Home | History | Annotate | Line # | Download | only in kern
sys_select.c revision 1.5.2.4
      1  1.5.2.4  yamt /*	$NetBSD: sys_select.c,v 1.5.2.4 2010/03/11 15:04:19 yamt Exp $	*/
      2      1.1    ad 
      3      1.1    ad /*-
      4  1.5.2.2  yamt  * Copyright (c) 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5      1.1    ad  * All rights reserved.
      6      1.1    ad  *
      7      1.1    ad  * This code is derived from software contributed to The NetBSD Foundation
      8      1.1    ad  * by Andrew Doran.
      9      1.1    ad  *
     10      1.1    ad  * Redistribution and use in source and binary forms, with or without
     11      1.1    ad  * modification, are permitted provided that the following conditions
     12      1.1    ad  * are met:
     13      1.1    ad  * 1. Redistributions of source code must retain the above copyright
     14      1.1    ad  *    notice, this list of conditions and the following disclaimer.
     15      1.1    ad  * 2. Redistributions in binary form must reproduce the above copyright
     16      1.1    ad  *    notice, this list of conditions and the following disclaimer in the
     17      1.1    ad  *    documentation and/or other materials provided with the distribution.
     18      1.1    ad  *
     19      1.1    ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20      1.1    ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21      1.1    ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22      1.1    ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23      1.1    ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24      1.1    ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25      1.1    ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26      1.1    ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27      1.1    ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28      1.1    ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29      1.1    ad  * POSSIBILITY OF SUCH DAMAGE.
     30      1.1    ad  */
     31      1.1    ad 
     32      1.1    ad /*
     33      1.1    ad  * Copyright (c) 1982, 1986, 1989, 1993
     34      1.1    ad  *	The Regents of the University of California.  All rights reserved.
     35      1.1    ad  * (c) UNIX System Laboratories, Inc.
     36      1.1    ad  * All or some portions of this file are derived from material licensed
     37      1.1    ad  * to the University of California by American Telephone and Telegraph
     38      1.1    ad  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     39      1.1    ad  * the permission of UNIX System Laboratories, Inc.
     40      1.1    ad  *
     41      1.1    ad  * Redistribution and use in source and binary forms, with or without
     42      1.1    ad  * modification, are permitted provided that the following conditions
     43      1.1    ad  * are met:
     44      1.1    ad  * 1. Redistributions of source code must retain the above copyright
     45      1.1    ad  *    notice, this list of conditions and the following disclaimer.
     46      1.1    ad  * 2. Redistributions in binary form must reproduce the above copyright
     47      1.1    ad  *    notice, this list of conditions and the following disclaimer in the
     48      1.1    ad  *    documentation and/or other materials provided with the distribution.
     49      1.1    ad  * 3. Neither the name of the University nor the names of its contributors
     50      1.1    ad  *    may be used to endorse or promote products derived from this software
     51      1.1    ad  *    without specific prior written permission.
     52      1.1    ad  *
     53      1.1    ad  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54      1.1    ad  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55      1.1    ad  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56      1.1    ad  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57      1.1    ad  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58      1.1    ad  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59      1.1    ad  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60      1.1    ad  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61      1.1    ad  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62      1.1    ad  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63      1.1    ad  * SUCH DAMAGE.
     64      1.1    ad  *
     65      1.1    ad  *	@(#)sys_generic.c	8.9 (Berkeley) 2/14/95
     66      1.1    ad  */
     67      1.1    ad 
     68      1.1    ad /*
     69  1.5.2.4  yamt  * System calls of synchronous I/O multiplexing subsystem.
     70  1.5.2.4  yamt  *
     71  1.5.2.4  yamt  * Locking
     72  1.5.2.4  yamt  *
     73  1.5.2.4  yamt  * Two locks are used: <object-lock> and selcpu_t::sc_lock.
     74  1.5.2.4  yamt  *
     75  1.5.2.4  yamt  * The <object-lock> might be a device driver or another subsystem, e.g.
     76  1.5.2.4  yamt  * socket or pipe.  This lock is not exported, and thus invisible to this
     77  1.5.2.4  yamt  * subsystem.  Mainly, synchronisation between selrecord() and selnotify()
     78  1.5.2.4  yamt  * routines depends on this lock, as it will be described in the comments.
