sys_select.c revision 1.40 1 1.40 chs /* $NetBSD: sys_select.c,v 1.40 2017/06/01 02:45:13 chs Exp $ */
2 1.1 ad
3 1.1 ad /*-
4 1.22 ad * Copyright (c) 2007, 2008, 2009, 2010 The NetBSD Foundation, Inc.
5 1.1 ad * All rights reserved.
6 1.1 ad *
7 1.1 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.23 rmind * by Andrew Doran and Mindaugas Rasiukevicius.
9 1.1 ad *
10 1.1 ad * Redistribution and use in source and binary forms, with or without
11 1.1 ad * modification, are permitted provided that the following conditions
12 1.1 ad * are met:
13 1.1 ad * 1. Redistributions of source code must retain the above copyright
14 1.1 ad * notice, this list of conditions and the following disclaimer.
15 1.1 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 ad * notice, this list of conditions and the following disclaimer in the
17 1.1 ad * documentation and/or other materials provided with the distribution.
18 1.1 ad *
19 1.1 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.1 ad */
31 1.1 ad
32 1.1 ad /*
33 1.1 ad * Copyright (c) 1982, 1986, 1989, 1993
34 1.1 ad * The Regents of the University of California. All rights reserved.
35 1.1 ad * (c) UNIX System Laboratories, Inc.
36 1.1 ad * All or some portions of this file are derived from material licensed
37 1.1 ad * to the University of California by American Telephone and Telegraph
38 1.1 ad * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39 1.1 ad * the permission of UNIX System Laboratories, Inc.
40 1.1 ad *
41 1.1 ad * Redistribution and use in source and binary forms, with or without
42 1.1 ad * modification, are permitted provided that the following conditions
43 1.1 ad * are met:
44 1.1 ad * 1. Redistributions of source code must retain the above copyright
45 1.1 ad * notice, this list of conditions and the following disclaimer.
46 1.1 ad * 2. Redistributions in binary form must reproduce the above copyright
47 1.1 ad * notice, this list of conditions and the following disclaimer in the
48 1.1 ad * documentation and/or other materials provided with the distribution.
49 1.1 ad * 3. Neither the name of the University nor the names of its contributors
50 1.1 ad * may be used to endorse or promote products derived from this software
51 1.1 ad * without specific prior written permission.
52 1.1 ad *
53 1.1 ad * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 1.1 ad * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 1.1 ad * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 1.1 ad * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 1.1 ad * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 1.1 ad * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 1.1 ad * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 1.1 ad * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 1.1 ad * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 1.1 ad * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 1.1 ad * SUCH DAMAGE.
64 1.1 ad *
65 1.1 ad * @(#)sys_generic.c 8.9 (Berkeley) 2/14/95
66 1.1 ad */
67 1.1 ad
68 1.1 ad /*
69 1.21 rmind * System calls of synchronous I/O multiplexing subsystem.
70 1.21 rmind *
71 1.21 rmind * Locking
72 1.21 rmind *
73 1.22 ad * Two locks are used: <object-lock> and selcluster_t::sc_lock.
74 1.21 rmind *
75 1.21 rmind * The <object-lock> might be a device driver or another subsystem, e.g.
76 1.21 rmind * socket or pipe. This lock is not exported, and thus invisible to this
77 1.21 rmind * subsystem. Mainly, synchronisation between selrecord() and selnotify()
78 1.21 rmind * routines depends on this lock, as it will be described in the comments.
79 1.21 rmind *
80 1.21 rmind * Lock order
81 1.21 rmind *
82 1.21 rmind * <object-lock> ->
83 1.22 ad * selcluster_t::sc_lock
84 1.1 ad */
85 1.1 ad
86 1.1 ad #include <sys/cdefs.h>
87 1.40 chs __KERNEL_RCSID(0, "$NetBSD: sys_select.c,v 1.40 2017/06/01 02:45:13 chs Exp $");
88 1.1 ad
89 1.1 ad #include <sys/param.h>
90 1.1 ad #include <sys/systm.h>
91 1.1 ad #include <sys/filedesc.h>
92 1.1 ad #include <sys/file.h>
93 1.1 ad #include <sys/proc.h>
94 1.1 ad #include <sys/socketvar.h>
95 1.1 ad #include <sys/signalvar.h>
96 1.1 ad #include <sys/uio.h>
97 1.1 ad #include <sys/kernel.h>
98 1.29 rmind #include <sys/lwp.h>
99 1.1 ad #include <sys/poll.h>
100 1.1 ad #include <sys/mount.h>
101 1.1 ad #include <sys/syscallargs.h>
102 1.1 ad #include <sys/cpu.h>
103 1.1 ad #include <sys/atomic.h>
104 1.1 ad #include <sys/socketvar.h>
105 1.1 ad #include <sys/sleepq.h>
106 1.36 rmind #include <sys/sysctl.h>
107 1.1 ad
108 1.1 ad /* Flags for lwp::l_selflag. */
109 1.1 ad #define SEL_RESET 0 /* awoken, interrupted, or not yet polling */
110 1.1 ad #define SEL_SCANNING 1 /* polling descriptors */
111 1.23 rmind #define SEL_BLOCKING 2 /* blocking and waiting for event */
112 1.23 rmind #define SEL_EVENT 3 /* interrupted, events set directly */
113 1.23 rmind
114 1.23 rmind /* Operations: either select() or poll(). */
115 1.23 rmind #define SELOP_SELECT 1
116 1.23 rmind #define SELOP_POLL 2
117 1.1 ad
118 1.22 ad /*
119 1.22 ad * Per-cluster state for select()/poll(). For a system with fewer
120 1.22 ad * than 32 CPUs, this gives us per-CPU clusters.
