Home | History | Annotate | Line # | Download | only in kern
sys_select.c revision 1.51
      1  1.51  riastrad /*	$NetBSD: sys_select.c,v 1.51 2020/02/01 02:23:04 riastradh Exp $	*/
      2   1.1        ad 
      3   1.1        ad /*-
      4  1.49        ad  * Copyright (c) 2007, 2008, 2009, 2010, 2019 The NetBSD Foundation, Inc.
      5   1.1        ad  * All rights reserved.
      6   1.1        ad  *
      7   1.1        ad  * This code is derived from software contributed to The NetBSD Foundation
      8  1.23     rmind  * by Andrew Doran and Mindaugas Rasiukevicius.
      9   1.1        ad  *
     10   1.1        ad  * Redistribution and use in source and binary forms, with or without
     11   1.1        ad  * modification, are permitted provided that the following conditions
     12   1.1        ad  * are met:
     13   1.1        ad  * 1. Redistributions of source code must retain the above copyright
     14   1.1        ad  *    notice, this list of conditions and the following disclaimer.
     15   1.1        ad  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.1        ad  *    notice, this list of conditions and the following disclaimer in the
     17   1.1        ad  *    documentation and/or other materials provided with the distribution.
     18   1.1        ad  *
     19   1.1        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20   1.1        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21   1.1        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22   1.1        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23   1.1        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24   1.1        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25   1.1        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26   1.1        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27   1.1        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28   1.1        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29   1.1        ad  * POSSIBILITY OF SUCH DAMAGE.
     30   1.1        ad  */
     31   1.1        ad 
     32   1.1        ad /*
     33   1.1        ad  * Copyright (c) 1982, 1986, 1989, 1993
     34   1.1        ad  *	The Regents of the University of California.  All rights reserved.
     35   1.1        ad  * (c) UNIX System Laboratories, Inc.
     36   1.1        ad  * All or some portions of this file are derived from material licensed
     37   1.1        ad  * to the University of California by American Telephone and Telegraph
     38   1.1        ad  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     39   1.1        ad  * the permission of UNIX System Laboratories, Inc.
     40   1.1        ad  *
     41   1.1        ad  * Redistribution and use in source and binary forms, with or without
     42   1.1        ad  * modification, are permitted provided that the following conditions
     43   1.1        ad  * are met:
     44   1.1        ad  * 1. Redistributions of source code must retain the above copyright
     45   1.1        ad  *    notice, this list of conditions and the following disclaimer.
     46   1.1        ad  * 2. Redistributions in binary form must reproduce the above copyright
     47   1.1        ad  *    notice, this list of conditions and the following disclaimer in the
     48   1.1        ad  *    documentation and/or other materials provided with the distribution.
     49   1.1        ad  * 3. Neither the name of the University nor the names of its contributors
     50   1.1        ad  *    may be used to endorse or promote products derived from this software
     51   1.1        ad  *    without specific prior written permission.
     52   1.1        ad  *
     53   1.1        ad  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54   1.1        ad  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55   1.1        ad  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56   1.1        ad  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57   1.1        ad  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58   1.1        ad  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59   1.1        ad  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60   1.1        ad  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61   1.1        ad  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62   1.1        ad  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63   1.1        ad  * SUCH DAMAGE.
     64   1.1        ad  *
     65   1.1        ad  *	@(#)sys_generic.c	8.9 (Berkeley) 2/14/95
     66   1.1        ad  */
     67   1.1        ad 
     68   1.1        ad /*
     69  1.21     rmind  * System calls of synchronous I/O multiplexing subsystem.
     70  1.21     rmind  *
     71  1.21     rmind  * Locking
     72  1.21     rmind  *
     73  1.22        ad  * Two locks are used: <object-lock> and selcluster_t::sc_lock.
     74  1.21     rmind  *
     75  1.21     rmind  * The <object-lock> might be a device driver or another subsystem, e.g.
     76  1.21     rmind  * socket or pipe.  This lock is not exported, and thus invisible to this
     77  1.21     rmind  * subsystem.  Mainly, synchronisation between selrecord() and selnotify()
     78  1.21     rmind  * routines depends on this lock, as it will be described in the comments.