     79  1.5.2.4  yamt  *
     80  1.5.2.4  yamt  * Lock order
     81  1.5.2.4  yamt  *
     82  1.5.2.4  yamt  *	<object-lock> ->
     83  1.5.2.4  yamt  *		selcpu_t::sc_lock
     84      1.1    ad  */
     85      1.1    ad 
     86      1.1    ad #include <sys/cdefs.h>
     87  1.5.2.4  yamt __KERNEL_RCSID(0, "$NetBSD: sys_select.c,v 1.5.2.4 2010/03/11 15:04:19 yamt Exp $");
     88      1.1    ad 
     89      1.1    ad #include <sys/param.h>
     90      1.1    ad #include <sys/systm.h>
     91      1.1    ad #include <sys/filedesc.h>
     92      1.1    ad #include <sys/ioctl.h>
     93      1.1    ad #include <sys/file.h>
     94      1.1    ad #include <sys/proc.h>
     95      1.1    ad #include <sys/socketvar.h>
     96      1.1    ad #include <sys/signalvar.h>
     97      1.1    ad #include <sys/uio.h>
     98      1.1    ad #include <sys/kernel.h>
     99      1.1    ad #include <sys/stat.h>
    100      1.1    ad #include <sys/poll.h>
    101      1.1    ad #include <sys/vnode.h>
    102      1.1    ad #include <sys/mount.h>
    103      1.1    ad #include <sys/syscallargs.h>
    104      1.1    ad #include <sys/cpu.h>
    105      1.1    ad #include <sys/atomic.h>
    106      1.1    ad #include <sys/socketvar.h>
    107      1.1    ad #include <sys/sleepq.h>
    108      1.1    ad 
    109      1.1    ad /* Flags for lwp::l_selflag. */
    110      1.1    ad #define	SEL_RESET	0	/* awoken, interrupted, or not yet polling */
    111      1.1    ad #define	SEL_SCANNING	1	/* polling descriptors */
    112      1.1    ad #define	SEL_BLOCKING	2	/* about to block on select_cv */
    113      1.1    ad 
    114      1.1    ad /* Per-CPU state for select()/poll(). */
    115      1.1    ad #if MAXCPUS > 32
    116      1.1    ad #error adjust this code
    117      1.1    ad #endif
    118      1.1    ad typedef struct selcpu {
    119  1.5.2.2  yamt 	kmutex_t	*sc_lock;
    120      1.1    ad 	sleepq_t	sc_sleepq;
    121      1.1    ad 	int		sc_ncoll;
    122      1.1    ad 	uint32_t	sc_mask;
    123      1.1    ad } selcpu_t;
    124      1.1    ad 
    125  1.5.2.4  yamt static inline int	selscan(char *, u_int, register_t *);
    126  1.5.2.4  yamt static inline int	pollscan(struct pollfd *, u_int, register_t *);
    127  1.5.2.4  yamt static void		selclear(void);
    128      1.1    ad 
    129      1.1    ad static syncobj_t select_sobj = {
    130      1.1    ad 	SOBJ_SLEEPQ_FIFO,
    131      1.1    ad 	sleepq_unsleep,
    132      1.1    ad 	sleepq_changepri,
    133      1.1    ad 	sleepq_lendpri,
    134      1.1    ad 	syncobj_noowner,
    135      1.1    ad };
    136      1.1    ad 
    137      1.1    ad /*
    138      1.1    ad  * Select system call.
    139      1.1    ad  */
    140      1.1    ad int
    141  1.5.2.2  yamt sys___pselect50(struct lwp *l, const struct sys___pselect50_args *uap,
    142  1.5.2.2  yamt     register_t *retval)
    143      1.1    ad {
    144      1.1    ad 	/* {
    145      1.1    ad 		syscallarg(int)				nd;
    146      1.1    ad 		syscallarg(fd_set *)			in;
    147      1.1    ad 		syscallarg(fd_set *)			ou;
    148      1.1    ad 		syscallarg(fd_set *)			ex;
    149      1.1    ad 		syscallarg(const struct timespec *)	ts;
    150      1.1    ad 		syscallarg(sigset_t *)			mask;
    151      1.1    ad 	} */
    152  1.5.2.2  yamt 	struct timespec	ats, *ts = NULL;
    153      1.1    ad 	sigset_t	amask, *mask = NULL;
    154      1.1    ad 	int		error;
    155      1.1    ad 
    156      1.1    ad 	if (SCARG(uap, ts)) {
    157      1.1    ad 		error = copyin(SCARG(uap, ts), &ats, sizeof(ats));
    158      1.1    ad 		if (error)
    159      1.1    ad 			return error;
    160  1.5.2.2  yamt 		ts = &ats;
    161      1.1    ad 	}
    162      1.1    ad 	if (SCARG(uap, mask) != NULL) {
    163      1.1    ad 		error = copyin(SCARG(uap, mask), &amask, sizeof(amask));
    164      1.1    ad 		if (error)
    165      1.1    ad 			return error;
    166      1.1    ad 		mask = &amask;
    167      1.1    ad 	}
    168      1.1    ad 
    169  1.5.2.4  yamt 	return selcommon(retval, SCARG(uap, nd), SCARG(uap, in),
    170  1.5.2.2  yamt 	    SCARG(uap, ou), SCARG(uap, ex), ts, mask);
    171      1.1    ad }
    172      1.1    ad 
    173      1.1    ad int
    174  1.5.2.2  yamt sys___select50(struct lwp *l, const struct sys___select50_args *uap,
    175  1.5.2.2  yamt     register_t *retval)
    176      1.1    ad {
    177      1.1    ad 	/* {
    178      1.1    ad 		syscallarg(int)			nd;
    179      1.1    ad 		syscallarg(fd_set *)		in;
    180      1.1    ad 		syscallarg(fd_set *)		ou;
    181      1.1    ad 		syscallarg(fd_set *)		ex;
    182      1.1    ad 		syscallarg(struct timeval *)	tv;
    183      1.1    ad 	} */
    184  1.5.2.2  yamt 	struct timeval atv;
    185  1.5.2.2  yamt 	struct timespec ats, *ts = NULL;
    186      1.1    ad 	int error;
    187      1.1    ad 
    188      1.1    ad 	if (SCARG(uap, tv)) {
    189  1.5.2.2  yamt 		error = copyin(SCARG(uap, tv), (void *)&atv, sizeof(atv));
    190      1.1    ad 		if (error)
    191      1.1    ad 			return error;
    192  1.5.2.2  yamt 		TIMEVAL_TO_TIMESPEC(&atv, &ats);
    193  1.5.2.2  yamt 		ts = &ats;
    194      1.1    ad 	}
    195      1.1    ad 
    196  1.5.2.4  yamt 	return selcommon(retval, SCARG(uap, nd), SCARG(uap, in),
    197  1.5.2.2  yamt 	    SCARG(uap, ou), SCARG(uap, ex), ts, NULL);
    198      1.1    ad }
    199      1.1    ad 
    200  1.5.2.4  yamt /*
    201  1.5.2.4  yamt  * sel_do_scan: common code to perform the scan on descriptors.