121 1.22 ad */
122 1.22 ad #define SELCLUSTERS 32
123 1.22 ad #define SELCLUSTERMASK (SELCLUSTERS - 1)
124 1.22 ad
125 1.22 ad typedef struct selcluster {
126 1.13 ad kmutex_t *sc_lock;
127 1.1 ad sleepq_t sc_sleepq;
128 1.1 ad int sc_ncoll;
129 1.1 ad uint32_t sc_mask;
130 1.22 ad } selcluster_t;
131 1.1 ad
132 1.23 rmind static inline int selscan(char *, const int, const size_t, register_t *);
133 1.23 rmind static inline int pollscan(struct pollfd *, const int, register_t *);
134 1.19 rmind static void selclear(void);
135 1.1 ad
136 1.23 rmind static const int sel_flag[] = {
137 1.23 rmind POLLRDNORM | POLLHUP | POLLERR,
138 1.23 rmind POLLWRNORM | POLLHUP | POLLERR,
139 1.23 rmind POLLRDBAND
140 1.23 rmind };
141 1.23 rmind
142 1.1 ad static syncobj_t select_sobj = {
143 1.1 ad SOBJ_SLEEPQ_FIFO,
144 1.1 ad sleepq_unsleep,
145 1.1 ad sleepq_changepri,
146 1.1 ad sleepq_lendpri,
147 1.1 ad syncobj_noowner,
148 1.1 ad };
149 1.1 ad
150 1.23 rmind static selcluster_t *selcluster[SELCLUSTERS] __read_mostly;
151 1.36 rmind static int direct_select __read_mostly = 0;
152 1.22 ad
153 1.1 ad /*
154 1.1 ad * Select system call.
155 1.1 ad */
156 1.1 ad int
157 1.12 christos sys___pselect50(struct lwp *l, const struct sys___pselect50_args *uap,
158 1.12 christos register_t *retval)
159 1.1 ad {
160 1.1 ad /* {
161 1.1 ad syscallarg(int) nd;
162 1.1 ad syscallarg(fd_set *) in;
163 1.1 ad syscallarg(fd_set *) ou;
164 1.1 ad syscallarg(fd_set *) ex;
165 1.1 ad syscallarg(const struct timespec *) ts;
166 1.1 ad syscallarg(sigset_t *) mask;
167 1.1 ad } */
168 1.14 christos struct timespec ats, *ts = NULL;
169 1.1 ad sigset_t amask, *mask = NULL;
170 1.1 ad int error;
171 1.1 ad
172 1.1 ad if (SCARG(uap, ts)) {
173 1.1 ad error = copyin(SCARG(uap, ts), &ats, sizeof(ats));
174 1.1 ad if (error)
175 1.1 ad return error;
176 1.14 christos ts = &ats;
177 1.1 ad }
178 1.1 ad if (SCARG(uap, mask) != NULL) {
179 1.1 ad error = copyin(SCARG(uap, mask), &amask, sizeof(amask));
180 1.1 ad if (error)
181 1.1 ad return error;
182 1.1 ad mask = &amask;
183 1.1 ad }
184 1.1 ad
185 1.19 rmind return selcommon(retval, SCARG(uap, nd), SCARG(uap, in),
186 1.14 christos SCARG(uap, ou), SCARG(uap, ex), ts, mask);
187 1.1 ad }
188 1.1 ad
189 1.1 ad int
190 1.12 christos sys___select50(struct lwp *l, const struct sys___select50_args *uap,
191 1.12 christos register_t *retval)
192 1.1 ad {
193 1.1 ad /* {
194 1.1 ad syscallarg(int) nd;
195 1.1 ad syscallarg(fd_set *) in;
196 1.1 ad syscallarg(fd_set *) ou;
197 1.1 ad syscallarg(fd_set *) ex;
198 1.1 ad syscallarg(struct timeval *) tv;
199 1.1 ad } */
200 1.14 christos struct timeval atv;
201 1.14 christos struct timespec ats, *ts = NULL;
202 1.1 ad int error;
203 1.1 ad
204 1.1 ad if (SCARG(uap, tv)) {
205 1.14 christos error = copyin(SCARG(uap, tv), (void *)&atv, sizeof(atv));
206 1.1 ad if (error)
207 1.1 ad return error;
208 1.14 christos TIMEVAL_TO_TIMESPEC(&atv, &ats);
209 1.14 christos ts = &ats;
210 1.1 ad }
211 1.1 ad
212 1.19 rmind return selcommon(retval, SCARG(uap, nd), SCARG(uap, in),
213 1.14 christos SCARG(uap, ou), SCARG(uap, ex), ts, NULL);
214 1.1 ad }
215 1.1 ad
216 1.17 rmind /*
217 1.17 rmind * sel_do_scan: common code to perform the scan on descriptors.
