sys_select.c revision 1.46.2.2 1 1.46.2.2 martin /* $NetBSD: sys_select.c,v 1.46.2.2 2024/11/20 14:09:10 martin Exp $ */
2 1.1 ad
3 1.1 ad /*-
4 1.22 ad * Copyright (c) 2007, 2008, 2009, 2010 The NetBSD Foundation, Inc.
5 1.1 ad * All rights reserved.
6 1.1 ad *
7 1.1 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.23 rmind * by Andrew Doran and Mindaugas Rasiukevicius.
9 1.1 ad *
10 1.1 ad * Redistribution and use in source and binary forms, with or without
11 1.1 ad * modification, are permitted provided that the following conditions
12 1.1 ad * are met:
13 1.1 ad * 1. Redistributions of source code must retain the above copyright
14 1.1 ad * notice, this list of conditions and the following disclaimer.
15 1.1 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 ad * notice, this list of conditions and the following disclaimer in the
17 1.1 ad * documentation and/or other materials provided with the distribution.
18 1.1 ad *
19 1.1 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.1 ad */
31 1.1 ad
32 1.1 ad /*
33 1.1 ad * Copyright (c) 1982, 1986, 1989, 1993
34 1.1 ad * The Regents of the University of California. All rights reserved.
35 1.1 ad * (c) UNIX System Laboratories, Inc.
36 1.1 ad * All or some portions of this file are derived from material licensed
37 1.1 ad * to the University of California by American Telephone and Telegraph
38 1.1 ad * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39 1.1 ad * the permission of UNIX System Laboratories, Inc.
40 1.1 ad *
41 1.1 ad * Redistribution and use in source and binary forms, with or without
42 1.1 ad * modification, are permitted provided that the following conditions
43 1.1 ad * are met:
44 1.1 ad * 1. Redistributions of source code must retain the above copyright
45 1.1 ad * notice, this list of conditions and the following disclaimer.
46 1.1 ad * 2. Redistributions in binary form must reproduce the above copyright
47 1.1 ad * notice, this list of conditions and the following disclaimer in the
48 1.1 ad * documentation and/or other materials provided with the distribution.
49 1.1 ad * 3. Neither the name of the University nor the names of its contributors
50 1.1 ad * may be used to endorse or promote products derived from this software
51 1.1 ad * without specific prior written permission.
52 1.1 ad *
53 1.1 ad * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 1.1 ad * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 1.1 ad * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 1.1 ad * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 1.1 ad * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 1.1 ad * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 1.1 ad * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 1.1 ad * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 1.1 ad * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 1.1 ad * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 1.1 ad * SUCH DAMAGE.
64 1.1 ad *
65 1.1 ad * @(#)sys_generic.c 8.9 (Berkeley) 2/14/95
66 1.1 ad */
67 1.1 ad
68 1.1 ad /*
69 1.21 rmind * System calls of synchronous I/O multiplexing subsystem.
70 1.21 rmind *
71 1.21 rmind * Locking
72 1.21 rmind *
73 1.22 ad * Two locks are used: <object-lock> and selcluster_t::sc_lock.
74 1.21 rmind *
75 1.21 rmind * The <object-lock> might be a device driver or another subsystem, e.g.
76 1.21 rmind * socket or pipe. This lock is not exported, and thus invisible to this
77 1.21 rmind * subsystem. Mainly, synchronisation between selrecord() and selnotify()
78 1.21 rmind * routines depends on this lock, as it will be described in the comments.
79 1.21 rmind *
80 1.21 rmind * Lock order
81 1.21 rmind *
82 1.21 rmind * <object-lock> ->
83 1.22 ad * selcluster_t::sc_lock
84 1.1 ad */
85 1.1 ad
86 1.1 ad #include <sys/cdefs.h>
87 1.46.2.2 martin __KERNEL_RCSID(0, "$NetBSD: sys_select.c,v 1.46.2.2 2024/11/20 14:09:10 martin Exp $");
88 1.1 ad
89 1.1 ad #include <sys/param.h>
90 1.1 ad #include <sys/systm.h>
91 1.1 ad #include <sys/filedesc.h>
92 1.1 ad #include <sys/file.h>
93 1.1 ad #include <sys/proc.h>
94 1.1 ad #include <sys/socketvar.h>
95 1.1 ad #include <sys/signalvar.h>
96 1.1 ad #include <sys/uio.h>
97 1.1 ad #include <sys/kernel.h>
98 1.29 rmind #include <sys/lwp.h>
99 1.1 ad #include <sys/poll.h>
100 1.1 ad #include <sys/mount.h>
101 1.1 ad #include <sys/syscallargs.h>
102 1.1 ad #include <sys/cpu.h>
103 1.1 ad #include <sys/atomic.h>
104 1.1 ad #include <sys/socketvar.h>
105 1.1 ad #include <sys/sleepq.h>
106 1.36 rmind #include <sys/sysctl.h>
107 1.1 ad
108 1.1 ad /* Flags for lwp::l_selflag. */
109 1.1 ad #define SEL_RESET 0 /* awoken, interrupted, or not yet polling */
110 1.1 ad #define SEL_SCANNING 1 /* polling descriptors */
111 1.23 rmind #define SEL_BLOCKING 2 /* blocking and waiting for event */
112 1.23 rmind #define SEL_EVENT 3 /* interrupted, events set directly */
113 1.23 rmind
114 1.23 rmind /* Operations: either select() or poll(). */
115 1.23 rmind #define SELOP_SELECT 1
116 1.23 rmind #define SELOP_POLL 2
117 1.1 ad
118 1.22 ad /*
119 1.22 ad * Per-cluster state for select()/poll(). For a system with fewer
120 1.22 ad * than 32 CPUs, this gives us per-CPU clusters.