     79  1.21     rmind  *
     80  1.21     rmind  * Lock order
     81  1.21     rmind  *
     82  1.21     rmind  *	<object-lock> ->
     83  1.22        ad  *		selcluster_t::sc_lock
     84   1.1        ad  */
     85   1.1        ad 
     86   1.1        ad #include <sys/cdefs.h>
     87  1.51  riastrad __KERNEL_RCSID(0, "$NetBSD: sys_select.c,v 1.51 2020/02/01 02:23:04 riastradh Exp $");
     88   1.1        ad 
     89   1.1        ad #include <sys/param.h>
     90   1.1        ad #include <sys/systm.h>
     91   1.1        ad #include <sys/filedesc.h>
     92   1.1        ad #include <sys/file.h>
     93   1.1        ad #include <sys/proc.h>
     94   1.1        ad #include <sys/socketvar.h>
     95   1.1        ad #include <sys/signalvar.h>
     96   1.1        ad #include <sys/uio.h>
     97   1.1        ad #include <sys/kernel.h>
     98  1.29     rmind #include <sys/lwp.h>
     99   1.1        ad #include <sys/poll.h>
    100   1.1        ad #include <sys/mount.h>
    101   1.1        ad #include <sys/syscallargs.h>
    102   1.1        ad #include <sys/cpu.h>
    103   1.1        ad #include <sys/atomic.h>
    104   1.1        ad #include <sys/socketvar.h>
    105   1.1        ad #include <sys/sleepq.h>
    106  1.36     rmind #include <sys/sysctl.h>
    107  1.49        ad #include <sys/bitops.h>
    108   1.1        ad 
    109   1.1        ad /* Flags for lwp::l_selflag. */
    110   1.1        ad #define	SEL_RESET	0	/* awoken, interrupted, or not yet polling */
    111   1.1        ad #define	SEL_SCANNING	1	/* polling descriptors */
    112  1.23     rmind #define	SEL_BLOCKING	2	/* blocking and waiting for event */
    113  1.23     rmind #define	SEL_EVENT	3	/* interrupted, events set directly */
    114  1.23     rmind 
    115  1.22        ad /*
    116  1.22        ad  * Per-cluster state for select()/poll().  For a system with fewer
    117  1.50        ad  * than 64 CPUs, this gives us per-CPU clusters.
    118  1.22        ad  */
    119  1.50        ad #define	SELCLUSTERS	64
    120  1.22        ad #define	SELCLUSTERMASK	(SELCLUSTERS - 1)
    121  1.22        ad 
    122  1.22        ad typedef struct selcluster {
    123  1.13        ad 	kmutex_t	*sc_lock;
    124   1.1        ad 	sleepq_t	sc_sleepq;
    125  1.49        ad 	uint64_t	sc_mask;
    126   1.1        ad 	int		sc_ncoll;
    127  1.22        ad } selcluster_t;
    128   1.1        ad 
    129  1.23     rmind static inline int	selscan(char *, const int, const size_t, register_t *);
    130  1.23     rmind static inline int	pollscan(struct pollfd *, const int, register_t *);
    131  1.19     rmind static void		selclear(void);
    132   1.1        ad 
    133  1.23     rmind static const int sel_flag[] = {
    134  1.23     rmind 	POLLRDNORM | POLLHUP | POLLERR,
    135  1.23     rmind 	POLLWRNORM | POLLHUP | POLLERR,
    136  1.23     rmind 	POLLRDBAND
    137  1.23     rmind };
    138  1.23     rmind 
    139   1.1        ad static syncobj_t select_sobj = {
    140  1.41     ozaki 	.sobj_flag	= SOBJ_SLEEPQ_FIFO,
    141  1.41     ozaki 	.sobj_unsleep	= sleepq_unsleep,
    142  1.41     ozaki 	.sobj_changepri	= sleepq_changepri,
    143  1.41     ozaki 	.sobj_lendpri	= sleepq_lendpri,
    144  1.41     ozaki 	.sobj_owner	= syncobj_noowner,
    145   1.1        ad };
    146   1.1        ad 
    147  1.23     rmind static selcluster_t	*selcluster[SELCLUSTERS] __read_mostly;
    148  1.36     rmind static int		direct_select __read_mostly = 0;
    149  1.22        ad 
    150  1.49        ad /* Operations: either select() or poll(). */
    151  1.49        ad const char		selop_select[] = "select";
    152  1.49        ad const char		selop_poll[] = "poll";
    153  1.49        ad 
    154   1.1        ad /*
    155   1.1        ad  * Select system call.