218 1.17 rmind */
219 1.17 rmind static int
220 1.23 rmind sel_do_scan(const int op, void *fds, const int nf, const size_t ni,
221 1.23 rmind struct timespec *ts, sigset_t *mask, register_t *retval)
222 1.1 ad {
223 1.17 rmind lwp_t * const l = curlwp;
224 1.22 ad selcluster_t *sc;
225 1.13 ad kmutex_t *lock;
226 1.17 rmind struct timespec sleepts;
227 1.17 rmind int error, timo;
228 1.1 ad
229 1.1 ad timo = 0;
230 1.14 christos if (ts && inittimeleft(ts, &sleepts) == -1) {
231 1.17 rmind return EINVAL;
232 1.1 ad }
233 1.1 ad
234 1.32 christos if (__predict_false(mask))
235 1.31 christos sigsuspendsetup(l, mask);
236 1.1 ad
237 1.22 ad sc = curcpu()->ci_data.cpu_selcluster;
238 1.13 ad lock = sc->sc_lock;
239 1.22 ad l->l_selcluster = sc;
240 1.23 rmind if (op == SELOP_SELECT) {
241 1.30 rmind l->l_selbits = fds;
242 1.23 rmind l->l_selni = ni;
243 1.23 rmind } else {
244 1.23 rmind l->l_selbits = NULL;
245 1.23 rmind }
246 1.34 hannken
247 1.1 ad for (;;) {
248 1.17 rmind int ncoll;
249 1.17 rmind
250 1.34 hannken SLIST_INIT(&l->l_selwait);
251 1.34 hannken l->l_selret = 0;
252 1.34 hannken
253 1.1 ad /*
254 1.17 rmind * No need to lock. If this is overwritten by another value
255 1.17 rmind * while scanning, we will retry below. We only need to see
256 1.17 rmind * exact state from the descriptors that we are about to poll,
257 1.17 rmind * and lock activity resulting from fo_poll is enough to
258 1.17 rmind * provide an up to date value for new polling activity.
259 1.1 ad */
260 1.17 rmind l->l_selflag = SEL_SCANNING;
261 1.1 ad ncoll = sc->sc_ncoll;
262 1.1 ad
263 1.23 rmind if (op == SELOP_SELECT) {
264 1.23 rmind error = selscan((char *)fds, nf, ni, retval);
265 1.17 rmind } else {
266 1.23 rmind error = pollscan((struct pollfd *)fds, nf, retval);
267 1.17 rmind }
268 1.1 ad if (error || *retval)
269 1.1 ad break;
270 1.14 christos if (ts && (timo = gettimeleft(ts, &sleepts)) <= 0)
271 1.1 ad break;
272 1.23 rmind /*
273 1.23 rmind * Acquire the lock and perform the (re)checks. Note, if
274 1.23 rmind * collision has occured, then our state does not matter,
275 1.23 rmind * as we must perform re-scan. Therefore, check it first.
276 1.23 rmind */
277 1.23 rmind state_check:
278 1.13 ad mutex_spin_enter(lock);
279 1.23 rmind if (__predict_false(sc->sc_ncoll != ncoll)) {
280 1.23 rmind /* Collision: perform re-scan. */
281 1.23 rmind mutex_spin_exit(lock);
282 1.34 hannken selclear();
283 1.23 rmind continue;
284 1.23 rmind }
285 1.23 rmind if (__predict_true(l->l_selflag == SEL_EVENT)) {
286 1.23 rmind /* Events occured, they are set directly. */
287 1.23 rmind mutex_spin_exit(lock);
288 1.23 rmind break;
289 1.23 rmind }
290 1.23 rmind if (__predict_true(l->l_selflag == SEL_RESET)) {
291 1.23 rmind /* Events occured, but re-scan is requested. */
292 1.13 ad mutex_spin_exit(lock);
293 1.34 hannken selclear();
294 1.1 ad continue;
295 1.1 ad }
296 1.23 rmind /* Nothing happen, therefore - sleep. */
297 1.1 ad l->l_selflag = SEL_BLOCKING;
298 1.7 ad l->l_kpriority = true;
299 1.13 ad sleepq_enter(&sc->sc_sleepq, l, lock);
300 1.1 ad sleepq_enqueue(&sc->sc_sleepq, sc, "select", &select_sobj);
301 1.1 ad error = sleepq_block(timo, true);
302 1.23 rmind if (error != 0) {
303 1.1 ad break;
304 1.23 rmind }
305 1.23 rmind /* Awoken: need to check the state. */
306 1.23 rmind goto state_check;
307 1.1 ad }
308 1.1 ad selclear();
309 1.1 ad
310 1.34 hannken /* Add direct events if any. */
311 1.34 hannken if (l->l_selflag == SEL_EVENT) {
312 1.34 hannken KASSERT(l->l_selret != 0);
313 1.34 hannken *retval += l->l_selret;
314 1.34 hannken }
315 1.34 hannken
316 1.33 christos if (__predict_false(mask))
317 1.33 christos sigsuspendteardown(l);
318 1.33 christos
319 1.20 dsl /* select and poll are not restarted after signals... */
320 1.20 dsl if (error == ERESTART)
321 1.20 dsl return EINTR;
322 1.20 dsl if (error == EWOULDBLOCK)
323 1.20 dsl return 0;
324 1.17 rmind return error;
325 1.17 rmind }
326 1.17 rmind
327 1.17 rmind int
328 1.19 rmind selcommon(register_t *retval, int nd, fd_set *u_in, fd_set *u_ou,