121 1.22 ad */
122 1.22 ad #define SELCLUSTERS 32
123 1.22 ad #define SELCLUSTERMASK (SELCLUSTERS - 1)
124 1.22 ad
125 1.22 ad typedef struct selcluster {
126 1.13 ad kmutex_t *sc_lock;
127 1.1 ad sleepq_t sc_sleepq;
128 1.1 ad int sc_ncoll;
129 1.1 ad uint32_t sc_mask;
130 1.22 ad } selcluster_t;
131 1.1 ad
132 1.23 rmind static inline int selscan(char *, const int, const size_t, register_t *);
133 1.23 rmind static inline int pollscan(struct pollfd *, const int, register_t *);
134 1.19 rmind static void selclear(void);
135 1.1 ad
136 1.23 rmind static const int sel_flag[] = {
137 1.23 rmind POLLRDNORM | POLLHUP | POLLERR,
138 1.23 rmind POLLWRNORM | POLLHUP | POLLERR,
139 1.23 rmind POLLRDBAND
140 1.23 rmind };
141 1.23 rmind
142 1.1 ad static syncobj_t select_sobj = {
143 1.41 ozaki .sobj_flag = SOBJ_SLEEPQ_FIFO,
144 1.41 ozaki .sobj_unsleep = sleepq_unsleep,
145 1.41 ozaki .sobj_changepri = sleepq_changepri,
146 1.41 ozaki .sobj_lendpri = sleepq_lendpri,
147 1.41 ozaki .sobj_owner = syncobj_noowner,
148 1.1 ad };
149 1.1 ad
150 1.23 rmind static selcluster_t *selcluster[SELCLUSTERS] __read_mostly;
151 1.36 rmind static int direct_select __read_mostly = 0;
152 1.22 ad
153 1.1 ad /*
154 1.1 ad * Select system call.
155 1.1 ad */
156 1.1 ad int
157 1.12 christos sys___pselect50(struct lwp *l, const struct sys___pselect50_args *uap,
158 1.12 christos register_t *retval)
159 1.1 ad {
160 1.1 ad /* {
161 1.1 ad syscallarg(int) nd;
162 1.1 ad syscallarg(fd_set *) in;
163 1.1 ad syscallarg(fd_set *) ou;
164 1.1 ad syscallarg(fd_set *) ex;
165 1.1 ad syscallarg(const struct timespec *) ts;
166 1.1 ad syscallarg(sigset_t *) mask;
167 1.1 ad } */
168 1.14 christos struct timespec ats, *ts = NULL;
169 1.1 ad sigset_t amask, *mask = NULL;
170 1.1 ad int error;
171 1.1 ad
172 1.1 ad if (SCARG(uap, ts)) {
173 1.1 ad error = copyin(SCARG(uap, ts), &ats, sizeof(ats));
174 1.1 ad if (error)
175 1.1 ad return error;
176 1.14 christos ts = &ats;
177 1.1 ad }
178 1.1 ad if (SCARG(uap, mask) != NULL) {
179 1.1 ad error = copyin(SCARG(uap, mask), &amask, sizeof(amask));
180 1.1 ad if (error)
181 1.1 ad return error;
182 1.1 ad mask = &amask;
183 1.1 ad }
184 1.1 ad
185 1.19 rmind return selcommon(retval, SCARG(uap, nd), SCARG(uap, in),
186 1.14 christos SCARG(uap, ou), SCARG(uap, ex), ts, mask);
187 1.1 ad }
188 1.1 ad
189 1.1 ad int
190 1.12 christos sys___select50(struct lwp *l, const struct sys___select50_args *uap,
191 1.12 christos register_t *retval)
192 1.1 ad {
193 1.1 ad /* {
194 1.1 ad syscallarg(int) nd;
195 1.1 ad syscallarg(fd_set *) in;
196 1.1 ad syscallarg(fd_set *) ou;
197 1.1 ad syscallarg(fd_set *) ex;
198 1.1 ad syscallarg(struct timeval *) tv;
199 1.1 ad } */
200 1.14 christos struct timeval atv;
201 1.14 christos struct timespec ats, *ts = NULL;
202 1.1 ad int error;
203 1.1 ad
204 1.1 ad if (SCARG(uap, tv)) {
205 1.14 christos error = copyin(SCARG(uap, tv), (void *)&atv, sizeof(atv));
206 1.1 ad if (error)
207 1.1 ad return error;
208 1.14 christos TIMEVAL_TO_TIMESPEC(&atv, &ats);
209 1.14 christos ts = &ats;
210 1.1 ad }
211 1.1 ad
212 1.19 rmind return selcommon(retval, SCARG(uap, nd), SCARG(uap, in),
213 1.14 christos SCARG(uap, ou), SCARG(uap, ex), ts, NULL);
214 1.1 ad }
215 1.1 ad
216 1.17 rmind /*
217 1.17 rmind * sel_do_scan: common code to perform the scan on descriptors.
218 1.17 rmind */
219 1.17 rmind static int
220 1.23 rmind sel_do_scan(const int op, void *fds, const int nf, const size_t ni,
221 1.23 rmind struct timespec *ts, sigset_t *mask, register_t *retval)
222 1.1 ad {
223 1.17 rmind lwp_t * const l = curlwp;
224 1.22 ad selcluster_t *sc;
225 1.13 ad kmutex_t *lock;
226 1.17 rmind struct timespec sleepts;
227 1.17 rmind int error, timo;
228 1.1 ad
229 1.1 ad timo = 0;
230 1.14 christos if (ts && inittimeleft(ts, &sleepts) == -1) {
231 1.17 rmind return EINVAL;
232 1.1 ad }
233 1.1 ad
234 1.32 christos if (__predict_false(mask))
235 1.31 christos sigsuspendsetup(l, mask);
236 1.1 ad
237 1.22 ad sc = curcpu()->ci_data.cpu_selcluster;
238 1.13 ad lock = sc->sc_lock;
239 1.22 ad l->l_selcluster = sc;
240 1.23 rmind if (op == SELOP_SELECT) {
241 1.30 rmind l->l_selbits = fds;
242 1.23 rmind l->l_selni = ni;
243 1.23 rmind } else {
244 1.23 rmind l->l_selbits = NULL;
245 1.23 rmind }
246 1.34 hannken
247 1.1 ad for (;;) {
248 1.17 rmind int ncoll;
249 1.17 rmind
250 1.34 hannken SLIST_INIT(&l->l_selwait);
251 1.34 hannken l->l_selret = 0;
252 1.34 hannken
253 1.1 ad /*
254 1.17 rmind * No need to lock. If this is overwritten by another value
255 1.17 rmind * while scanning, we will retry below. We only need to see
256 1.17 rmind * exact state from the descriptors that we are about to poll,
257 1.17 rmind * and lock activity resulting from fo_poll is enough to
258 1.17 rmind * provide an up to date value for new polling activity.
