Home | History | Annotate | Line # | Download | only in kern
sys_select.c revision 1.5.2.3
      1  1.5.2.3  yamt /*	$NetBSD: sys_select.c,v 1.5.2.3 2009/06/20 07:20:31 yamt Exp $	*/
      2      1.1    ad 
      3      1.1    ad /*-
      4  1.5.2.2  yamt  * Copyright (c) 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5      1.1    ad  * All rights reserved.
      6      1.1    ad  *
      7      1.1    ad  * This code is derived from software contributed to The NetBSD Foundation
      8      1.1    ad  * by Andrew Doran.
      9      1.1    ad  *
     10      1.1    ad  * Redistribution and use in source and binary forms, with or without
     11      1.1    ad  * modification, are permitted provided that the following conditions
     12      1.1    ad  * are met:
     13      1.1    ad  * 1. Redistributions of source code must retain the above copyright
     14      1.1    ad  *    notice, this list of conditions and the following disclaimer.
     15      1.1    ad  * 2. Redistributions in binary form must reproduce the above copyright
     16      1.1    ad  *    notice, this list of conditions and the following disclaimer in the
     17      1.1    ad  *    documentation and/or other materials provided with the distribution.
     18      1.1    ad  *
     19      1.1    ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20      1.1    ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21      1.1    ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22      1.1    ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23      1.1    ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24      1.1    ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25      1.1    ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26      1.1    ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27      1.1    ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28      1.1    ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29      1.1    ad  * POSSIBILITY OF SUCH DAMAGE.
     30      1.1    ad  */
     31      1.1    ad 
     32      1.1    ad /*
     33      1.1    ad  * Copyright (c) 1982, 1986, 1989, 1993
     34      1.1    ad  *	The Regents of the University of California.  All rights reserved.
     35      1.1    ad  * (c) UNIX System Laboratories, Inc.
     36      1.1    ad  * All or some portions of this file are derived from material licensed
     37      1.1    ad  * to the University of California by American Telephone and Telegraph
     38      1.1    ad  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     39      1.1    ad  * the permission of UNIX System Laboratories, Inc.
     40      1.1    ad  *
     41      1.1    ad  * Redistribution and use in source and binary forms, with or without
     42      1.1    ad  * modification, are permitted provided that the following conditions
     43      1.1    ad  * are met:
     44      1.1    ad  * 1. Redistributions of source code must retain the above copyright
     45      1.1    ad  *    notice, this list of conditions and the following disclaimer.
     46      1.1    ad  * 2. Redistributions in binary form must reproduce the above copyright
     47      1.1    ad  *    notice, this list of conditions and the following disclaimer in the
     48      1.1    ad  *    documentation and/or other materials provided with the distribution.
     49      1.1    ad  * 3. Neither the name of the University nor the names of its contributors
     50      1.1    ad  *    may be used to endorse or promote products derived from this software
     51      1.1    ad  *    without specific prior written permission.
     52      1.1    ad  *
     53      1.1    ad  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54      1.1    ad  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55      1.1    ad  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56      1.1    ad  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57      1.1    ad  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58      1.1    ad  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59      1.1    ad  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60      1.1    ad  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61      1.1    ad  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62      1.1    ad  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63      1.1    ad  * SUCH DAMAGE.
     64      1.1    ad  *
     65      1.1    ad  *	@(#)sys_generic.c	8.9 (Berkeley) 2/14/95
     66      1.1    ad  */
     67      1.1    ad 
     68      1.1    ad /*
     69      1.1    ad  * System calls relating to files.
     70      1.1    ad  */
     71      1.1    ad 
     72      1.1    ad #include <sys/cdefs.h>
     73  1.5.2.3  yamt __KERNEL_RCSID(0, "$NetBSD: sys_select.c,v 1.5.2.3 2009/06/20 07:20:31 yamt Exp $");
     74      1.1    ad 
     75      1.1    ad #include <sys/param.h>
     76      1.1    ad #include <sys/systm.h>
     77      1.1    ad #include <sys/filedesc.h>
     78      1.1    ad #include <sys/ioctl.h>
     79      1.1    ad #include <sys/file.h>
     80      1.1    ad #include <sys/proc.h>
     81      1.1    ad #include <sys/socketvar.h>
     82      1.1    ad #include <sys/signalvar.h>
     83      1.1    ad #include <sys/uio.h>
     84      1.1    ad #include <sys/kernel.h>
     85      1.1    ad #include <sys/stat.h>
     86      1.1    ad #include <sys/poll.h>
     87      1.1    ad #include <sys/vnode.h>
     88      1.1    ad #include <sys/mount.h>
     89      1.1    ad #include <sys/syscallargs.h>
     90      1.1    ad #include <sys/cpu.h>
     91      1.1    ad #include <sys/atomic.h>
     92      1.1    ad #include <sys/socketvar.h>
     93      1.1    ad #include <sys/sleepq.h>
     94      1.1    ad 
     95      1.1    ad /* Flags for lwp::l_selflag. */
     96      1.1    ad #define	SEL_RESET	0	/* awoken, interrupted, or not yet polling */
     97      1.1    ad #define	SEL_SCANNING	1	/* polling descriptors */
     98      1.1    ad #define	SEL_BLOCKING	2	/* about to block on select_cv */
     99      1.1    ad 
    100      1.1    ad /* Per-CPU state for select()/poll(). */
    101      1.1    ad #if MAXCPUS > 32
    102      1.1    ad #error adjust this code
    103      1.1    ad #endif
    104      1.1    ad typedef struct selcpu {
    105  1.5.2.2  yamt 	kmutex_t	*sc_lock;
    106      1.1    ad 	sleepq_t	sc_sleepq;
    107      1.1    ad 	int		sc_ncoll;
    108      1.1    ad 	uint32_t	sc_mask;
    109      1.1    ad } selcpu_t;
    110      1.1    ad 
    111      1.1    ad static int	selscan(lwp_t *, fd_mask *, fd_mask *, int, register_t *);
    112      1.1    ad static int	pollscan(lwp_t *, struct pollfd *, int, register_t *);
    113      1.1    ad static void	selclear(void);
    114      1.1    ad 
    115      1.1    ad static syncobj_t select_sobj = {
    116      1.1    ad 	SOBJ_SLEEPQ_FIFO,
    117      1.1    ad 	sleepq_unsleep,
    118      1.1    ad 	sleepq_changepri,
    119      1.1    ad 	sleepq_lendpri,
    120      1.1    ad 	syncobj_noowner,
    121      1.1    ad };
    122      1.1    ad 
    123      1.1    ad /*
    124      1.1    ad  * Select system call.