    156   1.1        ad  */
    157   1.1        ad int
    158  1.12  christos sys___pselect50(struct lwp *l, const struct sys___pselect50_args *uap,
    159  1.12  christos     register_t *retval)
    160   1.1        ad {
    161   1.1        ad 	/* {
    162   1.1        ad 		syscallarg(int)				nd;
    163   1.1        ad 		syscallarg(fd_set *)			in;
    164   1.1        ad 		syscallarg(fd_set *)			ou;
    165   1.1        ad 		syscallarg(fd_set *)			ex;
    166   1.1        ad 		syscallarg(const struct timespec *)	ts;
    167   1.1        ad 		syscallarg(sigset_t *)			mask;
    168   1.1        ad 	} */
    169  1.14  christos 	struct timespec	ats, *ts = NULL;
    170   1.1        ad 	sigset_t	amask, *mask = NULL;
    171   1.1        ad 	int		error;
    172   1.1        ad 
    173   1.1        ad 	if (SCARG(uap, ts)) {
    174   1.1        ad 		error = copyin(SCARG(uap, ts), &ats, sizeof(ats));
    175   1.1        ad 		if (error)
    176   1.1        ad 			return error;
    177  1.14  christos 		ts = &ats;
    178   1.1        ad 	}
    179   1.1        ad 	if (SCARG(uap, mask) != NULL) {
    180   1.1        ad 		error = copyin(SCARG(uap, mask), &amask, sizeof(amask));
    181   1.1        ad 		if (error)
    182   1.1        ad 			return error;
    183   1.1        ad 		mask = &amask;
    184   1.1        ad 	}
    185   1.1        ad 
    186  1.19     rmind 	return selcommon(retval, SCARG(uap, nd), SCARG(uap, in),
    187  1.14  christos 	    SCARG(uap, ou), SCARG(uap, ex), ts, mask);
    188   1.1        ad }
    189   1.1        ad 
    190   1.1        ad int
    191  1.12  christos sys___select50(struct lwp *l, const struct sys___select50_args *uap,
    192  1.12  christos     register_t *retval)
    193   1.1        ad {
    194   1.1        ad 	/* {
    195   1.1        ad 		syscallarg(int)			nd;
    196   1.1        ad 		syscallarg(fd_set *)		in;
    197   1.1        ad 		syscallarg(fd_set *)		ou;
    198   1.1        ad 		syscallarg(fd_set *)		ex;
    199   1.1        ad 		syscallarg(struct timeval *)	tv;
    200   1.1        ad 	} */
    201  1.14  christos 	struct timeval atv;
    202  1.14  christos 	struct timespec ats, *ts = NULL;
    203   1.1        ad 	int error;
    204   1.1        ad 
    205   1.1        ad 	if (SCARG(uap, tv)) {
    206  1.14  christos 		error = copyin(SCARG(uap, tv), (void *)&atv, sizeof(atv));
    207   1.1        ad 		if (error)
    208   1.1        ad 			return error;
    209  1.48     kamil 
    210  1.48     kamil 		if (atv.tv_usec < 0 || atv.tv_usec >= 1000000)
    211  1.48     kamil 			return EINVAL;
    212  1.48     kamil 
    213  1.14  christos 		TIMEVAL_TO_TIMESPEC(&atv, &ats);
    214  1.14  christos 		ts = &ats;
    215   1.1        ad 	}
    216   1.1        ad 
    217  1.19     rmind 	return selcommon(retval, SCARG(uap, nd), SCARG(uap, in),
    218  1.14  christos 	    SCARG(uap, ou), SCARG(uap, ex), ts, NULL);
    219   1.1        ad }
    220   1.1        ad 
    221  1.17     rmind /*
    222  1.17     rmind  * sel_do_scan: common code to perform the scan on descriptors.