329 1.19 rmind fd_set *u_ex, struct timespec *ts, sigset_t *mask)
330 1.17 rmind {
331 1.17 rmind char smallbits[howmany(FD_SETSIZE, NFDBITS) *
332 1.17 rmind sizeof(fd_mask) * 6];
333 1.17 rmind char *bits;
334 1.17 rmind int error, nf;
335 1.17 rmind size_t ni;
336 1.17 rmind
337 1.17 rmind if (nd < 0)
338 1.17 rmind return (EINVAL);
339 1.19 rmind nf = curlwp->l_fd->fd_dt->dt_nfiles;
340 1.17 rmind if (nd > nf) {
341 1.17 rmind /* forgiving; slightly wrong */
342 1.17 rmind nd = nf;
343 1.17 rmind }
344 1.17 rmind ni = howmany(nd, NFDBITS) * sizeof(fd_mask);
345 1.40 chs if (ni * 6 > sizeof(smallbits))
346 1.17 rmind bits = kmem_alloc(ni * 6, KM_SLEEP);
347 1.40 chs else
348 1.17 rmind bits = smallbits;
349 1.17 rmind
350 1.17 rmind #define getbits(name, x) \
351 1.17 rmind if (u_ ## name) { \
352 1.17 rmind error = copyin(u_ ## name, bits + ni * x, ni); \
353 1.17 rmind if (error) \
354 1.20 dsl goto fail; \
355 1.17 rmind } else \
356 1.17 rmind memset(bits + ni * x, 0, ni);
357 1.17 rmind getbits(in, 0);
358 1.17 rmind getbits(ou, 1);
359 1.17 rmind getbits(ex, 2);
360 1.17 rmind #undef getbits
361 1.1 ad
362 1.23 rmind error = sel_do_scan(SELOP_SELECT, bits, nd, ni, ts, mask, retval);
363 1.1 ad if (error == 0 && u_in != NULL)
364 1.1 ad error = copyout(bits + ni * 3, u_in, ni);
365 1.1 ad if (error == 0 && u_ou != NULL)
366 1.1 ad error = copyout(bits + ni * 4, u_ou, ni);
367 1.1 ad if (error == 0 && u_ex != NULL)
368 1.1 ad error = copyout(bits + ni * 5, u_ex, ni);
369 1.20 dsl fail:
370 1.1 ad if (bits != smallbits)
371 1.1 ad kmem_free(bits, ni * 6);
372 1.1 ad return (error);
373 1.1 ad }
374 1.1 ad
375 1.19 rmind static inline int
376 1.23 rmind selscan(char *bits, const int nfd, const size_t ni, register_t *retval)
377 1.1 ad {
378 1.17 rmind fd_mask *ibitp, *obitp;
379 1.23 rmind int msk, i, j, fd, n;
380 1.1 ad file_t *fp;
381 1.1 ad
382 1.17 rmind ibitp = (fd_mask *)(bits + ni * 0);
383 1.17 rmind obitp = (fd_mask *)(bits + ni * 3);
384 1.1 ad n = 0;
385 1.17 rmind
386 1.34 hannken memset(obitp, 0, ni * 3);
387 1.1 ad for (msk = 0; msk < 3; msk++) {
388 1.1 ad for (i = 0; i < nfd; i += NFDBITS) {
389 1.23 rmind fd_mask ibits, obits;
390 1.23 rmind
391 1.35 hannken ibits = *ibitp;
392 1.1 ad obits = 0;
393 1.1 ad while ((j = ffs(ibits)) && (fd = i + --j) < nfd) {
394 1.1 ad ibits &= ~(1 << j);
395 1.1 ad if ((fp = fd_getfile(fd)) == NULL)
396 1.1 ad return (EBADF);
397 1.23 rmind /*
398 1.23 rmind * Setup an argument to selrecord(), which is
399 1.23 rmind * a file descriptor number.
400 1.23 rmind */
401 1.23 rmind curlwp->l_selrec = fd;
402 1.23 rmind if ((*fp->f_ops->fo_poll)(fp, sel_flag[msk])) {
403 1.1 ad obits |= (1 << j);
404 1.1 ad n++;
405 1.1 ad }
406 1.1 ad fd_putfile(fd);
407 1.1 ad }
408 1.34 hannken if (obits != 0) {
409 1.36 rmind if (direct_select) {
410 1.36 rmind kmutex_t *lock;
411 1.36 rmind lock = curlwp->l_selcluster->sc_lock;
412 1.35 hannken mutex_spin_enter(lock);
413 1.36 rmind *obitp |= obits;
414 1.35 hannken mutex_spin_exit(lock);
415 1.36 rmind } else {
416 1.36 rmind *obitp |= obits;
417 1.36 rmind }
418 1.34 hannken }
419 1.35 hannken ibitp++;
420 1.34 hannken obitp++;
421 1.1 ad }
422 1.1 ad }
423 1.1 ad *retval = n;
424 1.1 ad return (0);
425 1.1 ad }
426 1.1 ad
427 1.1 ad /*
428 1.1 ad * Poll system call.
429 1.1 ad */
430 1.1 ad int
431 1.1 ad sys_poll(struct lwp *l, const struct sys_poll_args *uap, register_t *retval)
432 1.1 ad {
433 1.1 ad /* {
434 1.1 ad syscallarg(struct pollfd *) fds;
435 1.1 ad syscallarg(u_int) nfds;
436 1.1 ad syscallarg(int) timeout;
437 1.1 ad } */
438 1.14 christos struct timespec ats, *ts = NULL;
439 1.1 ad
440 1.1 ad if (SCARG(uap, timeout) != INFTIM) {
441 1.14 christos ats.tv_sec = SCARG(uap, timeout) / 1000;
442 1.14 christos ats.tv_nsec = (SCARG(uap, timeout) % 1000) * 1000000;
443 1.14 christos ts = &ats;
444 1.1 ad }
445 1.1 ad
446 1.19 rmind return pollcommon(retval, SCARG(uap, fds), SCARG(uap, nfds), ts, NULL);
447 1.1 ad }
448 1.1 ad
449 1.1 ad /*
450 1.1 ad * Poll system call.