259 1.1 ad */
260 1.17 rmind l->l_selflag = SEL_SCANNING;
261 1.1 ad ncoll = sc->sc_ncoll;
262 1.1 ad
263 1.23 rmind if (op == SELOP_SELECT) {
264 1.23 rmind error = selscan((char *)fds, nf, ni, retval);
265 1.17 rmind } else {
266 1.23 rmind error = pollscan((struct pollfd *)fds, nf, retval);
267 1.17 rmind }
268 1.1 ad if (error || *retval)
269 1.1 ad break;
270 1.14 christos if (ts && (timo = gettimeleft(ts, &sleepts)) <= 0)
271 1.1 ad break;
272 1.23 rmind /*
273 1.23 rmind * Acquire the lock and perform the (re)checks. Note, if
274 1.23 rmind * collision has occured, then our state does not matter,
275 1.23 rmind * as we must perform re-scan. Therefore, check it first.
276 1.23 rmind */
277 1.23 rmind state_check:
278 1.13 ad mutex_spin_enter(lock);
279 1.23 rmind if (__predict_false(sc->sc_ncoll != ncoll)) {
280 1.23 rmind /* Collision: perform re-scan. */
281 1.23 rmind mutex_spin_exit(lock);
282 1.34 hannken selclear();
283 1.23 rmind continue;
284 1.23 rmind }
285 1.23 rmind if (__predict_true(l->l_selflag == SEL_EVENT)) {
286 1.23 rmind /* Events occured, they are set directly. */
287 1.23 rmind mutex_spin_exit(lock);
288 1.23 rmind break;
289 1.23 rmind }
290 1.23 rmind if (__predict_true(l->l_selflag == SEL_RESET)) {
291 1.23 rmind /* Events occured, but re-scan is requested. */
292 1.13 ad mutex_spin_exit(lock);
293 1.34 hannken selclear();
294 1.1 ad continue;
295 1.1 ad }
296 1.23 rmind /* Nothing happen, therefore - sleep. */
297 1.1 ad l->l_selflag = SEL_BLOCKING;
298 1.7 ad l->l_kpriority = true;
299 1.13 ad sleepq_enter(&sc->sc_sleepq, l, lock);
300 1.1 ad sleepq_enqueue(&sc->sc_sleepq, sc, "select", &select_sobj);
301 1.1 ad error = sleepq_block(timo, true);
302 1.23 rmind if (error != 0) {
303 1.1 ad break;
304 1.23 rmind }
305 1.23 rmind /* Awoken: need to check the state. */
306 1.23 rmind goto state_check;
307 1.1 ad }
308 1.1 ad selclear();
309 1.1 ad
310 1.34 hannken /* Add direct events if any. */
311 1.34 hannken if (l->l_selflag == SEL_EVENT) {
312 1.34 hannken KASSERT(l->l_selret != 0);
313 1.34 hannken *retval += l->l_selret;
314 1.34 hannken }
315 1.34 hannken
316 1.33 christos if (__predict_false(mask))
317 1.33 christos sigsuspendteardown(l);
318 1.33 christos
319 1.20 dsl /* select and poll are not restarted after signals... */
320 1.20 dsl if (error == ERESTART)
321 1.20 dsl return EINTR;
322 1.20 dsl if (error == EWOULDBLOCK)
323 1.20 dsl return 0;
324 1.17 rmind return error;
325 1.17 rmind }
326 1.17 rmind
327 1.46.2.2 martin /* designed to be compatible with FD_SET() FD_ISSET() ... */
328 1.46.2.2 martin static int
329 1.46.2.2 martin anyset(void *p, size_t nbits)
330 1.46.2.2 martin {
331 1.46.2.2 martin size_t nwords;
332 1.46.2.2 martin __fd_mask mask;
333 1.46.2.2 martin __fd_mask *f = (__fd_mask *)p;
334 1.46.2.2 martin
335 1.46.2.2 martin nwords = nbits / __NFDBITS;
336 1.46.2.2 martin
337 1.46.2.2 martin while (nwords-- > 0)
338 1.46.2.2 martin if (*f++ != 0)
339 1.46.2.2 martin return 1;
340 1.46.2.2 martin
341 1.46.2.2 martin nbits &= __NFDMASK;
342 1.46.2.2 martin if (nbits != 0) {
343 1.46.2.2 martin mask = (1U << nbits) - 1;
344 1.46.2.2 martin if ((*f & mask) != 0)
345 1.46.2.2 martin return 1;
346 1.46.2.2 martin }
347 1.46.2.2 martin return 0;
348 1.46.2.2 martin }
349 1.46.2.2 martin
350 1.17 rmind int
351 1.19 rmind selcommon(register_t *retval, int nd, fd_set *u_in, fd_set *u_ou,
352 1.19 rmind fd_set *u_ex, struct timespec *ts, sigset_t *mask)
353 1.17 rmind {
354 1.17 rmind char smallbits[howmany(FD_SETSIZE, NFDBITS) *
355 1.17 rmind sizeof(fd_mask) * 6];
356 1.17 rmind char *bits;
357 1.46.2.2 martin int error, nf, fb, db;
358 1.17 rmind size_t ni;
359 1.17 rmind
360 1.17 rmind if (nd < 0)
361 1.46.2.2 martin return EINVAL;
362 1.46.2.2 martin
363 1.46.2.1 martin nf = atomic_load_consume(&curlwp->l_fd->fd_dt)->dt_nfiles;
364 1.46.2.2 martin
365 1.46.2.2 martin /*
366 1.46.2.2 martin * Don't allow absurdly large numbers of fds to be selected.
367 1.46.2.2 martin * (used to silently truncate, naughty naughty, no more ...)
368 1.46.2.2 martin *
369 1.46.2.2 martin * The additional FD_SETSISE allows for cases where the limit
370 1.46.2.2 martin * is not a round binary number, but the fd_set wants to
371 1.46.2.2 martin * include all the possible fds, as fd_sets are always
372 1.46.2.2 martin * multiples of 32 bits (__NFDBITS extra would be enough).
373 1.46.2.2 martin *
374 1.46.2.2 martin * The first test handles the case where the res limit has been
375 1.46.2.2 martin * set lower after some fds were opened, we always allow selecting
376 1.46.2.2 martin * up to the highest currently open fd.