    202  1.5.2.4  yamt  */
    203  1.5.2.4  yamt static int
    204  1.5.2.4  yamt sel_do_scan(void *fds, u_int nfds, struct timespec *ts, sigset_t *mask,
    205  1.5.2.4  yamt     register_t *retval, int selpoll)
    206      1.1    ad {
    207  1.5.2.4  yamt 	lwp_t		* const l = curlwp;
    208      1.1    ad 	proc_t		* const p = l->l_proc;
    209      1.1    ad 	selcpu_t	*sc;
    210  1.5.2.2  yamt 	kmutex_t	*lock;
    211  1.5.2.4  yamt 	sigset_t	oldmask;
    212  1.5.2.4  yamt 	struct timespec	sleepts;
    213  1.5.2.4  yamt 	int		error, timo;
    214      1.1    ad 
    215      1.1    ad 	timo = 0;
    216  1.5.2.2  yamt 	if (ts && inittimeleft(ts, &sleepts) == -1) {
    217  1.5.2.4  yamt 		return EINVAL;
    218      1.1    ad 	}
    219      1.1    ad 
    220  1.5.2.4  yamt 	if (__predict_false(mask)) {
    221      1.1    ad 		sigminusset(&sigcantmask, mask);
    222      1.5    ad 		mutex_enter(p->p_lock);
    223      1.1    ad 		oldmask = l->l_sigmask;
    224      1.1    ad 		l->l_sigmask = *mask;
    225      1.5    ad 		mutex_exit(p->p_lock);
    226  1.5.2.4  yamt 	} else {
    227  1.5.2.4  yamt 		/* XXXgcc */
    228  1.5.2.4  yamt 		oldmask = l->l_sigmask;
    229  1.5.2.4  yamt 	}
    230      1.1    ad 
    231      1.1    ad 	sc = curcpu()->ci_data.cpu_selcpu;
    232  1.5.2.2  yamt 	lock = sc->sc_lock;
    233      1.1    ad 	l->l_selcpu = sc;
    234      1.1    ad 	SLIST_INIT(&l->l_selwait);
    235      1.1    ad 	for (;;) {
    236  1.5.2.4  yamt 		int ncoll;
    237  1.5.2.4  yamt 
    238      1.1    ad 		/*
    239  1.5.2.4  yamt 		 * No need to lock.  If this is overwritten by another value
    240  1.5.2.4  yamt 		 * while scanning, we will retry below.  We only need to see
    241  1.5.2.4  yamt 		 * exact state from the descriptors that we are about to poll,
    242  1.5.2.4  yamt 		 * and lock activity resulting from fo_poll is enough to
    243  1.5.2.4  yamt 		 * provide an up to date value for new polling activity.
    244      1.1    ad 		 */
    245  1.5.2.4  yamt 		l->l_selflag = SEL_SCANNING;
    246      1.1    ad 		ncoll = sc->sc_ncoll;
    247      1.1    ad 
    248  1.5.2.4  yamt 		if (selpoll) {
    249  1.5.2.4  yamt 			error = selscan((char *)fds, nfds, retval);
    250  1.5.2.4  yamt 		} else {
    251  1.5.2.4  yamt 			error = pollscan((struct pollfd *)fds, nfds, retval);
    252  1.5.2.4  yamt 		}
    253      1.1    ad 
    254      1.1    ad 		if (error || *retval)
    255      1.1    ad 			break;
    256  1.5.2.2  yamt 		if (ts && (timo = gettimeleft(ts, &sleepts)) <= 0)
    257      1.1    ad 			break;
    258  1.5.2.2  yamt 		mutex_spin_enter(lock);
    259      1.1    ad 		if (l->l_selflag != SEL_SCANNING || sc->sc_ncoll != ncoll) {
    260  1.5.2.2  yamt 			mutex_spin_exit(lock);
    261      1.1    ad 			continue;
    262      1.1    ad 		}
    263      1.1    ad 		l->l_selflag = SEL_BLOCKING;
    264  1.5.2.1  yamt 		l->l_kpriority = true;
    265  1.5.2.2  yamt 		sleepq_enter(&sc->sc_sleepq, l, lock);
    266      1.1    ad 		sleepq_enqueue(&sc->sc_sleepq, sc, "select", &select_sobj);
    267      1.1    ad 		error = sleepq_block(timo, true);
    268      1.1    ad 		if (error != 0)
    269      1.1    ad 			break;
    270      1.1    ad 	}
    271      1.1    ad 	selclear();
    272      1.1    ad 
    273  1.5.2.4  yamt 	if (__predict_false(mask)) {
    274      1.5    ad 		mutex_enter(p->p_lock);
    275      1.1    ad 		l->l_sigmask = oldmask;
    276      1.5    ad 		mutex_exit(p->p_lock);
    277      1.1    ad 	}
    278      1.1    ad 
    279  1.5.2.4  yamt 	/* select and poll are not restarted after signals... */
    280      1.1    ad 	if (error == ERESTART)
    281  1.5.2.4  yamt 		return EINTR;
    282      1.1    ad 	if (error == EWOULDBLOCK)
    283  1.5.2.4  yamt 		return 0;
    284  1.5.2.4  yamt 	return error;
    285  1.5.2.4  yamt }
    286  1.5.2.4  yamt 
    287  1.5.2.4  yamt int
    288  1.5.2.4  yamt selcommon(register_t *retval, int nd, fd_set *u_in, fd_set *u_ou,
    289  1.5.2.4  yamt     fd_set *u_ex, struct timespec *ts, sigset_t *mask)
    290  1.5.2.4  yamt {
    291  1.5.2.4  yamt 	char		smallbits[howmany(FD_SETSIZE, NFDBITS) *
    292  1.5.2.4  yamt 			    sizeof(fd_mask) * 6];
    293  1.5.2.4  yamt 	char 		*bits;
    294  1.5.2.4  yamt 	int		error, nf;
    295  1.5.2.4  yamt 	size_t		ni;
    296  1.5.2.4  yamt 
    297  1.5.2.4  yamt 	if (nd < 0)
    298  1.5.2.4  yamt 		return (EINVAL);