    223  1.17     rmind  */
    224  1.17     rmind static int
    225  1.49        ad sel_do_scan(const char *opname, void *fds, const int nf, const size_t ni,
    226  1.23     rmind     struct timespec *ts, sigset_t *mask, register_t *retval)
    227   1.1        ad {
    228  1.17     rmind 	lwp_t		* const l = curlwp;
    229  1.22        ad 	selcluster_t	*sc;
    230  1.13        ad 	kmutex_t	*lock;
    231  1.17     rmind 	struct timespec	sleepts;
    232  1.17     rmind 	int		error, timo;
    233   1.1        ad 
    234   1.1        ad 	timo = 0;
    235  1.14  christos 	if (ts && inittimeleft(ts, &sleepts) == -1) {
    236  1.17     rmind 		return EINVAL;
    237   1.1        ad 	}
    238   1.1        ad 
    239  1.32  christos 	if (__predict_false(mask))
    240  1.31  christos 		sigsuspendsetup(l, mask);
    241   1.1        ad 
    242  1.49        ad 	/*
    243  1.49        ad 	 * We may context switch during or at any time after picking a CPU
    244  1.49        ad 	 * and cluster to associate with, but it doesn't matter.  In the
    245  1.49        ad 	 * unlikely event we migrate elsewhere all we risk is a little lock
    246  1.49        ad 	 * contention; correctness is not sacrificed.
    247  1.49        ad 	 */
    248  1.22        ad 	sc = curcpu()->ci_data.cpu_selcluster;
    249  1.13        ad 	lock = sc->sc_lock;
    250  1.22        ad 	l->l_selcluster = sc;
    251  1.49        ad 
    252  1.49        ad 	if (opname == selop_select) {
    253  1.30     rmind 		l->l_selbits = fds;
    254  1.23     rmind 		l->l_selni = ni;
    255  1.23     rmind 	} else {
    256  1.23     rmind 		l->l_selbits = NULL;
    257  1.23     rmind 	}
    258  1.34   hannken 
    259   1.1        ad 	for (;;) {
    260  1.17     rmind 		int ncoll;
    261  1.17     rmind 
    262  1.34   hannken 		SLIST_INIT(&l->l_selwait);
    263  1.34   hannken 		l->l_selret = 0;
    264  1.34   hannken 
    265   1.1        ad 		/*
    266  1.17     rmind 		 * No need to lock.  If this is overwritten by another value
    267  1.17     rmind 		 * while scanning, we will retry below.  We only need to see
    268  1.17     rmind 		 * exact state from the descriptors that we are about to poll,
    269  1.17     rmind 		 * and lock activity resulting from fo_poll is enough to
    270  1.17     rmind 		 * provide an up to date value for new polling activity.
    271   1.1        ad 		 */
    272  1.49        ad 		if (ts && (ts->tv_sec | ts->tv_nsec | direct_select) == 0) {
    273  1.49        ad 			/* Non-blocking: no need for selrecord()/selclear() */
    274  1.49        ad 			l->l_selflag = SEL_RESET;
    275  1.49        ad 		} else {
    276  1.49        ad 			l->l_selflag = SEL_SCANNING;
    277  1.49        ad 		}
    278   1.1        ad 		ncoll = sc->sc_ncoll;
    279  1.49        ad 		membar_exit();
    280   1.1        ad 
    281  1.49        ad 		if (opname == selop_select) {
    282  1.23     rmind 			error = selscan((char *)fds, nf, ni, retval);
    283  1.17     rmind 		} else {
    284  1.23     rmind 			error = pollscan((struct pollfd *)fds, nf, retval);
    285  1.17     rmind 		}
    286   1.1        ad 		if (error || *retval)
    287   1.1        ad 			break;
    288  1.14  christos 		if (ts && (timo = gettimeleft(ts, &sleepts)) <= 0)
    289   1.1        ad 			break;
    290  1.23     rmind 		/*
    291  1.23     rmind 		 * Acquire the lock and perform the (re)checks.  Note, if
    292  1.23     rmind 		 * collision has occured, then our state does not matter,
    293  1.23     rmind 		 * as we must perform re-scan.  Therefore, check it first.
