sys_select.c revision 1.51 1 1.51 riastrad /* $NetBSD: sys_select.c,v 1.51 2020/02/01 02:23:04 riastradh Exp $ */
2 1.1 ad
3 1.1 ad /*-
4 1.49 ad * Copyright (c) 2007, 2008, 2009, 2010, 2019 The NetBSD Foundation, Inc.
5 1.1 ad * All rights reserved.
6 1.1 ad *
7 1.1 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.23 rmind * by Andrew Doran and Mindaugas Rasiukevicius.
9 1.1 ad *
10 1.1 ad * Redistribution and use in source and binary forms, with or without
11 1.1 ad * modification, are permitted provided that the following conditions
12 1.1 ad * are met:
13 1.1 ad * 1. Redistributions of source code must retain the above copyright
14 1.1 ad * notice, this list of conditions and the following disclaimer.
15 1.1 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 ad * notice, this list of conditions and the following disclaimer in the
17 1.1 ad * documentation and/or other materials provided with the distribution.
18 1.1 ad *
19 1.1 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.1 ad */
31 1.1 ad
32 1.1 ad /*
33 1.1 ad * Copyright (c) 1982, 1986, 1989, 1993
34 1.1 ad * The Regents of the University of California. All rights reserved.
35 1.1 ad * (c) UNIX System Laboratories, Inc.
36 1.1 ad * All or some portions of this file are derived from material licensed
37 1.1 ad * to the University of California by American Telephone and Telegraph
38 1.1 ad * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39 1.1 ad * the permission of UNIX System Laboratories, Inc.
40 1.1 ad *
41 1.1 ad * Redistribution and use in source and binary forms, with or without
42 1.1 ad * modification, are permitted provided that the following conditions
43 1.1 ad * are met:
44 1.1 ad * 1. Redistributions of source code must retain the above copyright
45 1.1 ad * notice, this list of conditions and the following disclaimer.
46 1.1 ad * 2. Redistributions in binary form must reproduce the above copyright
47 1.1 ad * notice, this list of conditions and the following disclaimer in the
48 1.1 ad * documentation and/or other materials provided with the distribution.
49 1.1 ad * 3. Neither the name of the University nor the names of its contributors
50 1.1 ad * may be used to endorse or promote products derived from this software
51 1.1 ad * without specific prior written permission.
52 1.1 ad *
53 1.1 ad * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 1.1 ad * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 1.1 ad * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 1.1 ad * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 1.1 ad * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 1.1 ad * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 1.1 ad * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 1.1 ad * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 1.1 ad * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 1.1 ad * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 1.1 ad * SUCH DAMAGE.
64 1.1 ad *
65 1.1 ad * @(#)sys_generic.c 8.9 (Berkeley) 2/14/95
66 1.1 ad */
67 1.1 ad
68 1.1 ad /*
69 1.21 rmind * System calls of synchronous I/O multiplexing subsystem.
70 1.21 rmind *
71 1.21 rmind * Locking
72 1.21 rmind *
73 1.22 ad * Two locks are used: <object-lock> and selcluster_t::sc_lock.
74 1.21 rmind *
75 1.21 rmind * The <object-lock> might be a device driver or another subsystem, e.g.
76 1.21 rmind * socket or pipe. This lock is not exported, and thus invisible to this
77 1.21 rmind * subsystem. Mainly, synchronisation between selrecord() and selnotify()
78 1.21 rmind * routines depends on this lock, as it will be described in the comments.
79 1.21 rmind *
80 1.21 rmind * Lock order
81 1.21 rmind *
82 1.21 rmind * <object-lock> ->
83 1.22 ad * selcluster_t::sc_lock
84 1.1 ad */
85 1.1 ad
86 1.1 ad #include <sys/cdefs.h>
87 1.51 riastrad __KERNEL_RCSID(0, "$NetBSD: sys_select.c,v 1.51 2020/02/01 02:23:04 riastradh Exp $");
88 1.1 ad
89 1.1 ad #include <sys/param.h>
90 1.1 ad #include <sys/systm.h>
91 1.1 ad #include <sys/filedesc.h>
92 1.1 ad #include <sys/file.h>
93 1.1 ad #include <sys/proc.h>
94 1.1 ad #include <sys/socketvar.h>
95 1.1 ad #include <sys/signalvar.h>
96 1.1 ad #include <sys/uio.h>
97 1.1 ad #include <sys/kernel.h>
98 1.29 rmind #include <sys/lwp.h>
99 1.1 ad #include <sys/poll.h>
100 1.1 ad #include <sys/mount.h>
101 1.1 ad #include <sys/syscallargs.h>
102 1.1 ad #include <sys/cpu.h>
103 1.1 ad #include <sys/atomic.h>
104 1.1 ad #include <sys/socketvar.h>
105 1.1 ad #include <sys/sleepq.h>
106 1.36 rmind #include <sys/sysctl.h>
107 1.49 ad #include <sys/bitops.h>
108 1.1 ad
109 1.1 ad /* Flags for lwp::l_selflag. */
110 1.1 ad #define SEL_RESET 0 /* awoken, interrupted, or not yet polling */
111 1.1 ad #define SEL_SCANNING 1 /* polling descriptors */
112 1.23 rmind #define SEL_BLOCKING 2 /* blocking and waiting for event */
113 1.23 rmind #define SEL_EVENT 3 /* interrupted, events set directly */
114 1.23 rmind
115 1.22 ad /*
116 1.22 ad * Per-cluster state for select()/poll(). For a system with fewer
117 1.50 ad * than 64 CPUs, this gives us per-CPU clusters.