    125      1.1    ad  */
    126      1.1    ad int
    127  1.5.2.2  yamt sys___pselect50(struct lwp *l, const struct sys___pselect50_args *uap,
    128  1.5.2.2  yamt     register_t *retval)
    129      1.1    ad {
    130      1.1    ad 	/* {
    131      1.1    ad 		syscallarg(int)				nd;
    132      1.1    ad 		syscallarg(fd_set *)			in;
    133      1.1    ad 		syscallarg(fd_set *)			ou;
    134      1.1    ad 		syscallarg(fd_set *)			ex;
    135      1.1    ad 		syscallarg(const struct timespec *)	ts;
    136      1.1    ad 		syscallarg(sigset_t *)			mask;
    137      1.1    ad 	} */
    138  1.5.2.2  yamt 	struct timespec	ats, *ts = NULL;
    139      1.1    ad 	sigset_t	amask, *mask = NULL;
    140      1.1    ad 	int		error;
    141      1.1    ad 
    142      1.1    ad 	if (SCARG(uap, ts)) {
    143      1.1    ad 		error = copyin(SCARG(uap, ts), &ats, sizeof(ats));
    144      1.1    ad 		if (error)
    145      1.1    ad 			return error;
    146  1.5.2.2  yamt 		ts = &ats;
    147      1.1    ad 	}
    148      1.1    ad 	if (SCARG(uap, mask) != NULL) {
    149      1.1    ad 		error = copyin(SCARG(uap, mask), &amask, sizeof(amask));
    150      1.1    ad 		if (error)
    151      1.1    ad 			return error;
    152      1.1    ad 		mask = &amask;
    153      1.1    ad 	}
    154      1.1    ad 
    155      1.1    ad 	return selcommon(l, retval, SCARG(uap, nd), SCARG(uap, in),
    156  1.5.2.2  yamt 	    SCARG(uap, ou), SCARG(uap, ex), ts, mask);
    157      1.1    ad }
    158      1.1    ad 
    159      1.1    ad int
    160  1.5.2.2  yamt inittimeleft(struct timespec *ts, struct timespec *sleepts)
    161      1.1    ad {
    162  1.5.2.2  yamt 	if (itimespecfix(ts))
    163      1.1    ad 		return -1;
    164  1.5.2.2  yamt 	getnanouptime(sleepts);
    165      1.1    ad 	return 0;
    166      1.1    ad }
    167      1.1    ad 
    168      1.1    ad int
    169  1.5.2.2  yamt gettimeleft(struct timespec *ts, struct timespec *sleepts)
    170      1.1    ad {
    171      1.1    ad 	/*
    172      1.1    ad 	 * We have to recalculate the timeout on every retry.
    173      1.1    ad 	 */
    174  1.5.2.2  yamt 	struct timespec sleptts;
    175      1.1    ad 	/*
    176  1.5.2.2  yamt 	 * reduce ts by elapsed time
    177      1.1    ad 	 * based on monotonic time scale
    178      1.1    ad 	 */
    179  1.5.2.2  yamt 	getnanouptime(&sleptts);
    180  1.5.2.2  yamt 	timespecadd(ts, sleepts, ts);
    181  1.5.2.2  yamt 	timespecsub(ts, &sleptts, ts);
    182  1.5.2.2  yamt 	*sleepts = sleptts;
    183  1.5.2.2  yamt 	return tstohz(ts);
    184      1.1    ad }
    185      1.1    ad 
    186      1.1    ad int
    187  1.5.2.2  yamt sys___select50(struct lwp *l, const struct sys___select50_args *uap,
    188  1.5.2.2  yamt     register_t *retval)
    189      1.1    ad {
    190      1.1    ad 	/* {
    191      1.1    ad 		syscallarg(int)			nd;
    192      1.1    ad 		syscallarg(fd_set *)		in;
    193      1.1    ad 		syscallarg(fd_set *)		ou;
    194      1.1    ad 		syscallarg(fd_set *)		ex;
    195      1.1    ad 		syscallarg(struct timeval *)	tv;
    196      1.1    ad 	} */
    197  1.5.2.2  yamt 	struct timeval atv;
    198  1.5.2.2  yamt 	struct timespec ats, *ts = NULL;
    199      1.1    ad 	int error;
    200      1.1    ad 
    201      1.1    ad 	if (SCARG(uap, tv)) {
    202  1.5.2.2  yamt 		error = copyin(SCARG(uap, tv), (void *)&atv, sizeof(atv));
    203      1.1    ad 		if (error)
    204      1.1    ad 			return error;
    205  1.5.2.2  yamt 		TIMEVAL_TO_TIMESPEC(&atv, &ats);
    206  1.5.2.2  yamt 		ts = &ats;
    207      1.1    ad 	}
    208      1.1    ad 
    209      1.1    ad 	return selcommon(l, retval, SCARG(uap, nd), SCARG(uap, in),
    210  1.5.2.2  yamt 	    SCARG(uap, ou), SCARG(uap, ex), ts, NULL);
    211      1.1    ad }
    212      1.1    ad 
    213      1.1    ad int
    214      1.1    ad selcommon(lwp_t *l, register_t *retval, int nd, fd_set *u_in,
    215  1.5.2.2  yamt 	  fd_set *u_ou, fd_set *u_ex, struct timespec *ts, sigset_t *mask)
    216      1.1    ad {
    217      1.1    ad 	char		smallbits[howmany(FD_SETSIZE, NFDBITS) *
    218      1.1    ad 			    sizeof(fd_mask) * 6];
    219      1.1    ad 	proc_t		* const p = l->l_proc;
    220      1.1    ad 	char 		*bits;
    221  1.5.2.3  yamt 	int		ncoll, error, timo, nf;
    222      1.1    ad 	size_t		ni;
    223      1.1    ad 	sigset_t	oldmask;
    224  1.5.2.2  yamt 	struct timespec sleepts;
    225      1.1    ad 	selcpu_t	*sc;
    226  1.5.2.2  yamt 	kmutex_t	*lock;
    227      1.1    ad 
    228      1.1    ad 	error = 0;
    229      1.1    ad 	if (nd < 0)
    230      1.1    ad 		return (EINVAL);
    231  1.5.2.3  yamt 	nf = p->p_fd->fd_dt->dt_nfiles;
    232  1.5.2.3  yamt 	if (nd > nf) {
    233      1.1    ad 		/* forgiving; slightly wrong */
    234  1.5.2.3  yamt 		nd = nf;
    235      1.1    ad 	}