    294  1.23     rmind 		 */
    295  1.23     rmind state_check:
    296  1.13        ad 		mutex_spin_enter(lock);
    297  1.23     rmind 		if (__predict_false(sc->sc_ncoll != ncoll)) {
    298  1.23     rmind 			/* Collision: perform re-scan. */
    299  1.23     rmind 			mutex_spin_exit(lock);
    300  1.34   hannken 			selclear();
    301  1.23     rmind 			continue;
    302  1.23     rmind 		}
    303  1.23     rmind 		if (__predict_true(l->l_selflag == SEL_EVENT)) {
    304  1.23     rmind 			/* Events occured, they are set directly. */
    305  1.23     rmind 			mutex_spin_exit(lock);
    306  1.23     rmind 			break;
    307  1.23     rmind 		}
    308  1.23     rmind 		if (__predict_true(l->l_selflag == SEL_RESET)) {
    309  1.23     rmind 			/* Events occured, but re-scan is requested. */
    310  1.13        ad 			mutex_spin_exit(lock);
    311  1.34   hannken 			selclear();
    312   1.1        ad 			continue;
    313   1.1        ad 		}
    314  1.23     rmind 		/* Nothing happen, therefore - sleep. */
    315   1.1        ad 		l->l_selflag = SEL_BLOCKING;
    316   1.7        ad 		l->l_kpriority = true;
    317  1.13        ad 		sleepq_enter(&sc->sc_sleepq, l, lock);
    318  1.49        ad 		sleepq_enqueue(&sc->sc_sleepq, sc, opname, &select_sobj);
    319   1.1        ad 		error = sleepq_block(timo, true);
    320  1.23     rmind 		if (error != 0) {
    321   1.1        ad 			break;
    322  1.23     rmind 		}
    323  1.23     rmind 		/* Awoken: need to check the state. */
    324  1.23     rmind 		goto state_check;
    325   1.1        ad 	}
    326   1.1        ad 	selclear();
    327   1.1        ad 
    328  1.34   hannken 	/* Add direct events if any. */
    329  1.34   hannken 	if (l->l_selflag == SEL_EVENT) {
    330  1.34   hannken 		KASSERT(l->l_selret != 0);
    331  1.34   hannken 		*retval += l->l_selret;
    332  1.34   hannken 	}
    333  1.34   hannken 
    334  1.33  christos 	if (__predict_false(mask))
    335  1.33  christos 		sigsuspendteardown(l);
    336  1.33  christos 
    337  1.20       dsl 	/* select and poll are not restarted after signals... */
    338  1.20       dsl 	if (error == ERESTART)
    339  1.20       dsl 		return EINTR;
    340  1.20       dsl 	if (error == EWOULDBLOCK)
    341  1.20       dsl 		return 0;
    342  1.17     rmind 	return error;
    343  1.17     rmind }
    344  1.17     rmind 
    345  1.17     rmind int
    346  1.19     rmind selcommon(register_t *retval, int nd, fd_set *u_in, fd_set *u_ou,
    347  1.19     rmind     fd_set *u_ex, struct timespec *ts, sigset_t *mask)
    348  1.17     rmind {
    349  1.17     rmind 	char		smallbits[howmany(FD_SETSIZE, NFDBITS) *
    350  1.17     rmind 			    sizeof(fd_mask) * 6];
    351  1.17     rmind 	char 		*bits;
    352  1.17     rmind 	int		error, nf;
    353  1.17     rmind 	size_t		ni;
    354  1.17     rmind 
    355  1.17     rmind 	if (nd < 0)
    356  1.17     rmind 		return (EINVAL);
    357  1.51  riastrad 	nf = atomic_load_consume(&curlwp->l_fd->fd_dt)->dt_nfiles;
    358  1.17     rmind 	if (nd > nf) {
    359  1.17     rmind 		/* forgiving; slightly wrong */
    360  1.17     rmind 		nd = nf;