    299  1.5.2.4  yamt 	nf = curlwp->l_fd->fd_dt->dt_nfiles;
    300  1.5.2.4  yamt 	if (nd > nf) {
    301  1.5.2.4  yamt 		/* forgiving; slightly wrong */
    302  1.5.2.4  yamt 		nd = nf;
    303  1.5.2.4  yamt 	}
    304  1.5.2.4  yamt 	ni = howmany(nd, NFDBITS) * sizeof(fd_mask);
    305  1.5.2.4  yamt 	if (ni * 6 > sizeof(smallbits)) {
    306  1.5.2.4  yamt 		bits = kmem_alloc(ni * 6, KM_SLEEP);
    307  1.5.2.4  yamt 		if (bits == NULL)
    308  1.5.2.4  yamt 			return ENOMEM;
    309  1.5.2.4  yamt 	} else
    310  1.5.2.4  yamt 		bits = smallbits;
    311  1.5.2.4  yamt 
    312  1.5.2.4  yamt #define	getbits(name, x)						\
    313  1.5.2.4  yamt 	if (u_ ## name) {						\
    314  1.5.2.4  yamt 		error = copyin(u_ ## name, bits + ni * x, ni);		\
    315  1.5.2.4  yamt 		if (error)						\
    316  1.5.2.4  yamt 			goto fail;					\
    317  1.5.2.4  yamt 	} else								\
    318  1.5.2.4  yamt 		memset(bits + ni * x, 0, ni);
    319  1.5.2.4  yamt 	getbits(in, 0);
    320  1.5.2.4  yamt 	getbits(ou, 1);
    321  1.5.2.4  yamt 	getbits(ex, 2);
    322  1.5.2.4  yamt #undef	getbits
    323  1.5.2.4  yamt 
    324  1.5.2.4  yamt 	error = sel_do_scan(bits, nd, ts, mask, retval, 1);
    325      1.1    ad 	if (error == 0 && u_in != NULL)
    326      1.1    ad 		error = copyout(bits + ni * 3, u_in, ni);
    327      1.1    ad 	if (error == 0 && u_ou != NULL)
    328      1.1    ad 		error = copyout(bits + ni * 4, u_ou, ni);
    329      1.1    ad 	if (error == 0 && u_ex != NULL)
    330      1.1    ad 		error = copyout(bits + ni * 5, u_ex, ni);
    331  1.5.2.4  yamt  fail:
    332      1.1    ad 	if (bits != smallbits)
    333      1.1    ad 		kmem_free(bits, ni * 6);
    334      1.1    ad 	return (error);
    335      1.1    ad }
    336      1.1    ad 
    337  1.5.2.4  yamt static inline int
    338  1.5.2.4  yamt selscan(char *bits, u_int nfd, register_t *retval)
    339      1.1    ad {
    340      1.1    ad 	static const int flag[3] = { POLLRDNORM | POLLHUP | POLLERR,
    341      1.1    ad 			       POLLWRNORM | POLLHUP | POLLERR,
    342      1.1    ad 			       POLLRDBAND };
    343  1.5.2.4  yamt 	fd_mask *ibitp, *obitp;
    344  1.5.2.4  yamt 	int msk, i, j, fd, ni, n;
    345      1.1    ad 	fd_mask ibits, obits;
    346      1.1    ad 	file_t *fp;
    347      1.1    ad 
    348  1.5.2.4  yamt 	ni = howmany(nfd, NFDBITS) * sizeof(fd_mask);
    349  1.5.2.4  yamt 	ibitp = (fd_mask *)(bits + ni * 0);
    350  1.5.2.4  yamt 	obitp = (fd_mask *)(bits + ni * 3);
    351      1.1    ad 	n = 0;
    352  1.5.2.4  yamt 
    353      1.1    ad 	for (msk = 0; msk < 3; msk++) {
    354      1.1    ad 		for (i = 0; i < nfd; i += NFDBITS) {
    355      1.1    ad 			ibits = *ibitp++;
    356      1.1    ad 			obits = 0;
    357      1.1    ad 			while ((j = ffs(ibits)) && (fd = i + --j) < nfd) {
    358      1.1    ad 				ibits &= ~(1 << j);
    359      1.1    ad 				if ((fp = fd_getfile(fd)) == NULL)
    360      1.1    ad 					return (EBADF);
    361      1.1    ad 				if ((*fp->f_ops->fo_poll)(fp, flag[msk])) {
    362      1.1    ad 					obits |= (1 << j);
    363      1.1    ad 					n++;
    364      1.1    ad 				}
    365      1.1    ad 				fd_putfile(fd);
    366      1.1    ad 			}
    367      1.1    ad 			*obitp++ = obits;
    368      1.1    ad 		}
    369      1.1    ad 	}
    370      1.1    ad 	*retval = n;
    371      1.1    ad 	return (0);
    372      1.1    ad }
    373      1.1    ad 
    374      1.1    ad /*
    375      1.1    ad  * Poll system call.
    376      1.1    ad  */
    377      1.1    ad int
    378      1.1    ad sys_poll(struct lwp *l, const struct sys_poll_args *uap, register_t *retval)
    379      1.1    ad {
    380      1.1    ad 	/* {
    381      1.1    ad 		syscallarg(struct pollfd *)	fds;
    382      1.1    ad 		syscallarg(u_int)		nfds;
    383      1.1    ad 		syscallarg(int)			timeout;
    384      1.1    ad 	} */
    385  1.5.2.2  yamt 	struct timespec	ats, *ts = NULL;
    386      1.1    ad 
    387      1.1    ad 	if (SCARG(uap, timeout) != INFTIM) {
    388  1.5.2.2  yamt 		ats.tv_sec = SCARG(uap, timeout) / 1000;
    389  1.5.2.2  yamt 		ats.tv_nsec = (SCARG(uap, timeout) % 1000) * 1000000;
    390  1.5.2.2  yamt 		ts = &ats;
    391      1.1    ad 	}
    392      1.1    ad 
    393  1.5.2.4  yamt 	return pollcommon(retval, SCARG(uap, fds), SCARG(uap, nfds), ts, NULL);
    394      1.1    ad }
    395      1.1    ad 
    396      1.1    ad /*
    397      1.1    ad  * Poll system call.