    236      1.1    ad 	ni = howmany(nd, NFDBITS) * sizeof(fd_mask);
    237  1.5.2.2  yamt 	if (ni * 6 > sizeof(smallbits)) {
    238      1.1    ad 		bits = kmem_alloc(ni * 6, KM_SLEEP);
    239  1.5.2.2  yamt 		if (bits == NULL)
    240  1.5.2.2  yamt 			return ENOMEM;
    241  1.5.2.2  yamt 	} else
    242      1.1    ad 		bits = smallbits;
    243      1.1    ad 
    244      1.1    ad #define	getbits(name, x)						\
    245      1.1    ad 	if (u_ ## name) {						\
    246      1.1    ad 		error = copyin(u_ ## name, bits + ni * x, ni);		\
    247      1.1    ad 		if (error)						\
    248      1.1    ad 			goto done;					\
    249      1.1    ad 	} else								\
    250      1.1    ad 		memset(bits + ni * x, 0, ni);
    251      1.1    ad 	getbits(in, 0);
    252      1.1    ad 	getbits(ou, 1);
    253      1.1    ad 	getbits(ex, 2);
    254      1.1    ad #undef	getbits
    255      1.1    ad 
    256      1.1    ad 	timo = 0;
    257  1.5.2.2  yamt 	if (ts && inittimeleft(ts, &sleepts) == -1) {
    258      1.1    ad 		error = EINVAL;
    259      1.1    ad 		goto done;
    260      1.1    ad 	}
    261      1.1    ad 
    262      1.1    ad 	if (mask) {
    263      1.1    ad 		sigminusset(&sigcantmask, mask);
    264      1.5    ad 		mutex_enter(p->p_lock);
    265      1.1    ad 		oldmask = l->l_sigmask;
    266      1.1    ad 		l->l_sigmask = *mask;
    267      1.5    ad 		mutex_exit(p->p_lock);
    268      1.1    ad 	} else
    269      1.1    ad 		oldmask = l->l_sigmask;	/* XXXgcc */
    270      1.1    ad 
    271      1.1    ad 	sc = curcpu()->ci_data.cpu_selcpu;
    272  1.5.2.2  yamt 	lock = sc->sc_lock;
    273      1.1    ad 	l->l_selcpu = sc;
    274      1.1    ad 	SLIST_INIT(&l->l_selwait);
    275      1.1    ad 	for (;;) {
    276      1.1    ad 		/*
    277      1.1    ad 		 * No need to lock.  If this is overwritten by another
    278      1.1    ad 		 * value while scanning, we will retry below.  We only
    279      1.1    ad 		 * need to see exact state from the descriptors that
    280      1.1    ad 		 * we are about to poll, and lock activity resulting
    281      1.1    ad 		 * from fo_poll is enough to provide an up to date value
    282      1.1    ad 		 * for new polling activity.
    283      1.1    ad 		 */
    284      1.1    ad 	 	l->l_selflag = SEL_SCANNING;
    285      1.1    ad 		ncoll = sc->sc_ncoll;
    286      1.1    ad 
    287      1.1    ad 		error = selscan(l, (fd_mask *)(bits + ni * 0),
    288      1.1    ad 		    (fd_mask *)(bits + ni * 3), nd, retval);
    289      1.1    ad 
    290      1.1    ad 		if (error || *retval)
    291      1.1    ad 			break;
    292  1.5.2.2  yamt 		if (ts && (timo = gettimeleft(ts, &sleepts)) <= 0)
    293      1.1    ad 			break;
    294  1.5.2.2  yamt 		mutex_spin_enter(lock);
    295      1.1    ad 		if (l->l_selflag != SEL_SCANNING || sc->sc_ncoll != ncoll) {
    296  1.5.2.2  yamt 			mutex_spin_exit(lock);
    297      1.1    ad 			continue;
    298      1.1    ad 		}
    299      1.1    ad 		l->l_selflag = SEL_BLOCKING;
    300  1.5.2.1  yamt 		l->l_kpriority = true;
    301  1.5.2.2  yamt 		sleepq_enter(&sc->sc_sleepq, l, lock);
    302      1.1    ad 		sleepq_enqueue(&sc->sc_sleepq, sc, "select", &select_sobj);
    303      1.1    ad 		error = sleepq_block(timo, true);
    304      1.1    ad 		if (error != 0)
    305      1.1    ad 			break;
    306      1.1    ad 	}
    307      1.1    ad 	selclear();
    308      1.1    ad 
    309      1.1    ad 	if (mask) {
    310      1.5    ad 		mutex_enter(p->p_lock);
    311      1.1    ad 		l->l_sigmask = oldmask;
    312      1.5    ad 		mutex_exit(p->p_lock);
    313      1.1    ad 	}
    314      1.1    ad 
    315      1.1    ad  done:
    316      1.1    ad 	/* select is not restarted after signals... */
    317      1.1    ad 	if (error == ERESTART)
    318      1.1    ad 		error = EINTR;
    319      1.1    ad 	if (error == EWOULDBLOCK)
    320      1.1    ad 		error = 0;
    321      1.1    ad 	if (error == 0 && u_in != NULL)
    322      1.1    ad 		error = copyout(bits + ni * 3, u_in, ni);
    323      1.1    ad 	if (error == 0 && u_ou != NULL)
    324      1.1    ad 		error = copyout(bits + ni * 4, u_ou, ni);
    325      1.1    ad 	if (error == 0 && u_ex != NULL)
    326      1.1    ad 		error = copyout(bits + ni * 5, u_ex, ni);
    327      1.1    ad 	if (bits != smallbits)
    328      1.1    ad 		kmem_free(bits, ni * 6);
    329      1.1    ad 	return (error);
    330      1.1    ad }
    331      1.1    ad 
    332      1.1    ad int
    333      1.1    ad selscan(lwp_t *l, fd_mask *ibitp, fd_mask *obitp, int nfd,
    334      1.1    ad 	register_t *retval)
    335      1.1    ad {
    336      1.1    ad 	static const int flag[3] = { POLLRDNORM | POLLHUP | POLLERR,
    337      1.1    ad 			       POLLWRNORM | POLLHUP | POLLERR,
    338      1.1    ad 			       POLLRDBAND };