118 1.22 ad */
119 1.50 ad #define SELCLUSTERS 64
120 1.22 ad #define SELCLUSTERMASK (SELCLUSTERS - 1)
121 1.22 ad
122 1.22 ad typedef struct selcluster {
123 1.13 ad kmutex_t *sc_lock;
124 1.1 ad sleepq_t sc_sleepq;
125 1.49 ad uint64_t sc_mask;
126 1.1 ad int sc_ncoll;
127 1.22 ad } selcluster_t;
128 1.1 ad
129 1.23 rmind static inline int selscan(char *, const int, const size_t, register_t *);
130 1.23 rmind static inline int pollscan(struct pollfd *, const int, register_t *);
131 1.19 rmind static void selclear(void);
132 1.1 ad
133 1.23 rmind static const int sel_flag[] = {
134 1.23 rmind POLLRDNORM | POLLHUP | POLLERR,
135 1.23 rmind POLLWRNORM | POLLHUP | POLLERR,
136 1.23 rmind POLLRDBAND
137 1.23 rmind };
138 1.23 rmind
139 1.1 ad static syncobj_t select_sobj = {
140 1.41 ozaki .sobj_flag = SOBJ_SLEEPQ_FIFO,
141 1.41 ozaki .sobj_unsleep = sleepq_unsleep,
142 1.41 ozaki .sobj_changepri = sleepq_changepri,
143 1.41 ozaki .sobj_lendpri = sleepq_lendpri,
144 1.41 ozaki .sobj_owner = syncobj_noowner,
145 1.1 ad };
146 1.1 ad
147 1.23 rmind static selcluster_t *selcluster[SELCLUSTERS] __read_mostly;
148 1.36 rmind static int direct_select __read_mostly = 0;
149 1.22 ad
150 1.49 ad /* Operations: either select() or poll(). */
151 1.49 ad const char selop_select[] = "select";
152 1.49 ad const char selop_poll[] = "poll";
153 1.49 ad
154 1.1 ad /*
155 1.1 ad * Select system call.
156 1.1 ad */
157 1.1 ad int
158 1.12 christos sys___pselect50(struct lwp *l, const struct sys___pselect50_args *uap,
159 1.12 christos register_t *retval)
160 1.1 ad {
161 1.1 ad /* {
162 1.1 ad syscallarg(int) nd;
163 1.1 ad syscallarg(fd_set *) in;
164 1.1 ad syscallarg(fd_set *) ou;
165 1.1 ad syscallarg(fd_set *) ex;
166 1.1 ad syscallarg(const struct timespec *) ts;
167 1.1 ad syscallarg(sigset_t *) mask;
168 1.1 ad } */
169 1.14 christos struct timespec ats, *ts = NULL;
170 1.1 ad sigset_t amask, *mask = NULL;
171 1.1 ad int error;
172 1.1 ad
173 1.1 ad if (SCARG(uap, ts)) {
174 1.1 ad error = copyin(SCARG(uap, ts), &ats, sizeof(ats));
175 1.1 ad if (error)
176 1.1 ad return error;
177 1.14 christos ts = &ats;
178 1.1 ad }
179 1.1 ad if (SCARG(uap, mask) != NULL) {
180 1.1 ad error = copyin(SCARG(uap, mask), &amask, sizeof(amask));
181 1.1 ad if (error)
182 1.1 ad return error;
183 1.1 ad mask = &amask;
184 1.1 ad }
185 1.1 ad
186 1.19 rmind return selcommon(retval, SCARG(uap, nd), SCARG(uap, in),
187 1.14 christos SCARG(uap, ou), SCARG(uap, ex), ts, mask);
188 1.1 ad }
189 1.1 ad
190 1.1 ad int
191 1.12 christos sys___select50(struct lwp *l, const struct sys___select50_args *uap,
192 1.12 christos register_t *retval)
193 1.1 ad {
194 1.1 ad /* {
195 1.1 ad syscallarg(int) nd;
196 1.1 ad syscallarg(fd_set *) in;
197 1.1 ad syscallarg(fd_set *) ou;
198 1.1 ad syscallarg(fd_set *) ex;
199 1.1 ad syscallarg(struct timeval *) tv;
200 1.1 ad } */
201 1.14 christos struct timeval atv;
202 1.14 christos struct timespec ats, *ts = NULL;
203 1.1 ad int error;
204 1.1 ad
205 1.1 ad if (SCARG(uap, tv)) {
206 1.14 christos error = copyin(SCARG(uap, tv), (void *)&atv, sizeof(atv));
207 1.1 ad if (error)
208 1.1 ad return error;
209 1.48 kamil
210 1.48 kamil if (atv.tv_usec < 0 || atv.tv_usec >= 1000000)
211 1.48 kamil return EINVAL;
212 1.48 kamil
213 1.14 christos TIMEVAL_TO_TIMESPEC(&atv, &ats);
214 1.14 christos ts = &ats;
215 1.1 ad }
216 1.1 ad
217 1.19 rmind return selcommon(retval, SCARG(uap, nd), SCARG(uap, in),
218 1.14 christos SCARG(uap, ou), SCARG(uap, ex), ts, NULL);
219 1.1 ad }
220 1.1 ad
221 1.17 rmind /*
222 1.17 rmind * sel_do_scan: common code to perform the scan on descriptors.
223 1.17 rmind */
224 1.17 rmind static int
225 1.49 ad sel_do_scan(const char *opname, void *fds, const int nf, const size_t ni,
226 1.23 rmind struct timespec *ts, sigset_t *mask, register_t *retval)
227 1.1 ad {
228 1.17 rmind lwp_t * const l = curlwp;
229 1.22 ad selcluster_t *sc;
230 1.13 ad kmutex_t *lock;
231 1.17 rmind struct timespec sleepts;
232 1.17 rmind int error, timo;
233 1.1 ad
234 1.1 ad timo = 0;
235 1.14 christos if (ts && inittimeleft(ts, &sleepts) == -1) {
236 1.17 rmind return EINVAL;
237 1.1 ad }
238 1.1 ad
239 1.32 christos if (__predict_false(mask))
240 1.31 christos sigsuspendsetup(l, mask);
241 1.1 ad
242 1.49 ad /*
243 1.49 ad * We may context switch during or at any time after picking a CPU
244 1.49 ad * and cluster to associate with, but it doesn't matter. In the
245 1.49 ad * unlikely event we migrate elsewhere all we risk is a little lock
246 1.49 ad * contention; correctness is not sacrificed.