377 1.46.2.2 martin */
378 1.46.2.2 martin if (nd > nf + FD_SETSIZE &&
379 1.46.2.2 martin nd > curlwp->l_proc->p_rlimit[RLIMIT_NOFILE].rlim_max + FD_SETSIZE)
380 1.46.2.2 martin return EINVAL;
381 1.46.2.2 martin
382 1.46.2.2 martin fb = howmany(nf, __NFDBITS); /* how many fd_masks */
383 1.46.2.2 martin db = howmany(nd, __NFDBITS);
384 1.46.2.2 martin
385 1.46.2.2 martin if (db > fb) {
386 1.46.2.2 martin size_t off;
387 1.46.2.2 martin
388 1.46.2.2 martin /*
389 1.46.2.2 martin * the application wants to supply more fd masks than can
390 1.46.2.2 martin * possibly represent valid file descriptors.
391 1.46.2.2 martin *
392 1.46.2.2 martin * Check the excess fd_masks, if any bits are set in them
393 1.46.2.2 martin * that must be an error (cannot represent valid fd).
394 1.46.2.2 martin *
395 1.46.2.2 martin * Supplying lots of extra cleared fd_masks is dumb,
396 1.46.2.2 martin * but harmless, so allow that.
397 1.46.2.2 martin */
398 1.46.2.2 martin ni = (db - fb) * sizeof(fd_mask); /* excess bytes */
399 1.46.2.2 martin bits = smallbits;
400 1.46.2.2 martin
401 1.46.2.2 martin /* skip over the valid fd_masks, those will be checked below */
402 1.46.2.2 martin off = howmany(nf, __NFDBITS) * sizeof(__fd_mask);
403 1.46.2.2 martin
404 1.46.2.2 martin nd -= fb * NFDBITS; /* the number of excess fds */
405 1.46.2.2 martin
406 1.46.2.2 martin #define checkbits(name, o, sz, fds) \
407 1.46.2.2 martin do { \
408 1.46.2.2 martin if (u_ ## name != NULL) { \
409 1.46.2.2 martin error = copyin((char *)u_ ## name + o, \
410 1.46.2.2 martin bits, sz); \
411 1.46.2.2 martin if (error) \
412 1.46.2.2 martin goto fail; \
413 1.46.2.2 martin if (anyset(bits, (fds) ? \
414 1.46.2.2 martin (size_t)(fds) : CHAR_BIT * (sz))) { \
415 1.46.2.2 martin error = EBADF; \
416 1.46.2.2 martin goto fail; \
417 1.46.2.2 martin } \
418 1.46.2.2 martin } \
419 1.46.2.2 martin } while (0)
420 1.46.2.2 martin
421 1.46.2.2 martin while (ni > sizeof(smallbits)) {
422 1.46.2.2 martin checkbits(in, off, sizeof(smallbits), 0);
423 1.46.2.2 martin checkbits(ou, off, sizeof(smallbits), 0);
424 1.46.2.2 martin checkbits(ex, off, sizeof(smallbits), 0);
425 1.46.2.2 martin
426 1.46.2.2 martin off += sizeof(smallbits);
427 1.46.2.2 martin ni -= sizeof(smallbits);
428 1.46.2.2 martin nd -= sizeof(smallbits) * CHAR_BIT;
429 1.46.2.2 martin }
430 1.46.2.2 martin checkbits(in, off, ni, nd);
431 1.46.2.2 martin checkbits(ou, off, ni, nd);
432 1.46.2.2 martin checkbits(ex, off, ni, nd);
433 1.46.2.2 martin #undef checkbits
434 1.46.2.2 martin
435 1.46.2.2 martin db = fb; /* now just check the plausible fds */
436 1.46.2.2 martin nd = db * __NFDBITS;
437 1.17 rmind }
438 1.46.2.2 martin
439 1.46.2.2 martin ni = db * sizeof(fd_mask);
440 1.40 chs if (ni * 6 > sizeof(smallbits))
441 1.17 rmind bits = kmem_alloc(ni * 6, KM_SLEEP);
442 1.40 chs else
443 1.17 rmind bits = smallbits;
444 1.17 rmind
445 1.17 rmind #define getbits(name, x) \
446 1.46.2.2 martin do { \
447 1.46.2.2 martin if (u_ ## name) { \
448 1.46.2.2 martin error = copyin(u_ ## name, bits + ni * x, ni); \
449 1.46.2.2 martin if (error) \
450 1.46.2.2 martin goto fail; \
451 1.46.2.2 martin } else \
452 1.46.2.2 martin memset(bits + ni * x, 0, ni); \
453 1.46.2.2 martin } while (0)
454 1.46.2.2 martin
455 1.17 rmind getbits(in, 0);
456 1.17 rmind getbits(ou, 1);
457 1.17 rmind getbits(ex, 2);
458 1.17 rmind #undef getbits
459 1.1 ad
460 1.23 rmind error = sel_do_scan(SELOP_SELECT, bits, nd, ni, ts, mask, retval);
461 1.46.2.2 martin
462 1.46.2.2 martin #define copyback(name, x) \
463 1.46.2.2 martin do { \
464 1.46.2.2 martin if (error == 0 && u_ ## name != NULL) \
465 1.46.2.2 martin error = copyout(bits + ni * x, \
466 1.46.2.2 martin u_ ## name, ni); \
467 1.46.2.2 martin } while (0)
468 1.46.2.2 martin
469 1.46.2.2 martin copyback(in, 3);
470 1.46.2.2 martin copyback(ou, 4);
471 1.46.2.2 martin copyback(ex, 5);
472 1.46.2.2 martin #undef copyback
473 1.46.2.2 martin
474 1.20 dsl fail:
475 1.1 ad if (bits != smallbits)
476 1.1 ad kmem_free(bits, ni * 6);
477 1.1 ad return (error);
478 1.1 ad }
479 1.1 ad
480 1.19 rmind static inline int
481 1.23 rmind selscan(char *bits, const int nfd, const size_t ni, register_t *retval)
482 1.1 ad {
483 1.17 rmind fd_mask *ibitp, *obitp;
484 1.23 rmind int msk, i, j, fd, n;
485 1.1 ad file_t *fp;
486 1.1 ad
487 1.17 rmind ibitp = (fd_mask *)(bits + ni * 0);
488 1.17 rmind obitp = (fd_mask *)(bits + ni * 3);
489 1.1 ad n = 0;
490 1.17 rmind
491 1.34 hannken memset(obitp, 0, ni * 3);
492 1.1 ad for (msk = 0; msk < 3; msk++) {
493 1.1 ad for (i = 0; i < nfd; i += NFDBITS) {
494 1.23 rmind fd_mask ibits, obits;
495 1.23 rmind
496 1.35 hannken ibits = *ibitp;
497 1.1 ad obits = 0;
498 1.1 ad while ((j = ffs(ibits)) && (fd = i + --j) < nfd) {
499 1.1 ad ibits &= ~(1 << j);
500 1.1 ad if ((fp = fd_getfile(fd)) == NULL)
501 1.1 ad return (EBADF);
502 1.23 rmind /*
503 1.23 rmind * Setup an argument to selrecord(), which is
504 1.23 rmind * a file descriptor number.