    339      1.1    ad 	int msk, i, j, fd, n;
    340      1.1    ad 	fd_mask ibits, obits;
    341      1.1    ad 	file_t *fp;
    342      1.1    ad 
    343      1.1    ad 	n = 0;
    344      1.1    ad 	for (msk = 0; msk < 3; msk++) {
    345      1.1    ad 		for (i = 0; i < nfd; i += NFDBITS) {
    346      1.1    ad 			ibits = *ibitp++;
    347      1.1    ad 			obits = 0;
    348      1.1    ad 			while ((j = ffs(ibits)) && (fd = i + --j) < nfd) {
    349      1.1    ad 				ibits &= ~(1 << j);
    350      1.1    ad 				if ((fp = fd_getfile(fd)) == NULL)
    351      1.1    ad 					return (EBADF);
    352      1.1    ad 				if ((*fp->f_ops->fo_poll)(fp, flag[msk])) {
    353      1.1    ad 					obits |= (1 << j);
    354      1.1    ad 					n++;
    355      1.1    ad 				}
    356      1.1    ad 				fd_putfile(fd);
    357      1.1    ad 			}
    358      1.1    ad 			*obitp++ = obits;
    359      1.1    ad 		}
    360      1.1    ad 	}
    361      1.1    ad 	*retval = n;
    362      1.1    ad 	return (0);
    363      1.1    ad }
    364      1.1    ad 
    365      1.1    ad /*
    366      1.1    ad  * Poll system call.
    367      1.1    ad  */
    368      1.1    ad int
    369      1.1    ad sys_poll(struct lwp *l, const struct sys_poll_args *uap, register_t *retval)
    370      1.1    ad {
    371      1.1    ad 	/* {
    372      1.1    ad 		syscallarg(struct pollfd *)	fds;
    373      1.1    ad 		syscallarg(u_int)		nfds;
    374      1.1    ad 		syscallarg(int)			timeout;
    375      1.1    ad 	} */
    376  1.5.2.2  yamt 	struct timespec	ats, *ts = NULL;
    377      1.1    ad 
    378      1.1    ad 	if (SCARG(uap, timeout) != INFTIM) {
    379  1.5.2.2  yamt 		ats.tv_sec = SCARG(uap, timeout) / 1000;
    380  1.5.2.2  yamt 		ats.tv_nsec = (SCARG(uap, timeout) % 1000) * 1000000;
    381  1.5.2.2  yamt 		ts = &ats;
    382      1.1    ad 	}
    383      1.1    ad 
    384      1.1    ad 	return pollcommon(l, retval, SCARG(uap, fds), SCARG(uap, nfds),
    385  1.5.2.2  yamt 		ts, NULL);
    386      1.1    ad }
    387      1.1    ad 
    388      1.1    ad /*
    389      1.1    ad  * Poll system call.
    390      1.1    ad  */
    391      1.1    ad int
    392  1.5.2.2  yamt sys___pollts50(struct lwp *l, const struct sys___pollts50_args *uap,
    393  1.5.2.2  yamt     register_t *retval)
    394      1.1    ad {
    395      1.1    ad 	/* {
    396      1.1    ad 		syscallarg(struct pollfd *)		fds;
    397      1.1    ad 		syscallarg(u_int)			nfds;
    398      1.1    ad 		syscallarg(const struct timespec *)	ts;
    399      1.1    ad 		syscallarg(const sigset_t *)		mask;
    400      1.1    ad 	} */
    401  1.5.2.2  yamt 	struct timespec	ats, *ts = NULL;
    402      1.1    ad 	sigset_t	amask, *mask = NULL;
    403      1.1    ad 	int		error;
    404      1.1    ad 
    405      1.1    ad 	if (SCARG(uap, ts)) {
    406      1.1    ad 		error = copyin(SCARG(uap, ts), &ats, sizeof(ats));
    407      1.1    ad 		if (error)
    408      1.1    ad 			return error;
    409  1.5.2.2  yamt 		ts = &ats;
    410      1.1    ad 	}
    411      1.1    ad 	if (SCARG(uap, mask)) {
    412      1.1    ad 		error = copyin(SCARG(uap, mask), &amask, sizeof(amask));
    413      1.1    ad 		if (error)
    414      1.1    ad 			return error;
    415      1.1    ad 		mask = &amask;
    416      1.1    ad 	}
    417      1.1    ad 
    418      1.1    ad 	return pollcommon(l, retval, SCARG(uap, fds), SCARG(uap, nfds),
    419  1.5.2.2  yamt 	    ts, mask);
    420      1.1    ad }
    421      1.1    ad 
    422      1.1    ad int
    423  1.5.2.2  yamt pollcommon(lwp_t *l, register_t *retval, struct pollfd *u_fds, u_int nfds,
    424  1.5.2.2  yamt     struct timespec *ts, sigset_t *mask)
    425      1.1    ad {
    426  1.5.2.2  yamt 	struct pollfd	smallfds[32];
    427  1.5.2.2  yamt 	struct pollfd	*fds;
    428      1.1    ad 	proc_t		* const p = l->l_proc;
    429      1.1    ad 	sigset_t	oldmask;
    430      1.1    ad 	int		ncoll, error, timo;
    431  1.5.2.3  yamt 	size_t		ni, nf;
    432  1.5.2.2  yamt 	struct timespec	sleepts;
    433      1.1    ad 	selcpu_t	*sc;
    434  1.5.2.2  yamt 	kmutex_t	*lock;
    435      1.1    ad 
    436  1.5.2.3  yamt 	nf = p->p_fd->fd_dt->dt_nfiles;
    437  1.5.2.3  yamt 	if (nfds > nf) {
    438      1.1    ad 		/* forgiving; slightly wrong */
    439  1.5.2.3  yamt 		nfds = nf;
    440      1.1    ad 	}
    441      1.1    ad 	ni = nfds * sizeof(struct pollfd);
    442  1.5.2.2  yamt 	if (ni > sizeof(smallfds)) {
    443  1.5.2.2  yamt 		fds = kmem_alloc(ni, KM_SLEEP);
    444  1.5.2.2  yamt 		if (fds == NULL)
    445  1.5.2.2  yamt 			return ENOMEM;
    446  1.5.2.2  yamt 	} else
    447  1.5.2.2  yamt 		fds = smallfds;
    448      1.1    ad 
    449  1.5.2.2  yamt 	error = copyin(u_fds, fds, ni);
    450      1.1    ad 	if (error)
    451      1.1    ad 		goto done;
    452      1.1    ad 
    453      1.1    ad 	timo = 0;