247 1.49 ad */
248 1.22 ad sc = curcpu()->ci_data.cpu_selcluster;
249 1.13 ad lock = sc->sc_lock;
250 1.22 ad l->l_selcluster = sc;
251 1.49 ad
252 1.49 ad if (opname == selop_select) {
253 1.30 rmind l->l_selbits = fds;
254 1.23 rmind l->l_selni = ni;
255 1.23 rmind } else {
256 1.23 rmind l->l_selbits = NULL;
257 1.23 rmind }
258 1.34 hannken
259 1.1 ad for (;;) {
260 1.17 rmind int ncoll;
261 1.17 rmind
262 1.34 hannken SLIST_INIT(&l->l_selwait);
263 1.34 hannken l->l_selret = 0;
264 1.34 hannken
265 1.1 ad /*
266 1.17 rmind * No need to lock. If this is overwritten by another value
267 1.17 rmind * while scanning, we will retry below. We only need to see
268 1.17 rmind * exact state from the descriptors that we are about to poll,
269 1.17 rmind * and lock activity resulting from fo_poll is enough to
270 1.17 rmind * provide an up to date value for new polling activity.
271 1.1 ad */
272 1.49 ad if (ts && (ts->tv_sec | ts->tv_nsec | direct_select) == 0) {
273 1.49 ad /* Non-blocking: no need for selrecord()/selclear() */
274 1.49 ad l->l_selflag = SEL_RESET;
275 1.49 ad } else {
276 1.49 ad l->l_selflag = SEL_SCANNING;
277 1.49 ad }
278 1.1 ad ncoll = sc->sc_ncoll;
279 1.49 ad membar_exit();
280 1.1 ad
281 1.49 ad if (opname == selop_select) {
282 1.23 rmind error = selscan((char *)fds, nf, ni, retval);
283 1.17 rmind } else {
284 1.23 rmind error = pollscan((struct pollfd *)fds, nf, retval);
285 1.17 rmind }
286 1.1 ad if (error || *retval)
287 1.1 ad break;
288 1.14 christos if (ts && (timo = gettimeleft(ts, &sleepts)) <= 0)
289 1.1 ad break;
290 1.23 rmind /*
291 1.23 rmind * Acquire the lock and perform the (re)checks. Note, if
292 1.23 rmind * collision has occured, then our state does not matter,
293 1.23 rmind * as we must perform re-scan. Therefore, check it first.
294 1.23 rmind */
295 1.23 rmind state_check:
296 1.13 ad mutex_spin_enter(lock);
297 1.23 rmind if (__predict_false(sc->sc_ncoll != ncoll)) {
298 1.23 rmind /* Collision: perform re-scan. */
299 1.23 rmind mutex_spin_exit(lock);
300 1.34 hannken selclear();
301 1.23 rmind continue;
302 1.23 rmind }
303 1.23 rmind if (__predict_true(l->l_selflag == SEL_EVENT)) {
304 1.23 rmind /* Events occured, they are set directly. */
305 1.23 rmind mutex_spin_exit(lock);
306 1.23 rmind break;
307 1.23 rmind }
308 1.23 rmind if (__predict_true(l->l_selflag == SEL_RESET)) {
309 1.23 rmind /* Events occured, but re-scan is requested. */
310 1.13 ad mutex_spin_exit(lock);
311 1.34 hannken selclear();
312 1.1 ad continue;
313 1.1 ad }
314 1.23 rmind /* Nothing happen, therefore - sleep. */
315 1.1 ad l->l_selflag = SEL_BLOCKING;
316 1.7 ad l->l_kpriority = true;
317 1.13 ad sleepq_enter(&sc->sc_sleepq, l, lock);
318 1.49 ad sleepq_enqueue(&sc->sc_sleepq, sc, opname, &select_sobj);
319 1.1 ad error = sleepq_block(timo, true);
320 1.23 rmind if (error != 0) {
321 1.1 ad break;
322 1.23 rmind }
323 1.23 rmind /* Awoken: need to check the state. */
324 1.23 rmind goto state_check;
325 1.1 ad }
326 1.1 ad selclear();
327 1.1 ad
328 1.34 hannken /* Add direct events if any. */
329 1.34 hannken if (l->l_selflag == SEL_EVENT) {
330 1.34 hannken KASSERT(l->l_selret != 0);
331 1.34 hannken *retval += l->l_selret;
332 1.34 hannken }
333 1.34 hannken
334 1.33 christos if (__predict_false(mask))
335 1.33 christos sigsuspendteardown(l);
336 1.33 christos
337 1.20 dsl /* select and poll are not restarted after signals... */
338 1.20 dsl if (error == ERESTART)
339 1.20 dsl return EINTR;
340 1.20 dsl if (error == EWOULDBLOCK)
341 1.20 dsl return 0;
342 1.17 rmind return error;
343 1.17 rmind }
344 1.17 rmind
345 1.17 rmind int
346 1.19 rmind selcommon(register_t *retval, int nd, fd_set *u_in, fd_set *u_ou,
347 1.19 rmind fd_set *u_ex, struct timespec *ts, sigset_t *mask)
348 1.17 rmind {
349 1.17 rmind char smallbits[howmany(FD_SETSIZE, NFDBITS) *
350 1.17 rmind sizeof(fd_mask) * 6];
351 1.17 rmind char *bits;
352 1.17 rmind int error, nf;
353 1.17 rmind size_t ni;
354 1.17 rmind