505 1.23 rmind */
506 1.23 rmind curlwp->l_selrec = fd;
507 1.23 rmind if ((*fp->f_ops->fo_poll)(fp, sel_flag[msk])) {
508 1.1 ad obits |= (1 << j);
509 1.1 ad n++;
510 1.1 ad }
511 1.1 ad fd_putfile(fd);
512 1.1 ad }
513 1.34 hannken if (obits != 0) {
514 1.36 rmind if (direct_select) {
515 1.36 rmind kmutex_t *lock;
516 1.36 rmind lock = curlwp->l_selcluster->sc_lock;
517 1.35 hannken mutex_spin_enter(lock);
518 1.36 rmind *obitp |= obits;
519 1.35 hannken mutex_spin_exit(lock);
520 1.36 rmind } else {
521 1.36 rmind *obitp |= obits;
522 1.36 rmind }
523 1.34 hannken }
524 1.35 hannken ibitp++;
525 1.34 hannken obitp++;
526 1.1 ad }
527 1.1 ad }
528 1.1 ad *retval = n;
529 1.1 ad return (0);
530 1.1 ad }
531 1.1 ad
532 1.1 ad /*
533 1.1 ad * Poll system call.
534 1.1 ad */
535 1.1 ad int
536 1.1 ad sys_poll(struct lwp *l, const struct sys_poll_args *uap, register_t *retval)
537 1.1 ad {
538 1.1 ad /* {
539 1.1 ad syscallarg(struct pollfd *) fds;
540 1.1 ad syscallarg(u_int) nfds;
541 1.1 ad syscallarg(int) timeout;
542 1.1 ad } */
543 1.14 christos struct timespec ats, *ts = NULL;
544 1.1 ad
545 1.1 ad if (SCARG(uap, timeout) != INFTIM) {
546 1.14 christos ats.tv_sec = SCARG(uap, timeout) / 1000;
547 1.14 christos ats.tv_nsec = (SCARG(uap, timeout) % 1000) * 1000000;
548 1.14 christos ts = &ats;
549 1.1 ad }
550 1.1 ad
551 1.19 rmind return pollcommon(retval, SCARG(uap, fds), SCARG(uap, nfds), ts, NULL);
552 1.1 ad }
553 1.1 ad
554 1.1 ad /*
555 1.1 ad * Poll system call.
556 1.1 ad */
557 1.1 ad int
558 1.12 christos sys___pollts50(struct lwp *l, const struct sys___pollts50_args *uap,
559 1.12 christos register_t *retval)
560 1.1 ad {
561 1.1 ad /* {
562 1.1 ad syscallarg(struct pollfd *) fds;
563 1.1 ad syscallarg(u_int) nfds;
564 1.1 ad syscallarg(const struct timespec *) ts;
565 1.1 ad syscallarg(const sigset_t *) mask;
566 1.1 ad } */
567 1.14 christos struct timespec ats, *ts = NULL;
568 1.1 ad sigset_t amask, *mask = NULL;
569 1.1 ad int error;
570 1.1 ad
571 1.1 ad if (SCARG(uap, ts)) {
572 1.1 ad error = copyin(SCARG(uap, ts), &ats, sizeof(ats));
573 1.1 ad if (error)
574 1.1 ad return error;
575 1.14 christos ts = &ats;
576 1.1 ad }
577 1.1 ad if (SCARG(uap, mask)) {
578 1.1 ad error = copyin(SCARG(uap, mask), &amask, sizeof(amask));
579 1.1 ad if (error)
580 1.1 ad return error;
581 1.1 ad mask = &amask;
582 1.1 ad }
583 1.1 ad
584 1.19 rmind return pollcommon(retval, SCARG(uap, fds), SCARG(uap, nfds), ts, mask);
585 1.1 ad }
586 1.1 ad
587 1.1 ad int
588 1.19 rmind pollcommon(register_t *retval, struct pollfd *u_fds, u_int nfds,
589 1.14 christos struct timespec *ts, sigset_t *mask)
590 1.1 ad {
591 1.11 yamt struct pollfd smallfds[32];
592 1.11 yamt struct pollfd *fds;
593 1.17 rmind int error;
594 1.20 dsl size_t ni;
595 1.1 ad
596 1.45 christos if (nfds > curlwp->l_proc->p_rlimit[RLIMIT_NOFILE].rlim_max + 1000) {
597 1.20 dsl /*
598 1.43 christos * Prevent userland from causing over-allocation.
599 1.43 christos * Raising the default limit too high can still cause
600 1.43 christos * a lot of memory to be allocated, but this also means
601 1.43 christos * that the file descriptor array will also be large.
602 1.43 christos *
603 1.43 christos * To reduce the memory requirements here, we could
604 1.43 christos * process the 'fds' array in chunks, but that
605 1.20 dsl * is a lot of code that isn't normally useful.
606 1.20 dsl * (Or just move the copyin/out into pollscan().)
607 1.43 christos *
608 1.20 dsl * Historically the code silently truncated 'fds' to
609 1.20 dsl * dt_nfiles entries - but that does cause issues.
610 1.44 christos *
611 1.44 christos * Using the max limit equivalent to sysctl
612 1.44 christos * kern.maxfiles is the moral equivalent of OPEN_MAX
613 1.45 christos * as specified by POSIX.
614 1.45 christos *
615 1.45 christos * We add a slop of 1000 in case the resource limit was
616 1.45 christos * changed after opening descriptors or the same descriptor
617 1.45 christos * was specified more than once.