    454  1.5.2.2  yamt 	if (ts && inittimeleft(ts, &sleepts) == -1) {
    455      1.1    ad 		error = EINVAL;
    456      1.1    ad 		goto done;
    457      1.1    ad 	}
    458      1.1    ad 
    459      1.1    ad 	if (mask) {
    460      1.1    ad 		sigminusset(&sigcantmask, mask);
    461      1.5    ad 		mutex_enter(p->p_lock);
    462      1.1    ad 		oldmask = l->l_sigmask;
    463      1.1    ad 		l->l_sigmask = *mask;
    464      1.5    ad 		mutex_exit(p->p_lock);
    465      1.1    ad 	} else
    466      1.1    ad 		oldmask = l->l_sigmask;	/* XXXgcc */
    467      1.1    ad 
    468      1.1    ad 	sc = curcpu()->ci_data.cpu_selcpu;
    469  1.5.2.2  yamt 	lock = sc->sc_lock;
    470      1.1    ad 	l->l_selcpu = sc;
    471      1.1    ad 	SLIST_INIT(&l->l_selwait);
    472      1.1    ad 	for (;;) {
    473      1.1    ad 		/*
    474      1.1    ad 		 * No need to lock.  If this is overwritten by another
    475      1.1    ad 		 * value while scanning, we will retry below.  We only
    476      1.1    ad 		 * need to see exact state from the descriptors that
    477      1.1    ad 		 * we are about to poll, and lock activity resulting
    478      1.1    ad 		 * from fo_poll is enough to provide an up to date value
    479      1.1    ad 		 * for new polling activity.
    480      1.1    ad 		 */
    481      1.1    ad 		ncoll = sc->sc_ncoll;
    482      1.1    ad 		l->l_selflag = SEL_SCANNING;
    483      1.1    ad 
    484  1.5.2.2  yamt 		error = pollscan(l, fds, nfds, retval);
    485      1.1    ad 
    486      1.1    ad 		if (error || *retval)
    487      1.1    ad 			break;
    488  1.5.2.2  yamt 		if (ts && (timo = gettimeleft(ts, &sleepts)) <= 0)
    489      1.1    ad 			break;
    490  1.5.2.2  yamt 		mutex_spin_enter(lock);
    491      1.1    ad 		if (l->l_selflag != SEL_SCANNING || sc->sc_ncoll != ncoll) {
    492  1.5.2.2  yamt 			mutex_spin_exit(lock);
    493      1.1    ad 			continue;
    494      1.1    ad 		}
    495      1.1    ad 		l->l_selflag = SEL_BLOCKING;
    496  1.5.2.1  yamt 		l->l_kpriority = true;
    497  1.5.2.2  yamt 		sleepq_enter(&sc->sc_sleepq, l, lock);
    498      1.1    ad 		sleepq_enqueue(&sc->sc_sleepq, sc, "select", &select_sobj);
    499      1.1    ad 		error = sleepq_block(timo, true);
    500      1.1    ad 		if (error != 0)
    501      1.1    ad 			break;
    502      1.1    ad 	}
    503      1.1    ad 	selclear();
    504      1.1    ad 
    505      1.1    ad 	if (mask) {
    506      1.5    ad 		mutex_enter(p->p_lock);
    507      1.1    ad 		l->l_sigmask = oldmask;
    508      1.5    ad 		mutex_exit(p->p_lock);
    509      1.1    ad 	}
    510      1.1    ad  done:
    511      1.1    ad 	/* poll is not restarted after signals... */
    512      1.1    ad 	if (error == ERESTART)
    513      1.1    ad 		error = EINTR;
    514      1.1    ad 	if (error == EWOULDBLOCK)
    515      1.1    ad 		error = 0;
    516      1.1    ad 	if (error == 0)
    517  1.5.2.2  yamt 		error = copyout(fds, u_fds, ni);
    518  1.5.2.2  yamt 	if (fds != smallfds)
    519  1.5.2.2  yamt 		kmem_free(fds, ni);
    520      1.1    ad 	return (error);
    521      1.1    ad }
    522      1.1    ad 
    523      1.1    ad int
    524      1.1    ad pollscan(lwp_t *l, struct pollfd *fds, int nfd, register_t *retval)
    525      1.1    ad {
    526      1.1    ad 	int i, n;
    527      1.1    ad 	file_t *fp;
    528      1.1    ad 
    529      1.1    ad 	n = 0;
    530      1.1    ad 	for (i = 0; i < nfd; i++, fds++) {
    531      1.1    ad 		if (fds->fd < 0) {
    532      1.1    ad 			fds->revents = 0;
    533      1.1    ad 		} else if ((fp = fd_getfile(fds->fd)) == NULL) {
    534      1.1    ad 			fds->revents = POLLNVAL;
    535      1.1    ad 			n++;
    536      1.1    ad 		} else {
    537      1.1    ad 			fds->revents = (*fp->f_ops->fo_poll)(fp,
    538      1.1    ad 			    fds->events | POLLERR | POLLHUP);
    539      1.1    ad 			if (fds->revents != 0)
    540      1.1    ad 				n++;
    541      1.1    ad 			fd_putfile(fds->fd);
    542      1.1    ad 		}
    543      1.1    ad 	}
    544      1.1    ad 	*retval = n;
    545      1.1    ad 	return (0);
    546      1.1    ad }
    547      1.1    ad 
    548      1.1    ad /*ARGSUSED*/
    549      1.1    ad int
    550      1.1    ad seltrue(dev_t dev, int events, lwp_t *l)
    551      1.1    ad {
    552      1.1    ad 
    553      1.1    ad 	return (events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
    554      1.1    ad }
    555      1.1    ad 
    556      1.1    ad /*
    557      1.1    ad  * Record a select request.  Concurrency issues:
    558      1.1    ad  *
    559      1.1    ad  * The caller holds the same lock across calls to selrecord() and
    560      1.4  yamt  * selnotify(), so we don't need to consider a concurrent wakeup
    561      1.1    ad  * while in this routine.