451 1.1 ad */
452 1.1 ad int
453 1.12 christos sys___pollts50(struct lwp *l, const struct sys___pollts50_args *uap,
454 1.12 christos register_t *retval)
455 1.1 ad {
456 1.1 ad /* {
457 1.1 ad syscallarg(struct pollfd *) fds;
458 1.1 ad syscallarg(u_int) nfds;
459 1.1 ad syscallarg(const struct timespec *) ts;
460 1.1 ad syscallarg(const sigset_t *) mask;
461 1.1 ad } */
462 1.14 christos struct timespec ats, *ts = NULL;
463 1.1 ad sigset_t amask, *mask = NULL;
464 1.1 ad int error;
465 1.1 ad
466 1.1 ad if (SCARG(uap, ts)) {
467 1.1 ad error = copyin(SCARG(uap, ts), &ats, sizeof(ats));
468 1.1 ad if (error)
469 1.1 ad return error;
470 1.14 christos ts = &ats;
471 1.1 ad }
472 1.1 ad if (SCARG(uap, mask)) {
473 1.1 ad error = copyin(SCARG(uap, mask), &amask, sizeof(amask));
474 1.1 ad if (error)
475 1.1 ad return error;
476 1.1 ad mask = &amask;
477 1.1 ad }
478 1.1 ad
479 1.19 rmind return pollcommon(retval, SCARG(uap, fds), SCARG(uap, nfds), ts, mask);
480 1.1 ad }
481 1.1 ad
482 1.1 ad int
483 1.19 rmind pollcommon(register_t *retval, struct pollfd *u_fds, u_int nfds,
484 1.14 christos struct timespec *ts, sigset_t *mask)
485 1.1 ad {
486 1.11 yamt struct pollfd smallfds[32];
487 1.11 yamt struct pollfd *fds;
488 1.17 rmind int error;
489 1.20 dsl size_t ni;
490 1.1 ad
491 1.20 dsl if (nfds > 1000 + curlwp->l_fd->fd_dt->dt_nfiles) {
492 1.20 dsl /*
493 1.20 dsl * Either the user passed in a very sparse 'fds' or junk!
494 1.20 dsl * The kmem_alloc() call below would be bad news.
495 1.20 dsl * We could process the 'fds' array in chunks, but that
496 1.20 dsl * is a lot of code that isn't normally useful.
497 1.20 dsl * (Or just move the copyin/out into pollscan().)
498 1.20 dsl * Historically the code silently truncated 'fds' to
499 1.20 dsl * dt_nfiles entries - but that does cause issues.
500 1.20 dsl */
501 1.20 dsl return EINVAL;
502 1.1 ad }
503 1.1 ad ni = nfds * sizeof(struct pollfd);
504 1.40 chs if (ni > sizeof(smallfds))
505 1.11 yamt fds = kmem_alloc(ni, KM_SLEEP);
506 1.40 chs else
507 1.11 yamt fds = smallfds;
508 1.1 ad
509 1.11 yamt error = copyin(u_fds, fds, ni);
510 1.1 ad if (error)
511 1.20 dsl goto fail;
512 1.1 ad
513 1.23 rmind error = sel_do_scan(SELOP_POLL, fds, nfds, ni, ts, mask, retval);
514 1.1 ad if (error == 0)
515 1.11 yamt error = copyout(fds, u_fds, ni);
516 1.20 dsl fail:
517 1.11 yamt if (fds != smallfds)
518 1.11 yamt kmem_free(fds, ni);
519 1.1 ad return (error);
520 1.1 ad }
521 1.1 ad
522 1.19 rmind static inline int
523 1.23 rmind pollscan(struct pollfd *fds, const int nfd, register_t *retval)
524 1.1 ad {
525 1.1 ad file_t *fp;
526 1.34 hannken int i, n = 0, revents;
527 1.1 ad
528 1.1 ad for (i = 0; i < nfd; i++, fds++) {
529 1.34 hannken fds->revents = 0;
530 1.1 ad if (fds->fd < 0) {
531 1.34 hannken revents = 0;
532 1.1 ad } else if ((fp = fd_getfile(fds->fd)) == NULL) {
533 1.34 hannken revents = POLLNVAL;
534 1.1 ad } else {
535 1.23 rmind /*
536 1.23 rmind * Perform poll: registers select request or returns
537 1.23 rmind * the events which are set. Setup an argument for
538 1.23 rmind * selrecord(), which is a pointer to struct pollfd.
539 1.23 rmind */
540 1.23 rmind curlwp->l_selrec = (uintptr_t)fds;
541 1.34 hannken revents = (*fp->f_ops->fo_poll)(fp,
542 1.1 ad fds->events | POLLERR | POLLHUP);
543 1.1 ad fd_putfile(fds->fd);
544 1.1 ad }
545 1.34 hannken if (revents) {
546 1.34 hannken fds->revents = revents;
547 1.34 hannken n++;
548 1.34 hannken }
549 1.1 ad }
550 1.1 ad *retval = n;
551 1.1 ad return (0);
552 1.1 ad }
553 1.1 ad
554 1.1 ad int
555 1.1 ad seltrue(dev_t dev, int events, lwp_t *l)
556 1.1 ad {
557 1.1 ad
558 1.1 ad return (events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
559 1.1 ad }
560 1.1 ad
561 1.1 ad /*
562 1.1 ad * Record a select request. Concurrency issues:
563 1.1 ad *
564 1.1 ad * The caller holds the same lock across calls to selrecord() and
565 1.4 yamt * selnotify(), so we don't need to consider a concurrent wakeup
566 1.1 ad * while in this routine.