    398      1.1    ad  */
    399      1.1    ad int
    400  1.5.2.2  yamt sys___pollts50(struct lwp *l, const struct sys___pollts50_args *uap,
    401  1.5.2.2  yamt     register_t *retval)
    402      1.1    ad {
    403      1.1    ad 	/* {
    404      1.1    ad 		syscallarg(struct pollfd *)		fds;
    405      1.1    ad 		syscallarg(u_int)			nfds;
    406      1.1    ad 		syscallarg(const struct timespec *)	ts;
    407      1.1    ad 		syscallarg(const sigset_t *)		mask;
    408      1.1    ad 	} */
    409  1.5.2.2  yamt 	struct timespec	ats, *ts = NULL;
    410      1.1    ad 	sigset_t	amask, *mask = NULL;
    411      1.1    ad 	int		error;
    412      1.1    ad 
    413      1.1    ad 	if (SCARG(uap, ts)) {
    414      1.1    ad 		error = copyin(SCARG(uap, ts), &ats, sizeof(ats));
    415      1.1    ad 		if (error)
    416      1.1    ad 			return error;
    417  1.5.2.2  yamt 		ts = &ats;
    418      1.1    ad 	}
    419      1.1    ad 	if (SCARG(uap, mask)) {
    420      1.1    ad 		error = copyin(SCARG(uap, mask), &amask, sizeof(amask));
    421      1.1    ad 		if (error)
    422      1.1    ad 			return error;
    423      1.1    ad 		mask = &amask;
    424      1.1    ad 	}
    425      1.1    ad 
    426  1.5.2.4  yamt 	return pollcommon(retval, SCARG(uap, fds), SCARG(uap, nfds), ts, mask);
    427      1.1    ad }
    428      1.1    ad 
    429      1.1    ad int
    430  1.5.2.4  yamt pollcommon(register_t *retval, struct pollfd *u_fds, u_int nfds,
    431  1.5.2.2  yamt     struct timespec *ts, sigset_t *mask)
    432      1.1    ad {
    433  1.5.2.2  yamt 	struct pollfd	smallfds[32];
    434  1.5.2.2  yamt 	struct pollfd	*fds;
    435  1.5.2.4  yamt 	int		error;
    436  1.5.2.4  yamt 	size_t		ni;
    437      1.1    ad 
    438  1.5.2.4  yamt 	if (nfds > 1000 + curlwp->l_fd->fd_dt->dt_nfiles) {
    439  1.5.2.4  yamt 		/*
    440  1.5.2.4  yamt 		 * Either the user passed in a very sparse 'fds' or junk!
    441  1.5.2.4  yamt 		 * The kmem_alloc() call below would be bad news.
    442  1.5.2.4  yamt 		 * We could process the 'fds' array in chunks, but that
    443  1.5.2.4  yamt 		 * is a lot of code that isn't normally useful.
    444  1.5.2.4  yamt 		 * (Or just move the copyin/out into pollscan().)
    445  1.5.2.4  yamt 		 * Historically the code silently truncated 'fds' to
    446  1.5.2.4  yamt 		 * dt_nfiles entries - but that does cause issues.
    447  1.5.2.4  yamt 		 */
    448  1.5.2.4  yamt 		return EINVAL;
    449      1.1    ad 	}
    450      1.1    ad 	ni = nfds * sizeof(struct pollfd);
    451  1.5.2.2  yamt 	if (ni > sizeof(smallfds)) {
    452  1.5.2.2  yamt 		fds = kmem_alloc(ni, KM_SLEEP);
    453  1.5.2.2  yamt 		if (fds == NULL)
    454  1.5.2.2  yamt 			return ENOMEM;
    455  1.5.2.2  yamt 	} else
    456  1.5.2.2  yamt 		fds = smallfds;
    457      1.1    ad 
    458  1.5.2.2  yamt 	error = copyin(u_fds, fds, ni);
    459      1.1    ad 	if (error)
    460  1.5.2.4  yamt 		goto fail;
    461      1.1    ad 
    462  1.5.2.4  yamt 	error = sel_do_scan(fds, nfds, ts, mask, retval, 0);
    463      1.1    ad 	if (error == 0)
    464  1.5.2.2  yamt 		error = copyout(fds, u_fds, ni);
    465  1.5.2.4  yamt  fail:
    466  1.5.2.2  yamt 	if (fds != smallfds)
    467  1.5.2.2  yamt 		kmem_free(fds, ni);
    468      1.1    ad 	return (error);
    469      1.1    ad }
    470      1.1    ad 
    471  1.5.2.4  yamt static inline int
    472  1.5.2.4  yamt pollscan(struct pollfd *fds, u_int nfd, register_t *retval)
    473      1.1    ad {
    474      1.1    ad 	int i, n;
    475      1.1    ad 	file_t *fp;
    476      1.1    ad 
    477      1.1    ad 	n = 0;
    478      1.1    ad 	for (i = 0; i < nfd; i++, fds++) {
    479      1.1    ad 		if (fds->fd < 0) {
    480      1.1    ad 			fds->revents = 0;
    481      1.1    ad 		} else if ((fp = fd_getfile(fds->fd)) == NULL) {
    482      1.1    ad 			fds->revents = POLLNVAL;
    483      1.1    ad 			n++;
    484      1.1    ad 		} else {
    485      1.1    ad 			fds->revents = (*fp->f_ops->fo_poll)(fp,
    486      1.1    ad 			    fds->events | POLLERR | POLLHUP);
    487      1.1    ad 			if (fds->revents != 0)
    488      1.1    ad 				n++;
    489      1.1    ad 			fd_putfile(fds->fd);
    490      1.1    ad 		}
    491      1.1    ad 	}
    492      1.1    ad 	*retval = n;
    493      1.1    ad 	return (0);
    494      1.1    ad }
    495      1.1    ad 
    496      1.1    ad /*ARGSUSED*/
    497      1.1    ad int
    498      1.1    ad seltrue(dev_t dev, int events, lwp_t *l)
    499      1.1    ad {
    500      1.1    ad 
    501      1.1    ad 	return (events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
    502      1.1    ad }
    503      1.1    ad 
    504      1.1    ad /*
    505      1.1    ad  * Record a select request.  Concurrency issues:
    506      1.1    ad  *
    507      1.1    ad  * The caller holds the same lock across calls to selrecord() and
    508      1.4  yamt  * selnotify(), so we don't need to consider a concurrent wakeup
    509      1.1    ad  * while in this routine.