    562      1.1    ad  *
    563      1.1    ad  * The only activity we need to guard against is selclear(), called by
    564      1.1    ad  * another thread that is exiting selcommon() or pollcommon().
    565      1.1    ad  * `sel_lwp' can only become non-NULL while the caller's lock is held,
    566      1.1    ad  * so it cannot become non-NULL due to a change made by another thread
    567      1.1    ad  * while we are in this routine.  It can only become _NULL_ due to a
    568      1.1    ad  * call to selclear().
    569      1.1    ad  *
    570      1.1    ad  * If it is non-NULL and != selector there is the potential for
    571      1.1    ad  * selclear() to be called by another thread.  If either of those
    572      1.1    ad  * conditions are true, we're not interested in touching the `named
    573      1.1    ad  * waiter' part of the selinfo record because we need to record a
    574      1.1    ad  * collision.  Hence there is no need for additional locking in this
    575      1.1    ad  * routine.
    576      1.1    ad  */
    577      1.1    ad void
    578      1.1    ad selrecord(lwp_t *selector, struct selinfo *sip)
    579      1.1    ad {
    580      1.1    ad 	selcpu_t *sc;
    581      1.1    ad 	lwp_t *other;
    582      1.1    ad 
    583      1.1    ad 	KASSERT(selector == curlwp);
    584      1.1    ad 
    585      1.1    ad 	sc = selector->l_selcpu;
    586      1.1    ad 	other = sip->sel_lwp;
    587      1.1    ad 
    588      1.1    ad 	if (other == selector) {
    589      1.1    ad 		/* `selector' has already claimed it. */
    590      1.1    ad 		KASSERT(sip->sel_cpu = sc);
    591      1.1    ad 	} else if (other == NULL) {
    592      1.1    ad 		/*
    593      1.1    ad 		 * First named waiter, although there may be unnamed
    594      1.1    ad 		 * waiters (collisions).  Issue a memory barrier to
    595      1.1    ad 		 * ensure that we access sel_lwp (above) before other
    596      1.1    ad 		 * fields - this guards against a call to selclear().
    597      1.1    ad 		 */
    598      1.1    ad 		membar_enter();
    599      1.1    ad 		sip->sel_lwp = selector;
    600      1.1    ad 		SLIST_INSERT_HEAD(&selector->l_selwait, sip, sel_chain);
    601      1.1    ad 		/* Replace selinfo's lock with our chosen CPU's lock. */
    602      1.1    ad 		sip->sel_cpu = sc;
    603      1.1    ad 	} else {
    604      1.1    ad 		/* Multiple waiters: record a collision. */
    605      1.1    ad 		sip->sel_collision |= sc->sc_mask;
    606      1.1    ad 		KASSERT(sip->sel_cpu != NULL);
    607      1.1    ad 	}
    608      1.1    ad }
    609      1.1    ad 
    610      1.1    ad /*
    611      1.1    ad  * Do a wakeup when a selectable event occurs.  Concurrency issues:
    612      1.1    ad  *
    613      1.1    ad  * As per selrecord(), the caller's object lock is held.  If there
    614      1.1    ad  * is a named waiter, we must acquire the associated selcpu's lock
    615      1.1    ad  * in order to synchronize with selclear() and pollers going to sleep
    616      1.1    ad  * in selcommon() and/or pollcommon().
    617      1.1    ad  *
    618      1.1    ad  * sip->sel_cpu cannot change at this point, as it is only changed
    619      1.1    ad  * in selrecord(), and concurrent calls to selrecord() are locked
    620      1.1    ad  * out by the caller.
    621      1.1    ad  */
    622      1.1    ad void
    623      1.1    ad selnotify(struct selinfo *sip, int events, long knhint)
    624      1.1    ad {
    625      1.1    ad 	selcpu_t *sc;
    626      1.1    ad 	uint32_t mask;
    627      1.1    ad 	int index, oflag, swapin;
    628      1.1    ad 	lwp_t *l;
    629  1.5.2.2  yamt 	kmutex_t *lock;
    630      1.1    ad 
    631      1.1    ad 	KNOTE(&sip->sel_klist, knhint);
    632      1.1    ad 
    633      1.1    ad 	if (sip->sel_lwp != NULL) {
    634      1.1    ad 		/* One named LWP is waiting. */
    635      1.1    ad 		swapin = 0;
    636      1.1    ad 		sc = sip->sel_cpu;
    637  1.5.2.2  yamt 		lock = sc->sc_lock;
    638  1.5.2.2  yamt 		mutex_spin_enter(lock);
    639      1.1    ad 		/* Still there? */
    640      1.1    ad 		if (sip->sel_lwp != NULL) {
    641      1.1    ad 			l = sip->sel_lwp;
    642      1.1    ad 			/*
    643      1.1    ad 			 * If thread is sleeping, wake it up.  If it's not
    644      1.1    ad 			 * yet asleep, it will notice the change in state
    645      1.1    ad 			 * and will re-poll the descriptors.