567 1.1 ad *
568 1.1 ad * The only activity we need to guard against is selclear(), called by
569 1.17 rmind * another thread that is exiting sel_do_scan().
570 1.1 ad * `sel_lwp' can only become non-NULL while the caller's lock is held,
571 1.1 ad * so it cannot become non-NULL due to a change made by another thread
572 1.1 ad * while we are in this routine. It can only become _NULL_ due to a
573 1.1 ad * call to selclear().
574 1.1 ad *
575 1.1 ad * If it is non-NULL and != selector there is the potential for
576 1.1 ad * selclear() to be called by another thread. If either of those
577 1.1 ad * conditions are true, we're not interested in touching the `named
578 1.1 ad * waiter' part of the selinfo record because we need to record a
579 1.1 ad * collision. Hence there is no need for additional locking in this
580 1.1 ad * routine.
581 1.1 ad */
582 1.1 ad void
583 1.1 ad selrecord(lwp_t *selector, struct selinfo *sip)
584 1.1 ad {
585 1.22 ad selcluster_t *sc;
586 1.1 ad lwp_t *other;
587 1.1 ad
588 1.1 ad KASSERT(selector == curlwp);
589 1.1 ad
590 1.22 ad sc = selector->l_selcluster;
591 1.1 ad other = sip->sel_lwp;
592 1.1 ad
593 1.1 ad if (other == selector) {
594 1.23 rmind /* 1. We (selector) already claimed to be the first LWP. */
595 1.37 riastrad KASSERT(sip->sel_cluster == sc);
596 1.1 ad } else if (other == NULL) {
597 1.1 ad /*
598 1.23 rmind * 2. No first LWP, therefore we (selector) are the first.
599 1.23 rmind *
600 1.23 rmind * There may be unnamed waiters (collisions). Issue a memory
601 1.23 rmind * barrier to ensure that we access sel_lwp (above) before
602 1.23 rmind * other fields - this guards against a call to selclear().
603 1.1 ad */
604 1.1 ad membar_enter();
605 1.1 ad sip->sel_lwp = selector;
606 1.1 ad SLIST_INSERT_HEAD(&selector->l_selwait, sip, sel_chain);
607 1.23 rmind /* Copy the argument, which is for selnotify(). */
608 1.23 rmind sip->sel_fdinfo = selector->l_selrec;
609 1.22 ad /* Replace selinfo's lock with the chosen cluster's lock. */
610 1.22 ad sip->sel_cluster = sc;
611 1.1 ad } else {
612 1.23 rmind /* 3. Multiple waiters: record a collision. */
613 1.1 ad sip->sel_collision |= sc->sc_mask;
614 1.22 ad KASSERT(sip->sel_cluster != NULL);
615 1.1 ad }
616 1.1 ad }
617 1.1 ad
618 1.1 ad /*
619 1.23 rmind * sel_setevents: a helper function for selnotify(), to set the events
620 1.23 rmind * for LWP sleeping in selcommon() or pollcommon().
621 1.23 rmind */
622 1.30 rmind static inline bool
623 1.23 rmind sel_setevents(lwp_t *l, struct selinfo *sip, const int events)
624 1.23 rmind {
625 1.23 rmind const int oflag = l->l_selflag;
626 1.30 rmind int ret = 0;
627 1.23 rmind
628 1.23 rmind /*
629 1.23 rmind * If we require re-scan or it was required by somebody else,
630 1.23 rmind * then just (re)set SEL_RESET and return.
631 1.23 rmind */
632 1.23 rmind if (__predict_false(events == 0 || oflag == SEL_RESET)) {
633 1.23 rmind l->l_selflag = SEL_RESET;
634 1.30 rmind return true;
635 1.23 rmind }
636 1.23 rmind /*
637 1.23 rmind * Direct set. Note: select state of LWP is locked. First,
638 1.23 rmind * determine whether it is selcommon() or pollcommon().
639 1.23 rmind */
640 1.23 rmind if (l->l_selbits != NULL) {
641 1.30 rmind const size_t ni = l->l_selni;
642 1.23 rmind fd_mask *fds = (fd_mask *)l->l_selbits;
643 1.30 rmind fd_mask *ofds = (fd_mask *)((char *)fds + ni * 3);
644 1.30 rmind const int fd = sip->sel_fdinfo, fbit = 1 << (fd & __NFDMASK);
645 1.25 rmind const int idx = fd >> __NFDSHIFT;
646 1.23 rmind int n;
647 1.23 rmind
648 1.23 rmind for (n = 0; n < 3; n++) {
649 1.34 hannken if ((fds[idx] & fbit) != 0 &&
650 1.34 hannken (ofds[idx] & fbit) == 0 &&
651 1.34 hannken (sel_flag[n] & events)) {
652 1.30 rmind ofds[idx] |= fbit;
653 1.30 rmind ret++;
654 1.23 rmind }
655 1.23 rmind fds = (fd_mask *)((char *)fds + ni);
656 1.30 rmind ofds = (fd_mask *)((char *)ofds + ni);
657 1.23 rmind }
658 1.23 rmind } else {
659 1.23 rmind struct pollfd *pfd = (void *)sip->sel_fdinfo;
660 1.30 rmind int revents = events & (pfd->events | POLLERR | POLLHUP);
661 1.30 rmind
662 1.30 rmind if (revents) {
663 1.34 hannken if (pfd->revents == 0)
664 1.34 hannken ret = 1;
665 1.30 rmind pfd->revents |= revents;
666 1.30 rmind }
667 1.30 rmind }
668 1.30 rmind /* Check whether there are any events to return. */
669 1.30 rmind if (!ret) {
670 1.30 rmind return false;
671 1.23 rmind }
672 1.23 rmind /* Indicate direct set and note the event (cluster lock is held). */
673 1.23 rmind l->l_selflag = SEL_EVENT;
674 1.30 rmind l->l_selret += ret;
675 1.30 rmind return true;
676 1.23 rmind }
677 1.23 rmind
678 1.23 rmind /*
679 1.1 ad * Do a wakeup when a selectable event occurs. Concurrency issues:
680 1.1 ad *
681 1.1 ad * As per selrecord(), the caller's object lock is held. If there
682 1.22 ad * is a named waiter, we must acquire the associated selcluster's lock
683 1.1 ad * in order to synchronize with selclear() and pollers going to sleep
684 1.17 rmind * in sel_do_scan().