    510      1.1    ad  *
    511      1.1    ad  * The only activity we need to guard against is selclear(), called by
    512  1.5.2.4  yamt  * another thread that is exiting sel_do_scan().
    513      1.1    ad  * `sel_lwp' can only become non-NULL while the caller's lock is held,
    514      1.1    ad  * so it cannot become non-NULL due to a change made by another thread
    515      1.1    ad  * while we are in this routine.  It can only become _NULL_ due to a
    516      1.1    ad  * call to selclear().
    517      1.1    ad  *
    518      1.1    ad  * If it is non-NULL and != selector there is the potential for
    519      1.1    ad  * selclear() to be called by another thread.  If either of those
    520      1.1    ad  * conditions are true, we're not interested in touching the `named
    521      1.1    ad  * waiter' part of the selinfo record because we need to record a
    522      1.1    ad  * collision.  Hence there is no need for additional locking in this
    523      1.1    ad  * routine.
    524      1.1    ad  */
    525      1.1    ad void
    526      1.1    ad selrecord(lwp_t *selector, struct selinfo *sip)
    527      1.1    ad {
    528      1.1    ad 	selcpu_t *sc;
    529      1.1    ad 	lwp_t *other;
    530      1.1    ad 
    531      1.1    ad 	KASSERT(selector == curlwp);
    532      1.1    ad 
    533      1.1    ad 	sc = selector->l_selcpu;
    534      1.1    ad 	other = sip->sel_lwp;
    535      1.1    ad 
    536      1.1    ad 	if (other == selector) {
    537      1.1    ad 		/* `selector' has already claimed it. */
    538      1.1    ad 		KASSERT(sip->sel_cpu = sc);
    539      1.1    ad 	} else if (other == NULL) {
    540      1.1    ad 		/*
    541      1.1    ad 		 * First named waiter, although there may be unnamed
    542      1.1    ad 		 * waiters (collisions).  Issue a memory barrier to
    543      1.1    ad 		 * ensure that we access sel_lwp (above) before other
    544      1.1    ad 		 * fields - this guards against a call to selclear().
    545      1.1    ad 		 */
    546      1.1    ad 		membar_enter();
    547      1.1    ad 		sip->sel_lwp = selector;
    548      1.1    ad 		SLIST_INSERT_HEAD(&selector->l_selwait, sip, sel_chain);
    549      1.1    ad 		/* Replace selinfo's lock with our chosen CPU's lock. */
    550      1.1    ad 		sip->sel_cpu = sc;
    551      1.1    ad 	} else {
    552      1.1    ad 		/* Multiple waiters: record a collision. */
    553      1.1    ad 		sip->sel_collision |= sc->sc_mask;
    554      1.1    ad 		KASSERT(sip->sel_cpu != NULL);
    555      1.1    ad 	}
    556      1.1    ad }
    557      1.1    ad 
    558      1.1    ad /*
    559      1.1    ad  * Do a wakeup when a selectable event occurs.  Concurrency issues:
    560      1.1    ad  *
    561      1.1    ad  * As per selrecord(), the caller's object lock is held.  If there
    562      1.1    ad  * is a named waiter, we must acquire the associated selcpu's lock
    563      1.1    ad  * in order to synchronize with selclear() and pollers going to sleep
    564  1.5.2.4  yamt  * in sel_do_scan().
    565      1.1    ad  *
    566      1.1    ad  * sip->sel_cpu cannot change at this point, as it is only changed
    567      1.1    ad  * in selrecord(), and concurrent calls to selrecord() are locked
    568      1.1    ad  * out by the caller.
    569      1.1    ad  */
    570      1.1    ad void
    571      1.1    ad selnotify(struct selinfo *sip, int events, long knhint)
    572      1.1    ad {
    573      1.1    ad 	selcpu_t *sc;
    574      1.1    ad 	uint32_t mask;
    575  1.5.2.4  yamt 	int index, oflag;
    576      1.1    ad 	lwp_t *l;
    577  1.5.2.2  yamt 	kmutex_t *lock;
    578      1.1    ad 
    579      1.1    ad 	KNOTE(&sip->sel_klist, knhint);
    580      1.1    ad 
    581      1.1    ad 	if (sip->sel_lwp != NULL) {
    582      1.1    ad 		/* One named LWP is waiting. */
    583      1.1    ad 		sc = sip->sel_cpu;
    584  1.5.2.2  yamt 		lock = sc->sc_lock;
    585  1.5.2.2  yamt 		mutex_spin_enter(lock);
    586      1.1    ad 		/* Still there? */
    587      1.1    ad 		if (sip->sel_lwp != NULL) {
    588      1.1    ad 			l = sip->sel_lwp;
    589      1.1    ad 			/*
    590      1.1    ad 			 * If thread is sleeping, wake it up.  If it's not
    591      1.1    ad 			 * yet asleep, it will notice the change in state
    592      1.1    ad 			 * and will re-poll the descriptors.