    361  1.17     rmind 	}
    362  1.17     rmind 	ni = howmany(nd, NFDBITS) * sizeof(fd_mask);
    363  1.40       chs 	if (ni * 6 > sizeof(smallbits))
    364  1.17     rmind 		bits = kmem_alloc(ni * 6, KM_SLEEP);
    365  1.40       chs 	else
    366  1.17     rmind 		bits = smallbits;
    367  1.17     rmind 
    368  1.17     rmind #define	getbits(name, x)						\
    369  1.17     rmind 	if (u_ ## name) {						\
    370  1.17     rmind 		error = copyin(u_ ## name, bits + ni * x, ni);		\
    371  1.17     rmind 		if (error)						\
    372  1.20       dsl 			goto fail;					\
    373  1.17     rmind 	} else								\
    374  1.17     rmind 		memset(bits + ni * x, 0, ni);
    375  1.17     rmind 	getbits(in, 0);
    376  1.17     rmind 	getbits(ou, 1);
    377  1.17     rmind 	getbits(ex, 2);
    378  1.17     rmind #undef	getbits
    379   1.1        ad 
    380  1.49        ad 	error = sel_do_scan(selop_select, bits, nd, ni, ts, mask, retval);
    381   1.1        ad 	if (error == 0 && u_in != NULL)
    382   1.1        ad 		error = copyout(bits + ni * 3, u_in, ni);
    383   1.1        ad 	if (error == 0 && u_ou != NULL)
    384   1.1        ad 		error = copyout(bits + ni * 4, u_ou, ni);
    385   1.1        ad 	if (error == 0 && u_ex != NULL)
    386   1.1        ad 		error = copyout(bits + ni * 5, u_ex, ni);
    387  1.20       dsl  fail:
    388   1.1        ad 	if (bits != smallbits)
    389   1.1        ad 		kmem_free(bits, ni * 6);
    390   1.1        ad 	return (error);
    391   1.1        ad }
    392   1.1        ad 
    393  1.19     rmind static inline int
    394  1.23     rmind selscan(char *bits, const int nfd, const size_t ni, register_t *retval)
    395   1.1        ad {
    396  1.17     rmind 	fd_mask *ibitp, *obitp;
    397  1.23     rmind 	int msk, i, j, fd, n;
    398   1.1        ad 	file_t *fp;
    399  1.49        ad 	lwp_t *l;
    400   1.1        ad 
    401  1.17     rmind 	ibitp = (fd_mask *)(bits + ni * 0);
    402  1.17     rmind 	obitp = (fd_mask *)(bits + ni * 3);
    403   1.1        ad 	n = 0;
    404  1.49        ad 	l = curlwp;
    405  1.17     rmind 
    406  1.34   hannken 	memset(obitp, 0, ni * 3);
    407   1.1        ad 	for (msk = 0; msk < 3; msk++) {
    408   1.1        ad 		for (i = 0; i < nfd; i += NFDBITS) {
    409  1.23     rmind 			fd_mask ibits, obits;
    410  1.23     rmind 
    411  1.35   hannken 			ibits = *ibitp;
    412   1.1        ad 			obits = 0;
    413   1.1        ad 			while ((j = ffs(ibits)) && (fd = i + --j) < nfd) {
    414  1.47   msaitoh 				ibits &= ~(1U << j);
    415   1.1        ad 				if ((fp = fd_getfile(fd)) == NULL)
    416   1.1        ad 					return (EBADF);
    417  1.23     rmind 				/*
    418  1.23     rmind 				 * Setup an argument to selrecord(), which is
    419  1.23     rmind 				 * a file descriptor number.
    420  1.23     rmind 				 */
    421  1.49        ad 				l->l_selrec = fd;
    422  1.23     rmind 				if ((*fp->f_ops->fo_poll)(fp, sel_flag[msk])) {
    423  1.49        ad 					if (!direct_select) {
    424  1.49        ad 						/*
    425  1.49        ad 						 * Have events: do nothing in
    426  1.49        ad 						 * selrecord().