685 1.1 ad *
686 1.22 ad * sip->sel_cluser cannot change at this point, as it is only changed
687 1.1 ad * in selrecord(), and concurrent calls to selrecord() are locked
688 1.1 ad * out by the caller.
689 1.1 ad */
690 1.1 ad void
691 1.1 ad selnotify(struct selinfo *sip, int events, long knhint)
692 1.1 ad {
693 1.22 ad selcluster_t *sc;
694 1.1 ad uint32_t mask;
695 1.16 rmind int index, oflag;
696 1.1 ad lwp_t *l;
697 1.13 ad kmutex_t *lock;
698 1.1 ad
699 1.1 ad KNOTE(&sip->sel_klist, knhint);
700 1.1 ad
701 1.1 ad if (sip->sel_lwp != NULL) {
702 1.1 ad /* One named LWP is waiting. */
703 1.22 ad sc = sip->sel_cluster;
704 1.13 ad lock = sc->sc_lock;
705 1.13 ad mutex_spin_enter(lock);
706 1.1 ad /* Still there? */
707 1.1 ad if (sip->sel_lwp != NULL) {
708 1.23 rmind /*
709 1.23 rmind * Set the events for our LWP and indicate that.
710 1.23 rmind * Otherwise, request for a full re-scan.
711 1.23 rmind */
712 1.1 ad l = sip->sel_lwp;
713 1.23 rmind oflag = l->l_selflag;
714 1.36 rmind
715 1.36 rmind if (!direct_select) {
716 1.36 rmind l->l_selflag = SEL_RESET;
717 1.36 rmind } else if (!sel_setevents(l, sip, events)) {
718 1.30 rmind /* No events to return. */
719 1.30 rmind mutex_spin_exit(lock);
720 1.30 rmind return;
721 1.30 rmind }
722 1.36 rmind
723 1.1 ad /*
724 1.1 ad * If thread is sleeping, wake it up. If it's not
725 1.1 ad * yet asleep, it will notice the change in state
726 1.1 ad * and will re-poll the descriptors.
727 1.1 ad */
728 1.13 ad if (oflag == SEL_BLOCKING && l->l_mutex == lock) {
729 1.1 ad KASSERT(l->l_wchan == sc);
730 1.16 rmind sleepq_unsleep(l, false);
731 1.1 ad }
732 1.1 ad }
733 1.13 ad mutex_spin_exit(lock);
734 1.1 ad }
735 1.1 ad
736 1.1 ad if ((mask = sip->sel_collision) != 0) {
737 1.1 ad /*
738 1.1 ad * There was a collision (multiple waiters): we must
739 1.1 ad * inform all potentially interested waiters.
740 1.1 ad */
741 1.1 ad sip->sel_collision = 0;
742 1.3 ad do {
743 1.1 ad index = ffs(mask) - 1;
744 1.1 ad mask &= ~(1 << index);
745 1.22 ad sc = selcluster[index];
746 1.13 ad lock = sc->sc_lock;
747 1.13 ad mutex_spin_enter(lock);
748 1.1 ad sc->sc_ncoll++;
749 1.13 ad sleepq_wake(&sc->sc_sleepq, sc, (u_int)-1, lock);
750 1.3 ad } while (__predict_false(mask != 0));
751 1.1 ad }
752 1.1 ad }
753 1.1 ad
754 1.1 ad /*
755 1.1 ad * Remove an LWP from all objects that it is waiting for. Concurrency
756 1.1 ad * issues:
757 1.1 ad *
758 1.1 ad * The object owner's (e.g. device driver) lock is not held here. Calls
759 1.1 ad * can be made to selrecord() and we do not synchronize against those
760 1.1 ad * directly using locks. However, we use `sel_lwp' to lock out changes.
761 1.1 ad * Before clearing it we must use memory barriers to ensure that we can
762 1.1 ad * safely traverse the list of selinfo records.
763 1.1 ad */
764 1.1 ad static void
765 1.1 ad selclear(void)
766 1.1 ad {
767 1.1 ad struct selinfo *sip, *next;
768 1.22 ad selcluster_t *sc;
769 1.1 ad lwp_t *l;
770 1.13 ad kmutex_t *lock;
771 1.1 ad
772 1.1 ad l = curlwp;
773 1.22 ad sc = l->l_selcluster;
774 1.13 ad lock = sc->sc_lock;
775 1.1 ad
776 1.13 ad mutex_spin_enter(lock);
777 1.1 ad for (sip = SLIST_FIRST(&l->l_selwait); sip != NULL; sip = next) {
778 1.1 ad KASSERT(sip->sel_lwp == l);
779 1.22 ad KASSERT(sip->sel_cluster == l->l_selcluster);
780 1.22 ad
781 1.1 ad /*
782 1.1 ad * Read link to next selinfo record, if any.
