip->sel_lwp != NULL) {
    679   1.1        ad 		/* One named LWP is waiting. */
    680  1.22        ad 		sc = sip->sel_cluster;
    681  1.13        ad 		lock = sc->sc_lock;
    682  1.13        ad 		mutex_spin_enter(lock);
    683   1.1        ad 		/* Still there? */
    684   1.1        ad 		if (sip->sel_lwp != NULL) {
    685  1.23     rmind 			/*
    686  1.23     rmind 			 * Set the events for our LWP and indicate that.
    687  1.23     rmind 			 * Otherwise, request for a full re-scan.
    688  1.23     rmind 			 */
    689   1.1        ad 			l = sip->sel_lwp;
    690  1.23     rmind 			oflag = l->l_selflag;
    691  1.28     rmind #ifndef NO_DIRECT_SELECT
    692  1.30     rmind 			if (!sel_setevents(l, sip, events)) {
    693  1.30     rmind 				/* No events to return. */
    694  1.30     rmind 				mutex_spin_exit(lock);
    695  1.30     rmind 				return;
    696  1.30     rmind 			}
    697  1.26     rmind #else
    698  1.26     rmind 			l->l_selflag = SEL_RESET;
    699  1.26     rmind #endif
    700   1.1        ad 			/*
    701   1.1        ad 			 * If thread is sleeping, wake it up.  If it's not
    702   1.1        ad 			 * yet asleep, it will notice the change in state
    703   1.1        ad 			 * and will re-poll the descriptors.
    704   1.1        ad 			 */
    705  1.13        ad 			if (oflag == SEL_BLOCKING && l->l_mutex == lock) {
    706   1.1        ad 				KASSERT(l->l_wchan == sc);
    707  1.16     rmind 				sleepq_unsleep(l, false);
    708   1.1        ad 			}
    709   1.1        ad 		}
    710  1.13        ad 		mutex_spin_exit(lock);
    711   1.1        ad 	}
    712   1.1        ad 
    713   1.1        ad 	if ((mask = sip->sel_collision) != 0) {
    714   1.1        ad 		/*
    715   1.1        ad 		 * There was a collision (multiple waiters): we must
    716   1.1        ad 		 * inform all potentially interested waiters.
    717   1.1        ad 		 */
    718   1.1        ad 		sip->sel_collision = 0;
    719   1.3        ad 		do {
    720   1.1        ad 			index = ffs(mask) - 1;
    721   1.1        ad 			mask &= ~(1 << index);
    722  1.22        ad 			sc = selcluster[index];
    723  1.13        ad 			lock = sc->sc_lock;
    724  1.13        ad 			mutex_spin_enter(lock);
    725   1.1        ad 			sc->sc_ncoll++;
    726  1.13        ad 			sleepq_wake(&sc->sc_sleepq, sc, (u_int)-1, lock);
    727   1.3        ad 		} while (__predict_false(mask != 0));
    728   1.1        ad 	}
    729   1.1        ad }
    730   1.1        ad 
    731   1.1        ad /*
    732   1.1        ad  * Remove an LWP from all objects that it is waiting for.  Concurrency
    733   1.1        ad  * issues:
    734   1.1        ad  *
    735   1.1        ad  * The object owner's (e.g. device driver) lock is not held here.  Calls
    736   1.1        ad  * can be made to selrecord() and we do not synchronize against those
    737   1.1        ad  * directly using locks.  However, we use `sel_lwp' to lock out changes.
    738   1.1        ad  * Before clearing it we must use memory barriers to ensure that we can
    739   1.1        ad  * safely traverse the list of selinfo records.
    740   1.1        ad  */
    741   1.1        ad static void
    742   1.1        ad selclear(void)
    743   1.1        ad {
    744   1.1        ad 	struct selinfo *sip, *next;
    745  1.22        ad 	selcluster_t *sc;
    746   1.1        ad 	lwp_t *l;
    747  1.13        ad 	kmutex_t *lock;
    748   1.1        ad 
    749   1.1        ad 	l = curlwp;
    750  1.22        ad 	sc = l->l_selcluster;
    751  1.13        ad 	lock = sc->sc_lock;
    752   1.1        ad 
    753  1.13        ad 	mutex_spin_enter(lock);
    754   1.1        ad 	for (sip = SLIST_FIRST(&l->l_selwait); sip != NULL; sip = next) {
    755   1.1        ad 		KASSERT(sip->sel_lwp == l);
    756  1.22        ad 		KASSERT(sip->sel_cluster == l->l_selcluster);
    757  1.22        ad 
    758   1.1        ad 		/*
    759   1.1        ad 		 * Read link to next selinfo record, if any.