355 1.17 rmind if (nd < 0)
356 1.17 rmind return (EINVAL);
357 1.51 riastrad nf = atomic_load_consume(&curlwp->l_fd->fd_dt)->dt_nfiles;
358 1.17 rmind if (nd > nf) {
359 1.17 rmind /* forgiving; slightly wrong */
360 1.17 rmind nd = nf;
361 1.17 rmind }
362 1.17 rmind ni = howmany(nd, NFDBITS) * sizeof(fd_mask);
363 1.40 chs if (ni * 6 > sizeof(smallbits))
364 1.17 rmind bits = kmem_alloc(ni * 6, KM_SLEEP);
365 1.40 chs else
366 1.17 rmind bits = smallbits;
367 1.17 rmind
368 1.17 rmind #define getbits(name, x) \
369 1.17 rmind if (u_ ## name) { \
370 1.17 rmind error = copyin(u_ ## name, bits + ni * x, ni); \
371 1.17 rmind if (error) \
372 1.20 dsl goto fail; \
373 1.17 rmind } else \
374 1.17 rmind memset(bits + ni * x, 0, ni);
375 1.17 rmind getbits(in, 0);
376 1.17 rmind getbits(ou, 1);
377 1.17 rmind getbits(ex, 2);
378 1.17 rmind #undef getbits
379 1.1 ad
380 1.49 ad error = sel_do_scan(selop_select, bits, nd, ni, ts, mask, retval);
381 1.1 ad if (error == 0 && u_in != NULL)
382 1.1 ad error = copyout(bits + ni * 3, u_in, ni);
383 1.1 ad if (error == 0 && u_ou != NULL)
384 1.1 ad error = copyout(bits + ni * 4, u_ou, ni);
385 1.1 ad if (error == 0 && u_ex != NULL)
386 1.1 ad error = copyout(bits + ni * 5, u_ex, ni);
387 1.20 dsl fail:
388 1.1 ad if (bits != smallbits)
389 1.1 ad kmem_free(bits, ni * 6);
390 1.1 ad return (error);
391 1.1 ad }
392 1.1 ad
393 1.19 rmind static inline int
394 1.23 rmind selscan(char *bits, const int nfd, const size_t ni, register_t *retval)
395 1.1 ad {
396 1.17 rmind fd_mask *ibitp, *obitp;
397 1.23 rmind int msk, i, j, fd, n;
398 1.1 ad file_t *fp;
399 1.49 ad lwp_t *l;
400 1.1 ad
401 1.17 rmind ibitp = (fd_mask *)(bits + ni * 0);
402 1.17 rmind obitp = (fd_mask *)(bits + ni * 3);
403 1.1 ad n = 0;
404 1.49 ad l = curlwp;
405 1.17 rmind
406 1.34 hannken memset(obitp, 0, ni * 3);
407 1.1 ad for (msk = 0; msk < 3; msk++) {
408 1.1 ad for (i = 0; i < nfd; i += NFDBITS) {
409 1.23 rmind fd_mask ibits, obits;
410 1.23 rmind
411 1.35 hannken ibits = *ibitp;
412 1.1 ad obits = 0;
413 1.1 ad while ((j = ffs(ibits)) && (fd = i + --j) < nfd) {
414 1.47 msaitoh ibits &= ~(1U << j);
415 1.1 ad if ((fp = fd_getfile(fd)) == NULL)
416 1.1 ad return (EBADF);
417 1.23 rmind /*
418 1.23 rmind * Setup an argument to selrecord(), which is
419 1.23 rmind * a file descriptor number.
420 1.23 rmind */
421 1.49 ad l->l_selrec = fd;
422 1.23 rmind if ((*fp->f_ops->fo_poll)(fp, sel_flag[msk])) {
423 1.49 ad if (!direct_select) {
424 1.49 ad /*
425 1.49 ad * Have events: do nothing in
426 1.49 ad * selrecord().
427 1.49 ad */
428 1.49 ad l->l_selflag = SEL_RESET;
429 1.49 ad }
430 1.47 msaitoh obits |= (1U << j);
431 1.1 ad n++;
432 1.1 ad }
433 1.1 ad fd_putfile(fd);
434 1.1 ad }
435 1.34 hannken if (obits != 0) {
436 1.36 rmind if (direct_select) {
437 1.36 rmind kmutex_t *lock;
438 1.49 ad lock = l->l_selcluster->sc_lock;
439 1.35 hannken mutex_spin_enter(lock);
440 1.36 rmind *obitp |= obits;
441 1.35 hannken mutex_spin_exit(lock);
442 1.36 rmind } else {
443 1.36 rmind *obitp |= obits;
444 1.36 rmind }
445 1.34 hannken }
446 1.35 hannken ibitp++;
447 1.34 hannken obitp++;
448 1.1 ad }
449 1.1 ad }
450 1.1 ad *retval = n;
451 1.1 ad return (0);
452 1.1 ad }
453 1.1 ad
454 1.1 ad /*
455 1.1 ad * Poll system call.
456 1.1 ad */
457 1.1 ad int
458 1.1 ad sys_poll(struct lwp *l, const struct sys_poll_args *uap, register_t *retval)
459 1.1 ad {
460 1.1 ad /* {
461 1.1 ad syscallarg(struct pollfd *) fds;
462 1.1 ad syscallarg(u_int) nfds;
463 1.1 ad syscallarg(int) timeout;
464 1.1 ad } */
465 1.14 christos struct timespec ats, *ts = NULL;
466 1.1 ad
467 1.1 ad if (SCARG(uap, timeout) != INFTIM) {
468 1.14 christos ats.tv_sec = SCARG(uap, timeout) / 1000;
469 1.14 christos ats.tv_nsec = (SCARG(uap, timeout) % 1000) * 1000000;
470 1.14 christos ts = &ats;
471 1.1 ad }
472 1.1 ad
473 1.19 rmind return pollcommon(retval, SCARG(uap, fds), SCARG(uap, nfds), ts, NULL);
474 1.1 ad }
475 1.1 ad
476 1.1 ad /*
477 1.1 ad * Poll system call.