    593      1.1    ad 			 */
    594      1.1    ad 			oflag = l->l_selflag;
    595      1.1    ad 			l->l_selflag = SEL_RESET;
    596  1.5.2.2  yamt 			if (oflag == SEL_BLOCKING && l->l_mutex == lock) {
    597      1.1    ad 				KASSERT(l->l_wchan == sc);
    598  1.5.2.4  yamt 				sleepq_unsleep(l, false);
    599      1.1    ad 			}
    600      1.1    ad 		}
    601  1.5.2.2  yamt 		mutex_spin_exit(lock);
    602      1.1    ad 	}
    603      1.1    ad 
    604      1.1    ad 	if ((mask = sip->sel_collision) != 0) {
    605      1.1    ad 		/*
    606      1.1    ad 		 * There was a collision (multiple waiters): we must
    607      1.1    ad 		 * inform all potentially interested waiters.
    608      1.1    ad 		 */
    609      1.1    ad 		sip->sel_collision = 0;
    610      1.3    ad 		do {
    611      1.1    ad 			index = ffs(mask) - 1;
    612      1.1    ad 			mask &= ~(1 << index);
    613  1.5.2.2  yamt 			sc = cpu_lookup(index)->ci_data.cpu_selcpu;
    614  1.5.2.2  yamt 			lock = sc->sc_lock;
    615  1.5.2.2  yamt 			mutex_spin_enter(lock);
    616      1.1    ad 			sc->sc_ncoll++;
    617  1.5.2.2  yamt 			sleepq_wake(&sc->sc_sleepq, sc, (u_int)-1, lock);
    618      1.3    ad 		} while (__predict_false(mask != 0));
    619      1.1    ad 	}
    620      1.1    ad }
    621      1.1    ad 
    622      1.1    ad /*
    623      1.1    ad  * Remove an LWP from all objects that it is waiting for.  Concurrency
    624      1.1    ad  * issues:
    625      1.1    ad  *
    626      1.1    ad  * The object owner's (e.g. device driver) lock is not held here.  Calls
    627      1.1    ad  * can be made to selrecord() and we do not synchronize against those
    628      1.1    ad  * directly using locks.  However, we use `sel_lwp' to lock out changes.
    629      1.1    ad  * Before clearing it we must use memory barriers to ensure that we can
    630      1.1    ad  * safely traverse the list of selinfo records.
    631      1.1    ad  */
    632      1.1    ad static void
    633      1.1    ad selclear(void)
    634      1.1    ad {
    635      1.1    ad 	struct selinfo *sip, *next;
    636      1.1    ad 	selcpu_t *sc;
    637      1.1    ad 	lwp_t *l;
    638  1.5.2.2  yamt 	kmutex_t *lock;
    639      1.1    ad 
    640      1.1    ad 	l = curlwp;
    641      1.1    ad 	sc = l->l_selcpu;
    642  1.5.2.2  yamt 	lock = sc->sc_lock;
    643      1.1    ad 
    644  1.5.2.2  yamt 	mutex_spin_enter(lock);
    645      1.1    ad 	for (sip = SLIST_FIRST(&l->l_selwait); sip != NULL; sip = next) {
    646      1.1    ad 		KASSERT(sip->sel_lwp == l);
    647      1.1    ad 		KASSERT(sip->sel_cpu == l->l_selcpu);
    648      1.1    ad 		/*
    649      1.1    ad 		 * Read link to next selinfo record, if any.
    650      1.1    ad 		 * It's no longer safe to touch `sip' after clearing
    651      1.1    ad 		 * `sel_lwp', so ensure that the read of `sel_chain'
    652      1.1    ad 		 * completes before the clearing of sel_lwp becomes
    653      1.1    ad 		 * globally visible.
    654      1.1    ad 		 */
    655      1.1    ad 		next = SLIST_NEXT(sip, sel_chain);
    656      1.1    ad 		membar_exit();
    657      1.1    ad 		/* Release the record for another named waiter to use. */
    658      1.1    ad 		sip->sel_lwp = NULL;
    659      1.1    ad 	}
    660  1.5.2.2  yamt 	mutex_spin_exit(lock);
    661      1.1    ad }
    662      1.1    ad 
    663      1.1    ad /*
    664      1.1    ad  * Initialize the select/poll system calls.  Called once for each
    665      1.1    ad  * CPU in the system, as they are attached.
    666      1.1    ad  */
    667      1.1    ad void
    668      1.1    ad selsysinit(struct cpu_info *ci)
    669      1.1    ad {
    670      1.1    ad 	selcpu_t *sc;
    671      1.1    ad 
    672      1.2    ad 	sc = kmem_alloc(roundup2(sizeof(selcpu_t), coherency_unit) +
    673      1.2    ad 	    coherency_unit, KM_SLEEP);
    674      1.2    ad 	sc = (void *)roundup2((uintptr_t)sc, coherency_unit);
    675  1.5.2.2  yamt 	sc->sc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
    676  1.5.2.2  yamt 	sleepq_init(&sc->sc_sleepq);
    677      1.1    ad 	sc->sc_ncoll = 0;
    678      1.1    ad 	sc->sc_mask = (1 << cpu_index(ci));
    679      1.1    ad 	ci->ci_data.cpu_selcpu = sc;
    680      1.1    ad }
    681      1.1    ad 
    682      1.1    ad /*
    683      1.1    ad  * Initialize a selinfo record.
    684      1.1    ad  */
    685      1.1    ad void
    686      1.1    ad selinit(struct selinfo *sip)
    687      1.1    ad {
    688      1.1    ad 
    689      1.1    ad 	memset(sip, 0, sizeof(*sip));
    690      1.1    ad }
    691      1.1    ad 
    692      1.1    ad /*
    693      1.1    ad  * Destroy a selinfo record.  The owning object must not gain new
    694      1.1    ad  * references while this is in progress: all activity on the record
    695      1.1    ad  * must be stopped.