618 1.20 dsl */
619 1.20 dsl return EINVAL;
620 1.1 ad }
621 1.1 ad ni = nfds * sizeof(struct pollfd);
622 1.40 chs if (ni > sizeof(smallfds))
623 1.11 yamt fds = kmem_alloc(ni, KM_SLEEP);
624 1.40 chs else
625 1.11 yamt fds = smallfds;
626 1.1 ad
627 1.11 yamt error = copyin(u_fds, fds, ni);
628 1.1 ad if (error)
629 1.20 dsl goto fail;
630 1.1 ad
631 1.23 rmind error = sel_do_scan(SELOP_POLL, fds, nfds, ni, ts, mask, retval);
632 1.1 ad if (error == 0)
633 1.11 yamt error = copyout(fds, u_fds, ni);
634 1.20 dsl fail:
635 1.11 yamt if (fds != smallfds)
636 1.11 yamt kmem_free(fds, ni);
637 1.1 ad return (error);
638 1.1 ad }
639 1.1 ad
640 1.19 rmind static inline int
641 1.23 rmind pollscan(struct pollfd *fds, const int nfd, register_t *retval)
642 1.1 ad {
643 1.1 ad file_t *fp;
644 1.34 hannken int i, n = 0, revents;
645 1.1 ad
646 1.1 ad for (i = 0; i < nfd; i++, fds++) {
647 1.34 hannken fds->revents = 0;
648 1.1 ad if (fds->fd < 0) {
649 1.34 hannken revents = 0;
650 1.1 ad } else if ((fp = fd_getfile(fds->fd)) == NULL) {
651 1.34 hannken revents = POLLNVAL;
652 1.1 ad } else {
653 1.23 rmind /*
654 1.23 rmind * Perform poll: registers select request or returns
655 1.23 rmind * the events which are set. Setup an argument for
656 1.23 rmind * selrecord(), which is a pointer to struct pollfd.
657 1.23 rmind */
658 1.23 rmind curlwp->l_selrec = (uintptr_t)fds;
659 1.34 hannken revents = (*fp->f_ops->fo_poll)(fp,
660 1.1 ad fds->events | POLLERR | POLLHUP);
661 1.1 ad fd_putfile(fds->fd);
662 1.1 ad }
663 1.34 hannken if (revents) {
664 1.34 hannken fds->revents = revents;
665 1.34 hannken n++;
666 1.34 hannken }
667 1.1 ad }
668 1.1 ad *retval = n;
669 1.1 ad return (0);
670 1.1 ad }
671 1.1 ad
672 1.1 ad int
673 1.1 ad seltrue(dev_t dev, int events, lwp_t *l)
674 1.1 ad {
675 1.1 ad
676 1.1 ad return (events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
677 1.1 ad }
678 1.1 ad
679 1.1 ad /*
680 1.1 ad * Record a select request. Concurrency issues:
681 1.1 ad *
682 1.1 ad * The caller holds the same lock across calls to selrecord() and
683 1.4 yamt * selnotify(), so we don't need to consider a concurrent wakeup
684 1.1 ad * while in this routine.
685 1.1 ad *
686 1.1 ad * The only activity we need to guard against is selclear(), called by
687 1.17 rmind * another thread that is exiting sel_do_scan().
688 1.1 ad * `sel_lwp' can only become non-NULL while the caller's lock is held,
689 1.1 ad * so it cannot become non-NULL due to a change made by another thread
690 1.1 ad * while we are in this routine. It can only become _NULL_ due to a
691 1.1 ad * call to selclear().
692 1.1 ad *
693 1.1 ad * If it is non-NULL and != selector there is the potential for
694 1.1 ad * selclear() to be called by another thread. If either of those
695 1.1 ad * conditions are true, we're not interested in touching the `named
696 1.1 ad * waiter' part of the selinfo record because we need to record a
697 1.1 ad * collision. Hence there is no need for additional locking in this
698 1.1 ad * routine.
699 1.1 ad */
700 1.1 ad void
701 1.1 ad selrecord(lwp_t *selector, struct selinfo *sip)
702 1.1 ad {
703 1.22 ad selcluster_t *sc;
704 1.1 ad lwp_t *other;
705 1.1 ad
706 1.1 ad KASSERT(selector == curlwp);
707 1.1 ad
708 1.22 ad sc = selector->l_selcluster;
709 1.1 ad other = sip->sel_lwp;
710 1.1 ad
711 1.1 ad if (other == selector) {
712 1.23 rmind /* 1. We (selector) already claimed to be the first LWP. */
713 1.37 riastrad KASSERT(sip->sel_cluster == sc);
714 1.1 ad } else if (other == NULL) {
715 1.1 ad /*
716 1.23 rmind * 2. No first LWP, therefore we (selector) are the first.
717 1.23 rmind *
718 1.23 rmind * There may be unnamed waiters (collisions). Issue a memory
719 1.23 rmind * barrier to ensure that we access sel_lwp (above) before
720 1.23 rmind * other fields - this guards against a call to selclear().
721 1.1 ad */
722 1.1 ad membar_enter();
723 1.1 ad sip->sel_lwp = selector;
724 1.1 ad SLIST_INSERT_HEAD(&selector->l_selwait, sip, sel_chain);
725 1.23 rmind /* Copy the argument, which is for selnotify(). */
726 1.23 rmind sip->sel_fdinfo = selector->l_selrec;
727 1.22 ad /* Replace selinfo's lock with the chosen cluster's lock. */
728 1.22 ad sip->sel_cluster = sc;
729 1.1 ad } else {
730 1.23 rmind /* 3. Multiple waiters: record a collision. */
731 1.1 ad sip->sel_collision |= sc->sc_mask;
732 1.22 ad KASSERT(sip->sel_cluster != NULL);
733 1.1 ad }
734 1.1 ad }
735 1.1 ad
736 1.1 ad /*
737 1.23 rmind * sel_setevents: a helper function for selnotify(), to set the events
738 1.23 rmind * for LWP sleeping in selcommon() or pollcommon().
739 1.23 rmind */
740 1.30 rmind static inline bool
741 1.23 rmind sel_setevents(lwp_t *l, struct selinfo *sip, const int events)
742 1.23 rmind {
743 1.23 rmind const int oflag = l->l_selflag;
744 1.30 rmind int ret = 0;
745 1.23 rmind
746 1.23 rmind /*
747 1.23 rmind * If we require re-scan or it was required by somebody else,
748 1.23 rmind * then just (re)set SEL_RESET and return.