    646      1.1    ad 			 */
    647      1.1    ad 			oflag = l->l_selflag;
    648      1.1    ad 			l->l_selflag = SEL_RESET;
    649  1.5.2.2  yamt 			if (oflag == SEL_BLOCKING && l->l_mutex == lock) {
    650      1.1    ad 				KASSERT(l->l_wchan == sc);
    651      1.1    ad 				swapin = sleepq_unsleep(l, false);
    652      1.1    ad 			}
    653      1.1    ad 		}
    654  1.5.2.2  yamt 		mutex_spin_exit(lock);
    655      1.1    ad 		if (swapin)
    656      1.1    ad 			uvm_kick_scheduler();
    657      1.1    ad 	}
    658      1.1    ad 
    659      1.1    ad 	if ((mask = sip->sel_collision) != 0) {
    660      1.1    ad 		/*
    661      1.1    ad 		 * There was a collision (multiple waiters): we must
    662      1.1    ad 		 * inform all potentially interested waiters.
    663      1.1    ad 		 */
    664      1.1    ad 		sip->sel_collision = 0;
    665      1.3    ad 		do {
    666      1.1    ad 			index = ffs(mask) - 1;
    667      1.1    ad 			mask &= ~(1 << index);
    668  1.5.2.2  yamt 			sc = cpu_lookup(index)->ci_data.cpu_selcpu;
    669  1.5.2.2  yamt 			lock = sc->sc_lock;
    670  1.5.2.2  yamt 			mutex_spin_enter(lock);
    671      1.1    ad 			sc->sc_ncoll++;
    672  1.5.2.2  yamt 			sleepq_wake(&sc->sc_sleepq, sc, (u_int)-1, lock);
    673      1.3    ad 		} while (__predict_false(mask != 0));
    674      1.1    ad 	}
    675      1.1    ad }
    676      1.1    ad 
    677      1.1    ad /*
    678      1.1    ad  * Remove an LWP from all objects that it is waiting for.  Concurrency
    679      1.1    ad  * issues:
    680      1.1    ad  *
    681      1.1    ad  * The object owner's (e.g. device driver) lock is not held here.  Calls
    682      1.1    ad  * can be made to selrecord() and we do not synchronize against those
    683      1.1    ad  * directly using locks.  However, we use `sel_lwp' to lock out changes.
    684      1.1    ad  * Before clearing it we must use memory barriers to ensure that we can
    685      1.1    ad  * safely traverse the list of selinfo records.
    686      1.1    ad  */
    687      1.1    ad static void
    688      1.1    ad selclear(void)
    689      1.1    ad {
    690      1.1    ad 	struct selinfo *sip, *next;
    691      1.1    ad 	selcpu_t *sc;
    692      1.1    ad 	lwp_t *l;
    693  1.5.2.2  yamt 	kmutex_t *lock;
    694      1.1    ad 
    695      1.1    ad 	l = curlwp;
    696      1.1    ad 	sc = l->l_selcpu;
    697  1.5.2.2  yamt 	lock = sc->sc_lock;
    698      1.1    ad 
    699  1.5.2.2  yamt 	mutex_spin_enter(lock);
    700      1.1    ad 	for (sip = SLIST_FIRST(&l->l_selwait); sip != NULL; sip = next) {
    701      1.1    ad 		KASSERT(sip->sel_lwp == l);
    702      1.1    ad 		KASSERT(sip->sel_cpu == l->l_selcpu);
    703      1.1    ad 		/*
    704      1.1    ad 		 * Read link to next selinfo record, if any.
    705      1.1    ad 		 * It's no longer safe to touch `sip' after clearing
    706      1.1    ad 		 * `sel_lwp', so ensure that the read of `sel_chain'
    707      1.1    ad 		 * completes before the clearing of sel_lwp becomes
    708      1.1    ad 		 * globally visible.
    709      1.1    ad 		 */
    710      1.1    ad 		next = SLIST_NEXT(sip, sel_chain);
    711      1.1    ad 		membar_exit();
    712      1.1    ad 		/* Release the record for another named waiter to use. */
    713      1.1    ad 		sip->sel_lwp = NULL;
    714      1.1    ad 	}
    715  1.5.2.2  yamt 	mutex_spin_exit(lock);
    716      1.1    ad }
    717      1.1    ad 
    718      1.1    ad /*
    719      1.1    ad  * Initialize the select/poll system calls.  Called once for each
    720      1.1    ad  * CPU in the system, as they are attached.
    721      1.1    ad  */
    722      1.1    ad void
    723      1.1    ad selsysinit(struct cpu_info *ci)
    724      1.1    ad {
    725      1.1    ad 	selcpu_t *sc;
    726      1.1    ad 
    727      1.2    ad 	sc = kmem_alloc(roundup2(sizeof(selcpu_t), coherency_unit) +
    728      1.2    ad 	    coherency_unit, KM_SLEEP);
    729      1.2    ad 	sc = (void *)roundup2((uintptr_t)sc, coherency_unit);
    730  1.5.2.2  yamt 	sc->sc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
    731  1.5.2.2  yamt 	sleepq_init(&sc->sc_sleepq);
    732      1.1    ad 	sc->sc_ncoll = 0;
    733      1.1    ad 	sc->sc_mask = (1 << cpu_index(ci));
    734      1.1    ad 	ci->ci_data.cpu_selcpu = sc;
    735      1.1    ad }
    736      1.1    ad 
    737      1.1    ad /*
    738      1.1    ad  * Initialize a selinfo record.