783 1.1 ad * It's no longer safe to touch `sip' after clearing
784 1.1 ad * `sel_lwp', so ensure that the read of `sel_chain'
785 1.1 ad * completes before the clearing of sel_lwp becomes
786 1.1 ad * globally visible.
787 1.1 ad */
788 1.1 ad next = SLIST_NEXT(sip, sel_chain);
789 1.1 ad membar_exit();
790 1.1 ad /* Release the record for another named waiter to use. */
791 1.1 ad sip->sel_lwp = NULL;
792 1.1 ad }
793 1.13 ad mutex_spin_exit(lock);
794 1.1 ad }
795 1.1 ad
796 1.1 ad /*
797 1.1 ad * Initialize the select/poll system calls. Called once for each
798 1.1 ad * CPU in the system, as they are attached.
799 1.1 ad */
800 1.1 ad void
801 1.1 ad selsysinit(struct cpu_info *ci)
802 1.1 ad {
803 1.22 ad selcluster_t *sc;
804 1.22 ad u_int index;
805 1.1 ad
806 1.22 ad /* If already a cluster in place for this bit, re-use. */
807 1.22 ad index = cpu_index(ci) & SELCLUSTERMASK;
808 1.22 ad sc = selcluster[index];
809 1.22 ad if (sc == NULL) {
810 1.22 ad sc = kmem_alloc(roundup2(sizeof(selcluster_t),
811 1.22 ad coherency_unit) + coherency_unit, KM_SLEEP);
812 1.22 ad sc = (void *)roundup2((uintptr_t)sc, coherency_unit);
813 1.22 ad sc->sc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
814 1.22 ad sleepq_init(&sc->sc_sleepq);
815 1.22 ad sc->sc_ncoll = 0;
816 1.22 ad sc->sc_mask = (1 << index);
817 1.22 ad selcluster[index] = sc;
818 1.22 ad }
819 1.22 ad ci->ci_data.cpu_selcluster = sc;
820 1.1 ad }
821 1.1 ad
822 1.1 ad /*
823 1.1 ad * Initialize a selinfo record.
824 1.1 ad */
825 1.1 ad void
826 1.1 ad selinit(struct selinfo *sip)
827 1.1 ad {
828 1.1 ad
829 1.1 ad memset(sip, 0, sizeof(*sip));
830 1.1 ad }
831 1.1 ad
832 1.1 ad /*
833 1.1 ad * Destroy a selinfo record. The owning object must not gain new
834 1.1 ad * references while this is in progress: all activity on the record
835 1.1 ad * must be stopped.
836 1.1 ad *
837 1.1 ad * Concurrency issues: we only need guard against a call to selclear()
838 1.17 rmind * by a thread exiting sel_do_scan(). The caller has prevented further
839 1.17 rmind * references being made to the selinfo record via selrecord(), and it
840 1.23 rmind * will not call selnotify() again.
841 1.1 ad */
842 1.1 ad void
843 1.1 ad seldestroy(struct selinfo *sip)
844 1.1 ad {
845 1.22 ad selcluster_t *sc;
846 1.13 ad kmutex_t *lock;
847 1.1 ad lwp_t *l;
848 1.1 ad
849 1.1 ad if (sip->sel_lwp == NULL)
850 1.1 ad return;
851 1.1 ad
852 1.1 ad /*
853 1.22 ad * Lock out selclear(). The selcluster pointer can't change while
854 1.1 ad * we are here since it is only ever changed in selrecord(),
855 1.1 ad * and that will not be entered again for this record because
856 1.1 ad * it is dying.
857 1.1 ad */
858 1.22 ad KASSERT(sip->sel_cluster != NULL);
859 1.22 ad sc = sip->sel_cluster;
860 1.13 ad lock = sc->sc_lock;
861 1.13 ad mutex_spin_enter(lock);
862 1.1 ad if ((l = sip->sel_lwp) != NULL) {
863 1.1 ad /*
864 1.1 ad * This should rarely happen, so although SLIST_REMOVE()
865 1.1 ad * is slow, using it here is not a problem.
866 1.1 ad */
867 1.22 ad KASSERT(l->l_selcluster == sc);
868 1.1 ad SLIST_REMOVE(&l->l_selwait, sip, selinfo, sel_chain);
869 1.1 ad sip->sel_lwp = NULL;
870 1.1 ad }
871 1.13 ad mutex_spin_exit(lock);
872 1.1 ad }
873 1.1 ad
874 1.36 rmind /*
875 1.36 rmind * System control nodes.
876 1.36 rmind */
877 1.36 rmind SYSCTL_SETUP(sysctl_select_setup, "sysctl select setup")
878 1.36 rmind {
879 1.36 rmind
880 1.38 pooka sysctl_createv(clog, 0, NULL, NULL,
881 1.36 rmind CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
882 1.36 rmind CTLTYPE_INT, "direct_select",
883 1.36 rmind SYSCTL_DESCR("Enable/disable direct select (for testing)"),
884 1.36 rmind NULL, 0, &direct_select, 0,
885 1.38 pooka CTL_KERN, CTL_CREATE, CTL_EOL);
886 1.36 rmind }
887