749 1.23 rmind */
750 1.23 rmind if (__predict_false(events == 0 || oflag == SEL_RESET)) {
751 1.23 rmind l->l_selflag = SEL_RESET;
752 1.30 rmind return true;
753 1.23 rmind }
754 1.23 rmind /*
755 1.23 rmind * Direct set. Note: select state of LWP is locked. First,
756 1.23 rmind * determine whether it is selcommon() or pollcommon().
757 1.23 rmind */
758 1.23 rmind if (l->l_selbits != NULL) {
759 1.30 rmind const size_t ni = l->l_selni;
760 1.23 rmind fd_mask *fds = (fd_mask *)l->l_selbits;
761 1.30 rmind fd_mask *ofds = (fd_mask *)((char *)fds + ni * 3);
762 1.30 rmind const int fd = sip->sel_fdinfo, fbit = 1 << (fd & __NFDMASK);
763 1.25 rmind const int idx = fd >> __NFDSHIFT;
764 1.23 rmind int n;
765 1.23 rmind
766 1.23 rmind for (n = 0; n < 3; n++) {
767 1.34 hannken if ((fds[idx] & fbit) != 0 &&
768 1.34 hannken (ofds[idx] & fbit) == 0 &&
769 1.34 hannken (sel_flag[n] & events)) {
770 1.30 rmind ofds[idx] |= fbit;
771 1.30 rmind ret++;
772 1.23 rmind }
773 1.23 rmind fds = (fd_mask *)((char *)fds + ni);
774 1.30 rmind ofds = (fd_mask *)((char *)ofds + ni);
775 1.23 rmind }
776 1.23 rmind } else {
777 1.23 rmind struct pollfd *pfd = (void *)sip->sel_fdinfo;
778 1.30 rmind int revents = events & (pfd->events | POLLERR | POLLHUP);
779 1.30 rmind
780 1.30 rmind if (revents) {
781 1.34 hannken if (pfd->revents == 0)
782 1.34 hannken ret = 1;
783 1.30 rmind pfd->revents |= revents;
784 1.30 rmind }
785 1.30 rmind }
786 1.30 rmind /* Check whether there are any events to return. */
787 1.30 rmind if (!ret) {
788 1.30 rmind return false;
789 1.23 rmind }
790 1.23 rmind /* Indicate direct set and note the event (cluster lock is held). */
791 1.23 rmind l->l_selflag = SEL_EVENT;
792 1.30 rmind l->l_selret += ret;
793 1.30 rmind return true;
794 1.23 rmind }
795 1.23 rmind
796 1.23 rmind /*
797 1.1 ad * Do a wakeup when a selectable event occurs. Concurrency issues:
798 1.1 ad *
799 1.1 ad * As per selrecord(), the caller's object lock is held. If there
800 1.22 ad * is a named waiter, we must acquire the associated selcluster's lock
801 1.1 ad * in order to synchronize with selclear() and pollers going to sleep
802 1.17 rmind * in sel_do_scan().
803 1.1 ad *
804 1.22 ad * sip->sel_cluser cannot change at this point, as it is only changed
805 1.1 ad * in selrecord(), and concurrent calls to selrecord() are locked
806 1.1 ad * out by the caller.
807 1.1 ad */
808 1.1 ad void
809 1.1 ad selnotify(struct selinfo *sip, int events, long knhint)
810 1.1 ad {
811 1.22 ad selcluster_t *sc;
812 1.1 ad uint32_t mask;
813 1.16 rmind int index, oflag;
814 1.1 ad lwp_t *l;
815 1.13 ad kmutex_t *lock;
816 1.1 ad
817 1.1 ad KNOTE(&sip->sel_klist, knhint);
818 1.1 ad
819 1.1 ad if (sip->sel_lwp != NULL) {
820 1.1 ad /* One named LWP is waiting. */
821 1.22 ad sc = sip->sel_cluster;
822 1.13 ad lock = sc->sc_lock;
823 1.13 ad mutex_spin_enter(lock);
824 1.1 ad /* Still there? */
825 1.1 ad if (sip->sel_lwp != NULL) {
826 1.23 rmind /*
827 1.23 rmind * Set the events for our LWP and indicate that.
828 1.23 rmind * Otherwise, request for a full re-scan.
829 1.23 rmind */
830 1.1 ad l = sip->sel_lwp;
831 1.23 rmind oflag = l->l_selflag;
832 1.36 rmind
833 1.36 rmind if (!direct_select) {
834 1.36 rmind l->l_selflag = SEL_RESET;
835 1.36 rmind } else if (!sel_setevents(l, sip, events)) {
836 1.30 rmind /* No events to return. */
837 1.30 rmind mutex_spin_exit(lock);
838 1.30 rmind return;
839 1.30 rmind }
840 1.36 rmind
841 1.1 ad /*
842 1.1 ad * If thread is sleeping, wake it up. If it's not
843 1.1 ad * yet asleep, it will notice the change in state
844 1.1 ad * and will re-poll the descriptors.
845 1.1 ad */
846 1.13 ad if (oflag == SEL_BLOCKING && l->l_mutex == lock) {
847 1.1 ad KASSERT(l->l_wchan == sc);
848 1.16 rmind sleepq_unsleep(l, false);
849 1.1 ad }
850 1.1 ad }
851 1.13 ad mutex_spin_exit(lock);
852 1.1 ad }
853 1.1 ad
854 1.1 ad if ((mask = sip->sel_collision) != 0) {
855 1.1 ad /*
856 1.1 ad * There was a collision (multiple waiters): we must
857 1.1 ad * inform all potentially interested waiters.
858 1.1 ad */
859 1.1 ad sip->sel_collision = 0;
860 1.3 ad do {
861 1.1 ad index = ffs(mask) - 1;
862 1.1 ad mask &= ~(1 << index);
863 1.22 ad sc = selcluster[index];
864 1.13 ad lock = sc->sc_lock;
865 1.13 ad mutex_spin_enter(lock);
866 1.1 ad sc->sc_ncoll++;
867 1.13 ad sleepq_wake(&sc->sc_sleepq, sc, (u_int)-1, lock);
868 1.3 ad } while (__predict_false(mask != 0));
869 1.1 ad }
870 1.1 ad }
871 1.1 ad
872 1.1 ad /*
873 1.1 ad * Remove an LWP from all objects that it is waiting for. Concurrency
874 1.1 ad * issues:
875 1.1 ad *
876 1.1 ad * The object owner's (e.g. device driver) lock is not held here. Calls
877 1.1 ad * can be made to selrecord() and we do not synchronize against those
878 1.1 ad * directly using locks. However, we use `sel_lwp' to lock out changes.