478 1.1 ad */
479 1.1 ad int
480 1.12 christos sys___pollts50(struct lwp *l, const struct sys___pollts50_args *uap,
481 1.12 christos register_t *retval)
482 1.1 ad {
483 1.1 ad /* {
484 1.1 ad syscallarg(struct pollfd *) fds;
485 1.1 ad syscallarg(u_int) nfds;
486 1.1 ad syscallarg(const struct timespec *) ts;
487 1.1 ad syscallarg(const sigset_t *) mask;
488 1.1 ad } */
489 1.14 christos struct timespec ats, *ts = NULL;
490 1.1 ad sigset_t amask, *mask = NULL;
491 1.1 ad int error;
492 1.1 ad
493 1.1 ad if (SCARG(uap, ts)) {
494 1.1 ad error = copyin(SCARG(uap, ts), &ats, sizeof(ats));
495 1.1 ad if (error)
496 1.1 ad return error;
497 1.14 christos ts = &ats;
498 1.1 ad }
499 1.1 ad if (SCARG(uap, mask)) {
500 1.1 ad error = copyin(SCARG(uap, mask), &amask, sizeof(amask));
501 1.1 ad if (error)
502 1.1 ad return error;
503 1.1 ad mask = &amask;
504 1.1 ad }
505 1.1 ad
506 1.19 rmind return pollcommon(retval, SCARG(uap, fds), SCARG(uap, nfds), ts, mask);
507 1.1 ad }
508 1.1 ad
509 1.1 ad int
510 1.19 rmind pollcommon(register_t *retval, struct pollfd *u_fds, u_int nfds,
511 1.14 christos struct timespec *ts, sigset_t *mask)
512 1.1 ad {
513 1.11 yamt struct pollfd smallfds[32];
514 1.11 yamt struct pollfd *fds;
515 1.17 rmind int error;
516 1.20 dsl size_t ni;
517 1.1 ad
518 1.45 christos if (nfds > curlwp->l_proc->p_rlimit[RLIMIT_NOFILE].rlim_max + 1000) {
519 1.20 dsl /*
520 1.43 christos * Prevent userland from causing over-allocation.
521 1.43 christos * Raising the default limit too high can still cause
522 1.43 christos * a lot of memory to be allocated, but this also means
523 1.43 christos * that the file descriptor array will also be large.
524 1.43 christos *
525 1.43 christos * To reduce the memory requirements here, we could
526 1.43 christos * process the 'fds' array in chunks, but that
527 1.20 dsl * is a lot of code that isn't normally useful.
528 1.20 dsl * (Or just move the copyin/out into pollscan().)
529 1.43 christos *
530 1.20 dsl * Historically the code silently truncated 'fds' to
531 1.20 dsl * dt_nfiles entries - but that does cause issues.
532 1.44 christos *
533 1.44 christos * Using the max limit equivalent to sysctl
534 1.44 christos * kern.maxfiles is the moral equivalent of OPEN_MAX
535 1.45 christos * as specified by POSIX.
536 1.45 christos *
537 1.45 christos * We add a slop of 1000 in case the resource limit was
538 1.45 christos * changed after opening descriptors or the same descriptor
539 1.45 christos * was specified more than once.
540 1.20 dsl */
541 1.20 dsl return EINVAL;
542 1.1 ad }
543 1.1 ad ni = nfds * sizeof(struct pollfd);
544 1.40 chs if (ni > sizeof(smallfds))
545 1.11 yamt fds = kmem_alloc(ni, KM_SLEEP);
546 1.40 chs else
547 1.11 yamt fds = smallfds;
548 1.1 ad
549 1.11 yamt error = copyin(u_fds, fds, ni);
550 1.1 ad if (error)
551 1.20 dsl goto fail;
552 1.1 ad
553 1.49 ad error = sel_do_scan(selop_poll, fds, nfds, ni, ts, mask, retval);
554 1.1 ad if (error == 0)
555 1.11 yamt error = copyout(fds, u_fds, ni);
556 1.20 dsl fail:
557 1.11 yamt if (fds != smallfds)
558 1.11 yamt kmem_free(fds, ni);
559 1.1 ad return (error);
560 1.1 ad }
561 1.1 ad
562 1.19 rmind static inline int
563 1.23 rmind pollscan(struct pollfd *fds, const int nfd, register_t *retval)
564 1.1 ad {
565 1.1 ad file_t *fp;
566 1.34 hannken int i, n = 0, revents;
567 1.1 ad
568 1.1 ad for (i = 0; i < nfd; i++, fds++) {
569 1.34 hannken fds->revents = 0;
570 1.1 ad if (fds->fd < 0) {
571 1.34 hannken revents = 0;
572 1.1 ad } else if ((fp = fd_getfile(fds->fd)) == NULL) {
573 1.34 hannken revents = POLLNVAL;
574 1.1 ad } else {
575 1.23 rmind /*
576 1.23 rmind * Perform poll: registers select request or returns
577 1.23 rmind * the events which are set. Setup an argument for
578 1.23 rmind * selrecord(), which is a pointer to struct pollfd.