    739      1.1    ad  */
    740      1.1    ad void
    741      1.1    ad selinit(struct selinfo *sip)
    742      1.1    ad {
    743      1.1    ad 
    744      1.1    ad 	memset(sip, 0, sizeof(*sip));
    745      1.1    ad }
    746      1.1    ad 
    747      1.1    ad /*
    748      1.1    ad  * Destroy a selinfo record.  The owning object must not gain new
    749      1.1    ad  * references while this is in progress: all activity on the record
    750      1.1    ad  * must be stopped.
    751      1.1    ad  *
    752      1.1    ad  * Concurrency issues: we only need guard against a call to selclear()
    753      1.1    ad  * by a thread exiting selcommon() and/or pollcommon().  The caller has
    754      1.1    ad  * prevented further references being made to the selinfo record via
    755      1.1    ad  * selrecord(), and it won't call selwakeup() again.
    756      1.1    ad  */
    757      1.1    ad void
    758      1.1    ad seldestroy(struct selinfo *sip)
    759      1.1    ad {
    760      1.1    ad 	selcpu_t *sc;
    761  1.5.2.2  yamt 	kmutex_t *lock;
    762      1.1    ad 	lwp_t *l;
    763      1.1    ad 
    764      1.1    ad 	if (sip->sel_lwp == NULL)
    765      1.1    ad 		return;
    766      1.1    ad 
    767      1.1    ad 	/*
    768      1.1    ad 	 * Lock out selclear().  The selcpu pointer can't change while
    769      1.1    ad 	 * we are here since it is only ever changed in selrecord(),
    770      1.1    ad 	 * and that will not be entered again for this record because
    771      1.1    ad 	 * it is dying.
    772      1.1    ad 	 */
    773      1.1    ad 	KASSERT(sip->sel_cpu != NULL);
    774      1.1    ad 	sc = sip->sel_cpu;
    775  1.5.2.2  yamt 	lock = sc->sc_lock;
    776  1.5.2.2  yamt 	mutex_spin_enter(lock);
    777      1.1    ad 	if ((l = sip->sel_lwp) != NULL) {
    778      1.1    ad 		/*
    779      1.1    ad 		 * This should rarely happen, so although SLIST_REMOVE()
    780      1.1    ad 		 * is slow, using it here is not a problem.
    781      1.1    ad 		 */
    782      1.1    ad 		KASSERT(l->l_selcpu == sc);
    783      1.1    ad 		SLIST_REMOVE(&l->l_selwait, sip, selinfo, sel_chain);
    784      1.1    ad 		sip->sel_lwp = NULL;
    785      1.1    ad 	}
    786  1.5.2.2  yamt 	mutex_spin_exit(lock);
    787      1.1    ad }
    788      1.1    ad 
    789      1.1    ad int
    790  1.5.2.2  yamt pollsock(struct socket *so, const struct timespec *tsp, int events)
    791      1.1    ad {
    792      1.1    ad 	int		ncoll, error, timo;
    793  1.5.2.2  yamt 	struct timespec	sleepts, ts;
    794      1.1    ad 	selcpu_t	*sc;
    795      1.1    ad 	lwp_t		*l;
    796  1.5.2.2  yamt 	kmutex_t	*lock;
    797      1.1    ad 
    798      1.1    ad 	timo = 0;
    799  1.5.2.2  yamt 	if (tsp != NULL) {
    800  1.5.2.2  yamt 		ts = *tsp;
    801  1.5.2.2  yamt 		if (inittimeleft(&ts, &sleepts) == -1)
    802      1.1    ad 			return EINVAL;
    803      1.1    ad 	}
    804      1.1    ad 
    805      1.1    ad 	l = curlwp;
    806      1.1    ad 	sc = l->l_cpu->ci_data.cpu_selcpu;
    807  1.5.2.2  yamt 	lock = sc->sc_lock;
    808      1.1    ad 	l->l_selcpu = sc;
    809      1.1    ad 	SLIST_INIT(&l->l_selwait);
    810      1.1    ad 	error = 0;
    811      1.1    ad 	for (;;) {
    812      1.1    ad 		/*
    813      1.1    ad 		 * No need to lock.  If this is overwritten by another
    814      1.1    ad 		 * value while scanning, we will retry below.  We only
    815      1.1    ad 		 * need to see exact state from the descriptors that
    816      1.1    ad 		 * we are about to poll, and lock activity resulting
    817      1.1    ad 		 * from fo_poll is enough to provide an up to date value
    818      1.1    ad 		 * for new polling activity.
    819      1.1    ad 		 */
    820      1.1    ad 		ncoll = sc->sc_ncoll;
    821      1.1    ad 		l->l_selflag = SEL_SCANNING;
    822      1.1    ad 		if (sopoll(so, events) != 0)
    823      1.1    ad 			break;
    824  1.5.2.2  yamt 		if (tsp && (timo = gettimeleft(&ts, &sleepts)) <= 0)
    825      1.1    ad 			break;
    826  1.5.2.2  yamt 		mutex_spin_enter(lock);
    827      1.1    ad 		if (l->l_selflag != SEL_SCANNING || sc->sc_ncoll != ncoll) {
    828  1.5.2.2  yamt 			mutex_spin_exit(lock);
    829      1.1    ad 			continue;
    830      1.1    ad 		}
    831      1.1    ad 		l->l_selflag = SEL_BLOCKING;
    832  1.5.2.2  yamt 		sleepq_enter(&sc->sc_sleepq, l, lock);
    833      1.1    ad 		sleepq_enqueue(&sc->sc_sleepq, sc, "pollsock", &select_sobj);
    834      1.1    ad 		error = sleepq_block(timo, true);
    835      1.1    ad 		if (error != 0)
    836      1.1    ad 			break;
    837      1.1    ad 	}
    838      1.1    ad 	selclear();
    839      1.1    ad 	/* poll is not restarted after signals... */
    840      1.1    ad 	if (error == ERESTART)
    841      1.1    ad 		error = EINTR;
    842      1.1    ad 	if (error == EWOULDBLOCK)
    843      1.1    ad 		error = 0;
    844      1.1    ad 	return (error);
    845      1.1    ad }
    846