879 1.1 ad * Before clearing it we must use memory barriers to ensure that we can
880 1.1 ad * safely traverse the list of selinfo records.
881 1.1 ad */
882 1.1 ad static void
883 1.1 ad selclear(void)
884 1.1 ad {
885 1.1 ad struct selinfo *sip, *next;
886 1.22 ad selcluster_t *sc;
887 1.1 ad lwp_t *l;
888 1.13 ad kmutex_t *lock;
889 1.1 ad
890 1.1 ad l = curlwp;
891 1.22 ad sc = l->l_selcluster;
892 1.13 ad lock = sc->sc_lock;
893 1.1 ad
894 1.13 ad mutex_spin_enter(lock);
895 1.1 ad for (sip = SLIST_FIRST(&l->l_selwait); sip != NULL; sip = next) {
896 1.1 ad KASSERT(sip->sel_lwp == l);
897 1.22 ad KASSERT(sip->sel_cluster == l->l_selcluster);
898 1.22 ad
899 1.1 ad /*
900 1.1 ad * Read link to next selinfo record, if any.
901 1.1 ad * It's no longer safe to touch `sip' after clearing
902 1.1 ad * `sel_lwp', so ensure that the read of `sel_chain'
903 1.1 ad * completes before the clearing of sel_lwp becomes
904 1.1 ad * globally visible.
905 1.1 ad */
906 1.1 ad next = SLIST_NEXT(sip, sel_chain);
907 1.1 ad membar_exit();
908 1.1 ad /* Release the record for another named waiter to use. */
909 1.1 ad sip->sel_lwp = NULL;
910 1.1 ad }
911 1.13 ad mutex_spin_exit(lock);
912 1.1 ad }
913 1.1 ad
914 1.1 ad /*
915 1.1 ad * Initialize the select/poll system calls. Called once for each
916 1.1 ad * CPU in the system, as they are attached.
917 1.1 ad */
918 1.1 ad void
919 1.1 ad selsysinit(struct cpu_info *ci)
920 1.1 ad {
921 1.22 ad selcluster_t *sc;
922 1.22 ad u_int index;
923 1.1 ad
924 1.22 ad /* If already a cluster in place for this bit, re-use. */
925 1.22 ad index = cpu_index(ci) & SELCLUSTERMASK;
926 1.22 ad sc = selcluster[index];
927 1.22 ad if (sc == NULL) {
928 1.22 ad sc = kmem_alloc(roundup2(sizeof(selcluster_t),
929 1.22 ad coherency_unit) + coherency_unit, KM_SLEEP);
930 1.22 ad sc = (void *)roundup2((uintptr_t)sc, coherency_unit);
931 1.22 ad sc->sc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
932 1.22 ad sleepq_init(&sc->sc_sleepq);
933 1.22 ad sc->sc_ncoll = 0;
934 1.46 msaitoh sc->sc_mask = __BIT(index);
935 1.22 ad selcluster[index] = sc;
936 1.22 ad }
937 1.22 ad ci->ci_data.cpu_selcluster = sc;
938 1.1 ad }
939 1.1 ad
940 1.1 ad /*
941 1.1 ad * Initialize a selinfo record.
942 1.1 ad */
943 1.1 ad void
944 1.1 ad selinit(struct selinfo *sip)
945 1.1 ad {
946 1.1 ad
947 1.1 ad memset(sip, 0, sizeof(*sip));
948 1.1 ad }
949 1.1 ad
950 1.1 ad /*
951 1.1 ad * Destroy a selinfo record. The owning object must not gain new
952 1.1 ad * references while this is in progress: all activity on the record
953 1.1 ad * must be stopped.
954 1.1 ad *
955 1.1 ad * Concurrency issues: we only need guard against a call to selclear()
956 1.17 rmind * by a thread exiting sel_do_scan(). The caller has prevented further
957 1.17 rmind * references being made to the selinfo record via selrecord(), and it
958 1.23 rmind * will not call selnotify() again.
959 1.1 ad */
960 1.1 ad void
961 1.1 ad seldestroy(struct selinfo *sip)
962 1.1 ad {
963 1.22 ad selcluster_t *sc;
964 1.13 ad kmutex_t *lock;
965 1.1 ad lwp_t *l;
966 1.1 ad
967 1.1 ad if (sip->sel_lwp == NULL)
968 1.1 ad return;
969 1.1 ad
970 1.1 ad /*
971 1.22 ad * Lock out selclear(). The selcluster pointer can't change while
972 1.1 ad * we are here since it is only ever changed in selrecord(),
973 1.1 ad * and that will not be entered again for this record because
974 1.1 ad * it is dying.
975 1.1 ad */
976 1.22 ad KASSERT(sip->sel_cluster != NULL);
977 1.22 ad sc = sip->sel_cluster;
978 1.13 ad lock = sc->sc_lock;
979 1.13 ad mutex_spin_enter(lock);
980 1.1 ad if ((l = sip->sel_lwp) != NULL) {
981 1.1 ad /*
982 1.1 ad * This should rarely happen, so although SLIST_REMOVE()
983 1.1 ad * is slow, using it here is not a problem.
984 1.1 ad */
985 1.22 ad KASSERT(l->l_selcluster == sc);
986 1.1 ad SLIST_REMOVE(&l->l_selwait, sip, selinfo, sel_chain);
987 1.1 ad sip->sel_lwp = NULL;
988 1.1 ad }
989 1.13 ad mutex_spin_exit(lock);
990 1.1 ad }
991 1.1 ad
992 1.36 rmind /*
993 1.36 rmind * System control nodes.
994 1.36 rmind */
995 1.36 rmind SYSCTL_SETUP(sysctl_select_setup, "sysctl select setup")
996 1.36 rmind {
997 1.36 rmind
998 1.38 pooka sysctl_createv(clog, 0, NULL, NULL,
999 1.36 rmind CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1000 1.36 rmind CTLTYPE_INT, "direct_select",
1001 1.36 rmind SYSCTL_DESCR("Enable/disable direct select (for testing)"),
1002 1.36 rmind NULL, 0, &direct_select, 0,
1003 1.38 pooka CTL_KERN, CTL_CREATE, CTL_EOL);
1004 1.36 rmind }
1005