    760   1.1        ad 		 * It's no longer safe to touch `sip' after clearing
    761   1.1        ad 		 * `sel_lwp', so ensure that the read of `sel_chain'
    762   1.1        ad 		 * completes before the clearing of sel_lwp becomes
    763   1.1        ad 		 * globally visible.
    764   1.1        ad 		 */
    765   1.1        ad 		next = SLIST_NEXT(sip, sel_chain);
    766   1.1        ad 		membar_exit();
    767   1.1        ad 		/* Release the record for another named waiter to use. */
    768   1.1        ad 		sip->sel_lwp = NULL;
    769   1.1        ad 	}
    770  1.13        ad 	mutex_spin_exit(lock);
    771   1.1        ad }
    772   1.1        ad 
    773   1.1        ad /*
    774   1.1        ad  * Initialize the select/poll system calls.  Called once for each
    775   1.1        ad  * CPU in the system, as they are attached.
    776   1.1        ad  */
    777   1.1        ad void
    778   1.1        ad selsysinit(struct cpu_info *ci)
    779   1.1        ad {
    780  1.22        ad 	selcluster_t *sc;
    781  1.22        ad 	u_int index;
    782   1.1        ad 
    783  1.22        ad 	/* If already a cluster in place for this bit, re-use. */
    784  1.22        ad 	index = cpu_index(ci) & SELCLUSTERMASK;
    785  1.22        ad 	sc = selcluster[index];
    786  1.22        ad 	if (sc == NULL) {
    787  1.22        ad 		sc = kmem_alloc(roundup2(sizeof(selcluster_t),
    788  1.22        ad 		    coherency_unit) + coherency_unit, KM_SLEEP);
    789  1.22        ad 		sc = (void *)roundup2((uintptr_t)sc, coherency_unit);
    790  1.22        ad 		sc->sc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
    791  1.22        ad 		sleepq_init(&sc->sc_sleepq);
    792  1.22        ad 		sc->sc_ncoll = 0;
    793  1.22        ad 		sc->sc_mask = (1 << index);
    794  1.22        ad 		selcluster[index] = sc;
    795  1.22        ad 	}
    796  1.22        ad 	ci->ci_data.cpu_selcluster = sc;
    797   1.1        ad }
    798   1.1        ad 
    799   1.1        ad /*
    800   1.1        ad  * Initialize a selinfo record.
    801   1.1        ad  */
    802   1.1        ad void
    803   1.1        ad selinit(struct selinfo *sip)
    804   1.1        ad {
    805   1.1        ad 
    806   1.1        ad 	memset(sip, 0, sizeof(*sip));
    807   1.1        ad }
    808   1.1        ad 
    809   1.1        ad /*
    810   1.1        ad  * Destroy a selinfo record.  The owning object must not gain new
    811   1.1        ad  * references while this is in progress: all activity on the record
    812   1.1        ad  * must be stopped.
    813   1.1        ad  *
    814   1.1        ad  * Concurrency issues: we only need guard against a call to selclear()
    815  1.17     rmind  * by a thread exiting sel_do_scan().  The caller has prevented further
    816  1.17     rmind  * references being made to the selinfo record via selrecord(), and it
    817  1.23     rmind  * will not call selnotify() again.
    818   1.1        ad  */
    819   1.1        ad void
    820   1.1        ad seldestroy(struct selinfo *sip)
    821   1.1        ad {
    822  1.22        ad 	selcluster_t *sc;
    823  1.13        ad 	kmutex_t *lock;
    824   1.1        ad 	lwp_t *l;
    825   1.1        ad 
    826   1.1        ad 	if (sip->sel_lwp == NULL)
    827   1.1        ad 		return;
    828   1.1        ad 
    829   1.1        ad 	/*
    830  1.22        ad 	 * Lock out selclear().  The selcluster pointer can't change while
    831   1.1        ad 	 * we are here since it is only ever changed in selrecord(),
    832   1.1        ad 	 * and that will not be entered again for this record because
    833   1.1        ad 	 * it is dying.