579 1.23 rmind */
580 1.23 rmind curlwp->l_selrec = (uintptr_t)fds;
581 1.34 hannken revents = (*fp->f_ops->fo_poll)(fp,
582 1.1 ad fds->events | POLLERR | POLLHUP);
583 1.1 ad fd_putfile(fds->fd);
584 1.1 ad }
585 1.34 hannken if (revents) {
586 1.49 ad if (!direct_select) {
587 1.49 ad /* Have events: do nothing in selrecord(). */
588 1.49 ad curlwp->l_selflag = SEL_RESET;
589 1.49 ad }
590 1.34 hannken fds->revents = revents;
591 1.34 hannken n++;
592 1.34 hannken }
593 1.1 ad }
594 1.1 ad *retval = n;
595 1.1 ad return (0);
596 1.1 ad }
597 1.1 ad
598 1.1 ad int
599 1.1 ad seltrue(dev_t dev, int events, lwp_t *l)
600 1.1 ad {
601 1.1 ad
602 1.1 ad return (events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
603 1.1 ad }
604 1.1 ad
605 1.1 ad /*
606 1.1 ad * Record a select request. Concurrency issues:
607 1.1 ad *
608 1.1 ad * The caller holds the same lock across calls to selrecord() and
609 1.4 yamt * selnotify(), so we don't need to consider a concurrent wakeup
610 1.1 ad * while in this routine.
611 1.1 ad *
612 1.1 ad * The only activity we need to guard against is selclear(), called by
613 1.17 rmind * another thread that is exiting sel_do_scan().
614 1.1 ad * `sel_lwp' can only become non-NULL while the caller's lock is held,
615 1.1 ad * so it cannot become non-NULL due to a change made by another thread
616 1.1 ad * while we are in this routine. It can only become _NULL_ due to a
617 1.1 ad * call to selclear().
618 1.1 ad *
619 1.1 ad * If it is non-NULL and != selector there is the potential for
620 1.1 ad * selclear() to be called by another thread. If either of those
621 1.1 ad * conditions are true, we're not interested in touching the `named
622 1.1 ad * waiter' part of the selinfo record because we need to record a
623 1.1 ad * collision. Hence there is no need for additional locking in this
624 1.1 ad * routine.
625 1.1 ad */
626 1.1 ad void
627 1.1 ad selrecord(lwp_t *selector, struct selinfo *sip)
628 1.1 ad {
629 1.22 ad selcluster_t *sc;
630 1.1 ad lwp_t *other;
631 1.1 ad
632 1.1 ad KASSERT(selector == curlwp);
633 1.1 ad
634 1.22 ad sc = selector->l_selcluster;
635 1.1 ad other = sip->sel_lwp;
636 1.1 ad
637 1.49 ad if (selector->l_selflag == SEL_RESET) {
638 1.49 ad /* 0. We're not going to block - will poll again if needed. */
639 1.49 ad } else if (other == selector) {
640 1.23 rmind /* 1. We (selector) already claimed to be the first LWP. */
641 1.37 riastrad KASSERT(sip->sel_cluster == sc);
642 1.1 ad } else if (other == NULL) {
643 1.1 ad /*
644 1.23 rmind * 2. No first LWP, therefore we (selector) are the first.
645 1.23 rmind *
646 1.23 rmind * There may be unnamed waiters (collisions). Issue a memory
647 1.23 rmind * barrier to ensure that we access sel_lwp (above) before
648 1.23 rmind * other fields - this guards against a call to selclear().
649 1.1 ad */
650 1.1 ad membar_enter();
651 1.1 ad sip->sel_lwp = selector;
652 1.1 ad SLIST_INSERT_HEAD(&selector->l_selwait, sip, sel_chain);
653 1.23 rmind /* Copy the argument, which is for selnotify(). */
654 1.23 rmind sip->sel_fdinfo = selector->l_selrec;
655 1.22 ad /* Replace selinfo's lock with the chosen cluster's lock. */
656 1.22 ad sip->sel_cluster = sc;
657 1.1 ad } else {
658 1.23 rmind /* 3. Multiple waiters: record a collision. */
659 1.1 ad sip->sel_collision |= sc->sc_mask;
660 1.22 ad KASSERT(sip->sel_cluster != NULL);
661 1.1 ad }
662 1.1 ad }
663 1.1 ad
664 1.1 ad /*
665 1.23 rmind * sel_setevents: a helper function for selnotify(), to set the events
666 1.23 rmind * for LWP sleeping in selcommon() or pollcommon().
667 1.23 rmind */
668 1.30 rmind static inline bool
669 1.23 rmind sel_setevents(lwp_t *l, struct selinfo *sip, const int events)
670 1.23 rmind {
671 1.23 rmind const int oflag = l->l_selflag;
672 1.30 rmind int ret = 0;
673 1.23 rmind
674 1.23 rmind /*
675 1.23 rmind * If we require re-scan or it was required by somebody else,
676 1.23 rmind * then just (re)set SEL_RESET and return.
677 1.23 rmind */
678 1.23 rmind if (__predict_false(events == 0 || oflag == SEL_RESET)) {
679 1.23 rmind l->l_selflag = SEL_RESET;
680 1.30 rmind return true;
681 1.23 rmind }
682 1.23 rmind /*
683 1.23 rmind * Direct set. Note: select state of LWP is locked. First,
684 1.23 rmind * determine whether it is selcommon() or pollcommon().