    696      1.1    ad  *
    697      1.1    ad  * Concurrency issues: we only need guard against a call to selclear()
    698  1.5.2.4  yamt  * by a thread exiting sel_do_scan().  The caller has prevented further
    699  1.5.2.4  yamt  * references being made to the selinfo record via selrecord(), and it
    700  1.5.2.4  yamt  * won't call selwakeup() again.
    701      1.1    ad  */
    702      1.1    ad void
    703      1.1    ad seldestroy(struct selinfo *sip)
    704      1.1    ad {
    705      1.1    ad 	selcpu_t *sc;
    706  1.5.2.2  yamt 	kmutex_t *lock;
    707      1.1    ad 	lwp_t *l;
    708      1.1    ad 
    709      1.1    ad 	if (sip->sel_lwp == NULL)
    710      1.1    ad 		return;
    711      1.1    ad 
    712      1.1    ad 	/*
    713      1.1    ad 	 * Lock out selclear().  The selcpu pointer can't change while
    714      1.1    ad 	 * we are here since it is only ever changed in selrecord(),
    715      1.1    ad 	 * and that will not be entered again for this record because
    716      1.1    ad 	 * it is dying.
    717      1.1    ad 	 */
    718      1.1    ad 	KASSERT(sip->sel_cpu != NULL);
    719      1.1    ad 	sc = sip->sel_cpu;
    720  1.5.2.2  yamt 	lock = sc->sc_lock;
    721  1.5.2.2  yamt 	mutex_spin_enter(lock);
    722      1.1    ad 	if ((l = sip->sel_lwp) != NULL) {
    723      1.1    ad 		/*
    724      1.1    ad 		 * This should rarely happen, so although SLIST_REMOVE()
    725      1.1    ad 		 * is slow, using it here is not a problem.
    726      1.1    ad 		 */
    727      1.1    ad 		KASSERT(l->l_selcpu == sc);
    728      1.1    ad 		SLIST_REMOVE(&l->l_selwait, sip, selinfo, sel_chain);
    729      1.1    ad 		sip->sel_lwp = NULL;
    730      1.1    ad 	}
    731  1.5.2.2  yamt 	mutex_spin_exit(lock);
    732      1.1    ad }
    733      1.1    ad 
    734      1.1    ad int
    735  1.5.2.2  yamt pollsock(struct socket *so, const struct timespec *tsp, int events)
    736      1.1    ad {
    737      1.1    ad 	int		ncoll, error, timo;
    738  1.5.2.2  yamt 	struct timespec	sleepts, ts;
    739      1.1    ad 	selcpu_t	*sc;
    740      1.1    ad 	lwp_t		*l;
    741  1.5.2.2  yamt 	kmutex_t	*lock;
    742      1.1    ad 
    743      1.1    ad 	timo = 0;
    744  1.5.2.2  yamt 	if (tsp != NULL) {
    745  1.5.2.2  yamt 		ts = *tsp;
    746  1.5.2.2  yamt 		if (inittimeleft(&ts, &sleepts) == -1)
    747      1.1    ad 			return EINVAL;
    748      1.1    ad 	}
    749      1.1    ad 
    750      1.1    ad 	l = curlwp;
    751      1.1    ad 	sc = l->l_cpu->ci_data.cpu_selcpu;
    752  1.5.2.2  yamt 	lock = sc->sc_lock;
    753      1.1    ad 	l->l_selcpu = sc;
    754      1.1    ad 	SLIST_INIT(&l->l_selwait);
    755      1.1    ad 	error = 0;
    756      1.1    ad 	for (;;) {
    757      1.1    ad 		/*
    758      1.1    ad 		 * No need to lock.  If this is overwritten by another
    759      1.1    ad 		 * value while scanning, we will retry below.  We only
    760      1.1    ad 		 * need to see exact state from the descriptors that
    761      1.1    ad 		 * we are about to poll, and lock activity resulting
    762      1.1    ad 		 * from fo_poll is enough to provide an up to date value
    763      1.1    ad 		 * for new polling activity.
    764      1.1    ad 		 */
    765      1.1    ad 		ncoll = sc->sc_ncoll;
    766      1.1    ad 		l->l_selflag = SEL_SCANNING;
    767      1.1    ad 		if (sopoll(so, events) != 0)
    768      1.1    ad 			break;
    769  1.5.2.2  yamt 		if (tsp && (timo = gettimeleft(&ts, &sleepts)) <= 0)
    770      1.1    ad 			break;
    771  1.5.2.2  yamt 		mutex_spin_enter(lock);
    772      1.1    ad 		if (l->l_selflag != SEL_SCANNING || sc->sc_ncoll != ncoll) {
    773  1.5.2.2  yamt 			mutex_spin_exit(lock);
    774      1.1    ad 			continue;
    775      1.1    ad 		}
    776      1.1    ad 		l->l_selflag = SEL_BLOCKING;
    777  1.5.2.2  yamt 		sleepq_enter(&sc->sc_sleepq, l, lock);
    778      1.1    ad 		sleepq_enqueue(&sc->sc_sleepq, sc, "pollsock", &select_sobj);
    779      1.1    ad 		error = sleepq_block(timo, true);
    780      1.1    ad 		if (error != 0)
    781      1.1    ad 			break;
    782      1.1    ad 	}
    783      1.1    ad 	selclear();
    784      1.1    ad 	/* poll is not restarted after signals... */
    785      1.1    ad 	if (error == ERESTART)
    786      1.1    ad 		error = EINTR;
    787      1.1    ad 	if (error == EWOULDBLOCK)
    788      1.1    ad 		error = 0;
    789      1.1    ad 	return (error);
    790      1.1    ad }
    791