    834   1.1        ad 	 */
    835  1.22        ad 	KASSERT(sip->sel_cluster != NULL);
    836  1.22        ad 	sc = sip->sel_cluster;
    837  1.13        ad 	lock = sc->sc_lock;
    838  1.13        ad 	mutex_spin_enter(lock);
    839   1.1        ad 	if ((l = sip->sel_lwp) != NULL) {
    840   1.1        ad 		/*
    841   1.1        ad 		 * This should rarely happen, so although SLIST_REMOVE()
    842   1.1        ad 		 * is slow, using it here is not a problem.
    843   1.1        ad 		 */
    844  1.22        ad 		KASSERT(l->l_selcluster == sc);
    845   1.1        ad 		SLIST_REMOVE(&l->l_selwait, sip, selinfo, sel_chain);
    846   1.1        ad 		sip->sel_lwp = NULL;
    847   1.1        ad 	}
    848  1.13        ad 	mutex_spin_exit(lock);
    849   1.1        ad }
    850   1.1        ad 
    851   1.1        ad int
    852  1.14  christos pollsock(struct socket *so, const struct timespec *tsp, int events)
    853   1.1        ad {
    854   1.1        ad 	int		ncoll, error, timo;
    855  1.14  christos 	struct timespec	sleepts, ts;
    856  1.22        ad 	selcluster_t	*sc;
    857   1.1        ad 	lwp_t		*l;
    858  1.13        ad 	kmutex_t	*lock;
    859   1.1        ad 
    860   1.1        ad 	timo = 0;
    861  1.14  christos 	if (tsp != NULL) {
    862  1.14  christos 		ts = *tsp;
    863  1.14  christos 		if (inittimeleft(&ts, &sleepts) == -1)
    864   1.1        ad 			return EINVAL;
    865   1.1        ad 	}
    866   1.1        ad 
    867   1.1        ad 	l = curlwp;
    868  1.22        ad 	sc = curcpu()->ci_data.cpu_selcluster;
    869  1.13        ad 	lock = sc->sc_lock;
    870  1.22        ad 	l->l_selcluster = sc;
    871   1.1        ad 	SLIST_INIT(&l->l_selwait);
    872   1.1        ad 	error = 0;
    873   1.1        ad 	for (;;) {
    874   1.1        ad 		/*
    875   1.1        ad 		 * No need to lock.  If this is overwritten by another
    876   1.1        ad 		 * value while scanning, we will retry below.  We only
    877   1.1        ad 		 * need to see exact state from the descriptors that
    878   1.1        ad 		 * we are about to poll, and lock activity resulting
    879   1.1        ad 		 * from fo_poll is enough to provide an up to date value
    880   1.1        ad 		 * for new polling activity.
    881   1.1        ad 		 */
    882   1.1        ad 		ncoll = sc->sc_ncoll;
    883   1.1        ad 		l->l_selflag = SEL_SCANNING;
    884   1.1        ad 		if (sopoll(so, events) != 0)
    885   1.1        ad 			break;
    886  1.14  christos 		if (tsp && (timo = gettimeleft(&ts, &sleepts)) <= 0)
    887   1.1        ad 			break;
    888  1.13        ad 		mutex_spin_enter(lock);
    889   1.1        ad 		if (l->l_selflag != SEL_SCANNING || sc->sc_ncoll != ncoll) {
    890  1.13        ad 			mutex_spin_exit(lock);
    891   1.1        ad 			continue;
    892   1.1        ad 		}
    893   1.1        ad 		l->l_selflag = SEL_BLOCKING;
    894  1.13        ad 		sleepq_enter(&sc->sc_sleepq, l, lock);
    895   1.1        ad 		sleepq_enqueue(&sc->sc_sleepq, sc, "pollsock", &select_sobj);
    896   1.1        ad 		error = sleepq_block(timo, true);
    897   1.1        ad 		if (error != 0)
    898   1.1        ad 			break;
    899   1.1        ad 	}
    900   1.1        ad 	selclear();
    901   1.1        ad 	/* poll is not restarted after signals... */
    902   1.1        ad 	if (error == ERESTART)
    903   1.1        ad 		error = EINTR;
    904   1.1        ad 	if (error == EWOULDBLOCK)
    905   1.1        ad 		error = 0;
    906   1.1        ad 	return (error);
    907   1.1        ad }
    908