685 1.23 rmind */
686 1.23 rmind if (l->l_selbits != NULL) {
687 1.30 rmind const size_t ni = l->l_selni;
688 1.23 rmind fd_mask *fds = (fd_mask *)l->l_selbits;
689 1.30 rmind fd_mask *ofds = (fd_mask *)((char *)fds + ni * 3);
690 1.30 rmind const int fd = sip->sel_fdinfo, fbit = 1 << (fd & __NFDMASK);
691 1.25 rmind const int idx = fd >> __NFDSHIFT;
692 1.23 rmind int n;
693 1.23 rmind
694 1.23 rmind for (n = 0; n < 3; n++) {
695 1.34 hannken if ((fds[idx] & fbit) != 0 &&
696 1.34 hannken (ofds[idx] & fbit) == 0 &&
697 1.34 hannken (sel_flag[n] & events)) {
698 1.30 rmind ofds[idx] |= fbit;
699 1.30 rmind ret++;
700 1.23 rmind }
701 1.23 rmind fds = (fd_mask *)((char *)fds + ni);
702 1.30 rmind ofds = (fd_mask *)((char *)ofds + ni);
703 1.23 rmind }
704 1.23 rmind } else {
705 1.23 rmind struct pollfd *pfd = (void *)sip->sel_fdinfo;
706 1.30 rmind int revents = events & (pfd->events | POLLERR | POLLHUP);
707 1.30 rmind
708 1.30 rmind if (revents) {
709 1.34 hannken if (pfd->revents == 0)
710 1.34 hannken ret = 1;
711 1.30 rmind pfd->revents |= revents;
712 1.30 rmind }
713 1.30 rmind }
714 1.30 rmind /* Check whether there are any events to return. */
715 1.30 rmind if (!ret) {
716 1.30 rmind return false;
717 1.23 rmind }
718 1.23 rmind /* Indicate direct set and note the event (cluster lock is held). */
719 1.23 rmind l->l_selflag = SEL_EVENT;
720 1.30 rmind l->l_selret += ret;
721 1.30 rmind return true;
722 1.23 rmind }
723 1.23 rmind
724 1.23 rmind /*
725 1.1 ad * Do a wakeup when a selectable event occurs. Concurrency issues:
726 1.1 ad *
727 1.1 ad * As per selrecord(), the caller's object lock is held. If there
728 1.22 ad * is a named waiter, we must acquire the associated selcluster's lock
729 1.1 ad * in order to synchronize with selclear() and pollers going to sleep
730 1.17 rmind * in sel_do_scan().
731 1.1 ad *
732 1.22 ad * sip->sel_cluser cannot change at this point, as it is only changed
733 1.1 ad * in selrecord(), and concurrent calls to selrecord() are locked
734 1.1 ad * out by the caller.
735 1.1 ad */
736 1.1 ad void
737 1.1 ad selnotify(struct selinfo *sip, int events, long knhint)
738 1.1 ad {
739 1.22 ad selcluster_t *sc;
740 1.49 ad uint64_t mask;
741 1.16 rmind int index, oflag;
742 1.1 ad lwp_t *l;
743 1.13 ad kmutex_t *lock;
744 1.1 ad
745 1.1 ad KNOTE(&sip->sel_klist, knhint);
746 1.1 ad
747 1.1 ad if (sip->sel_lwp != NULL) {
748 1.1 ad /* One named LWP is waiting. */
749 1.22 ad sc = sip->sel_cluster;
750 1.13 ad lock = sc->sc_lock;
751 1.13 ad mutex_spin_enter(lock);
752 1.1 ad /* Still there? */
753 1.1 ad if (sip->sel_lwp != NULL) {
754 1.23 rmind /*
755 1.23 rmind * Set the events for our LWP and indicate that.
756 1.23 rmind * Otherwise, request for a full re-scan.
757 1.23 rmind */
758 1.1 ad l = sip->sel_lwp;
759 1.23 rmind oflag = l->l_selflag;
760 1.36 rmind
761 1.36 rmind if (!direct_select) {
762 1.36 rmind l->l_selflag = SEL_RESET;
763 1.36 rmind } else if (!sel_setevents(l, sip, events)) {
764 1.30 rmind /* No events to return. */
765 1.30 rmind mutex_spin_exit(lock);
766 1.30 rmind return;
767 1.30 rmind }
768 1.36 rmind
769 1.1 ad /*
770 1.1 ad * If thread is sleeping, wake it up. If it's not
771 1.1 ad * yet asleep, it will notice the change in state
772 1.1 ad * and will re-poll the descriptors.
773 1.1 ad */
774 1.13 ad if (oflag == SEL_BLOCKING && l->l_mutex == lock) {
775 1.1 ad KASSERT(l->l_wchan == sc);
776 1.16 rmind sleepq_unsleep(l, false);
777 1.1 ad }
778 1.1 ad }
779 1.13 ad mutex_spin_exit(lock);
780 1.1 ad }
781 1.1 ad
782 1.1 ad if ((mask = sip->sel_collision) != 0) {
783 1.1 ad /*
784 1.1 ad * There was a collision (multiple waiters): we must
785 1.1 ad * inform all potentially interested waiters.
786 1.1 ad */
787 1.1 ad sip->sel_collision = 0;
788 1.3 ad do {
789 1.49 ad index = ffs64(mask) - 1;
790 1.49 ad mask ^= __BIT(index);
791 1.22 ad sc = selcluster[index];
792 1.13 ad lock = sc->sc_lock;
793 1.13 ad mutex_spin_enter(lock);
794 1.1 ad sc->sc_ncoll++;
795 1.13 ad sleepq_wake(&sc->sc_sleepq, sc, (u_int)-1, lock);
796 1.3 ad } while (__predict_false(mask != 0));
797 1.1 ad }
798 1.1 ad }
799 1.1 ad
800 1.1 ad /*
801 1.1 ad * Remove an LWP from all objects that it is waiting for. Concurrency
802 1.1 ad * issues:
803 1.1 ad *
804 1.1 ad * The object owner's (e.g. device driver) lock is not held here. Calls
805 1.1 ad * can be made to selrecord() and we do not synchronize against those
806 1.1 ad * directly using locks. However, we use `sel_lwp' to lock out changes.
807 1.1 ad * Before clearing it we must use memory barriers to ensure that we can
808 1.1 ad * safely traverse the list of selinfo records.
809 1.1 ad */
810 1.1 ad static void
811 1.1 ad selclear(void)
812 1.1 ad {
813 1.1 ad struct selinfo *sip, *next;
814 1.22 ad selcluster_t *sc;
815 1.1 ad lwp_t *l;
816 1.13 ad kmutex_t *lock;
817 1.1 ad
818 1.1 ad l = curlwp;
819 1.22 ad sc = l->l_selcluster;
820 1.13 ad lock = sc->sc_lock;
821 1.1 ad
822 1.49 ad /*
823 1.49 ad * If the request was non-blocking, or we found events on the first
824 1.49 ad * descriptor, there will be no need to clear anything - avoid
825 1.49 ad * taking the lock.
826 1.49 ad */
827 1.49 ad if (SLIST_EMPTY(&l->l_selwait)) {
828 1.49 ad return;
829 1.49 ad }
830 1.49 ad
831 1.13 ad mutex_spin_enter(lock);
832 1.1 ad for (sip = SLIST_FIRST(&l->l_selwait); sip != NULL; sip = next) {
833 1.1 ad KASSERT(sip->sel_lwp == l);
834 1.22 ad KASSERT(sip->sel_cluster == l->l_selcluster);
835 1.22 ad
836 1.1 ad /*
837 1.1 ad * Read link to next selinfo record, if any.
838 1.1 ad * It's no longer safe to touch `sip' after clearing
839 1.1 ad * `sel_lwp', so ensure that the read of `sel_chain'
840 1.1 ad * completes before the clearing of sel_lwp becomes
841 1.1 ad * globally visible.
842 1.1 ad */
843 1.1 ad next = SLIST_NEXT(sip, sel_chain);
844 1.1 ad membar_exit();
845 1.1 ad /* Release the record for another named waiter to use. */
846 1.1 ad sip->sel_lwp = NULL;
847 1.1 ad }
848 1.13 ad mutex_spin_exit(lock);
849 1.1 ad }
850 1.1 ad
851 1.1 ad /*
852 1.1 ad * Initialize the select/poll system calls. Called once for each
853 1.1 ad * CPU in the system, as they are attached.
854 1.1 ad */
855 1.1 ad void
856 1.1 ad selsysinit(struct cpu_info *ci)
857 1.1 ad {
858 1.22 ad selcluster_t *sc;
859 1.22 ad u_int index;
860 1.1 ad
861 1.22 ad /* If already a cluster in place for this bit, re-use. */
862 1.22 ad index = cpu_index(ci) & SELCLUSTERMASK;
863 1.22 ad sc = selcluster[index];
864 1.22 ad if (sc == NULL) {
865 1.22 ad sc = kmem_alloc(roundup2(sizeof(selcluster_t),
866 1.22 ad coherency_unit) + coherency_unit, KM_SLEEP);
867 1.22 ad sc = (void *)roundup2((uintptr_t)sc, coherency_unit);
868 1.22 ad sc->sc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
869 1.22 ad sleepq_init(&sc->sc_sleepq);
870 1.22 ad sc->sc_ncoll = 0;
871 1.46 msaitoh sc->sc_mask = __BIT(index);
872 1.22 ad selcluster[index] = sc;
873 1.22 ad }
874 1.22 ad ci->ci_data.cpu_selcluster = sc;
875 1.1 ad }
876 1.1 ad
877 1.1 ad /*
878 1.1 ad * Initialize a selinfo record.
879 1.1 ad */
880 1.1 ad void
881 1.1 ad selinit(struct selinfo *sip)
882 1.1 ad {
883 1.1 ad
884 1.1 ad memset(sip, 0, sizeof(*sip));
885 1.1 ad }
886 1.1 ad
887 1.1 ad /*
888 1.1 ad * Destroy a selinfo record. The owning object must not gain new
889 1.1 ad * references while this is in progress: all activity on the record
890 1.1 ad * must be stopped.
891 1.1 ad *
892 1.1 ad * Concurrency issues: we only need guard against a call to selclear()
893 1.17 rmind * by a thread exiting sel_do_scan(). The caller has prevented further
894 1.17 rmind * references being made to the selinfo record via selrecord(), and it
895 1.23 rmind * will not call selnotify() again.
896 1.1 ad */
897 1.1 ad void
898 1.1 ad seldestroy(struct selinfo *sip)
899 1.1 ad {
900 1.22 ad selcluster_t *sc;
901 1.13 ad kmutex_t *lock;
902 1.1 ad lwp_t *l;
903 1.1 ad
904 1.1 ad if (sip->sel_lwp == NULL)
905 1.1 ad return;
906 1.1 ad
907 1.1 ad /*
908 1.22 ad * Lock out selclear(). The selcluster pointer can't change while
909 1.1 ad * we are here since it is only ever changed in selrecord(),
910 1.1 ad * and that will not be entered again for this record because
911 1.1 ad * it is dying.
912 1.1 ad */
913 1.22 ad KASSERT(sip->sel_cluster != NULL);
914 1.22 ad sc = sip->sel_cluster;
915 1.13 ad lock = sc->sc_lock;
916 1.13 ad mutex_spin_enter(lock);
917 1.1 ad if ((l = sip->sel_lwp) != NULL) {
918 1.1 ad /*
919 1.1 ad * This should rarely happen, so although SLIST_REMOVE()
920 1.1 ad * is slow, using it here is not a problem.
921 1.1 ad */
922 1.22 ad KASSERT(l->l_selcluster == sc);
923 1.1 ad SLIST_REMOVE(&l->l_selwait, sip, selinfo, sel_chain);
924 1.1 ad sip->sel_lwp = NULL;
925 1.1 ad }
926 1.13 ad mutex_spin_exit(lock);
927 1.1 ad }
928 1.1 ad
929 1.36 rmind /*
930 1.36 rmind * System control nodes.
931 1.36 rmind */
932 1.36 rmind SYSCTL_SETUP(sysctl_select_setup, "sysctl select setup")
933 1.36 rmind {
934 1.36 rmind
935 1.38 pooka sysctl_createv(clog, 0, NULL, NULL,
936 1.36 rmind CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
937 1.36 rmind CTLTYPE_INT, "direct_select",
938 1.36 rmind SYSCTL_DESCR("Enable/disable direct select (for testing)"),
939 1.36 rmind NULL, 0, &direct_select, 0,
940 1.38 pooka CTL_KERN, CTL_CREATE, CTL_EOL);
941 1.36 rmind }
942