    427  1.49        ad 						 */
    428  1.49        ad 						l->l_selflag = SEL_RESET;
    429  1.49        ad 					}
    430  1.47   msaitoh 					obits |= (1U << j);
    431   1.1        ad 					n++;
    432   1.1        ad 				}
    433   1.1        ad 				fd_putfile(fd);
    434   1.1        ad 			}
    435  1.34   hannken 			if (obits != 0) {
    436  1.36     rmind 				if (direct_select) {
    437  1.36     rmind 					kmutex_t *lock;
    438  1.49        ad 					lock = l->l_selcluster->sc_lock;
    439  1.35   hannken 					mutex_spin_enter(lock);
    440  1.36     rmind 					*obitp |= obits;
    441  1.35   hannken 					mutex_spin_exit(lock);
    442  1.36     rmind 				} else {
    443  1.36     rmind 					*obitp |= obits;
    444  1.36     rmind 				}
    445  1.34   hannken 			}
    446  1.35   hannken 			ibitp++;
    447  1.34   hannken 			obitp++;
    448   1.1        ad 		}
    449   1.1        ad 	}
    450   1.1        ad 	*retval = n;
    451   1.1        ad 	return (0);
    452   1.1        ad }
    453   1.1        ad 
    454   1.1        ad /*
    455   1.1        ad  * Poll system call.
    456   1.1        ad  */
    457   1.1        ad int
    458   1.1        ad sys_poll(struct lwp *l, const struct sys_poll_args *uap, register_t *retval)
    459   1.1        ad {
    460   1.1        ad 	/* {
    461   1.1        ad 		syscallarg(struct pollfd *)	fds;
    462   1.1        ad 		syscallarg(u_int)		nfds;
    463   1.1        ad 		syscallarg(int)			timeout;
    464   1.1        ad 	} */
    465  1.14  christos 	struct timespec	ats, *ts = NULL;
    466   1.1        ad 
    467   1.1        ad 	if (SCARG(uap, timeout) != INFTIM) {
    468  1.14  christos 		ats.tv_sec = SCARG(uap, timeout) / 1000;
    469  1.14  christos 		ats.tv_nsec = (SCARG(uap, timeout) % 1000) * 1000000;
    470  1.14  christos 		ts = &ats;
    471   1.1        ad 	}
    472   1.1        ad 
    473  1.19     rmind 	return pollcommon(retval, SCARG(uap, fds), SCARG(uap, nfds), ts, NULL);
    474   1.1        ad }
    475   1.1        ad 
    476   1.1        ad /*
    477   1.1        ad  * Poll system call.
    478   1.1        ad  */
    479   1.1        ad int
    480  1.12  christos sys___pollts50(struct lwp *l, const struct sys___pollts50_args *uap,
    481  1.12  christos     register_t *retval)
    482   1.1        ad {
    483   1.1        ad 	/* {
    484   1.1        ad 		syscallarg(struct pollfd *)		fds;
    485   1.1        ad 		syscallarg(u_int)			nfds;
    486   1.1        ad 		syscallarg(const struct timespec *)	ts;
    487   1.1        ad 		syscallarg(const sigset_t *)		mask;
    488   1.1        ad 	} */
    489  1.14  christos 	struct timespec	ats, *ts = NULL;
    490   1.1        ad 	sigset_t	amask, *mask = NULL;
    491   1.1        ad 	int		error;
    492   1.1        ad 
    493   1.1        ad 	if (SCARG(uap, ts)) {
    494   1.1        ad 		error = copyin(SCARG(uap, ts), &ats, sizeof(ats));
    495   1.1        ad 		if (error)
    496   1.1        ad 			return error;
    497  1.14  christos 		ts = &ats;
    498   1.1        ad 	}
    499   1.1        ad 	if (SCARG(uap, mask)) {
    500   1.1        ad 		error = copyin(SCARG(uap, mask), &amask, sizeof(amask));
    501   1.1        ad 		if (error)
    502   1.1        ad 			return error;
    503   1.1        ad 		mask = &amask;
    504   1.1        ad 	}
    505   1.1        ad 
    506  1.19     rmind 	return pollcommon(retval, SCARG(uap, fds), SCARG(uap, nfds), ts, mask);
    507   1.1        ad }
    508   1.1        ad 
    509   1.1        ad int
    510  1.19     rmind pollcommon(register_t *retval, struct pollfd *u_fds, u_int nfds,
    511  1.14  christos     struct timespec *ts, sigset_t *mask)
    512   1.1        ad {
    513  1.11      yamt 	struct pollfd	smallfds[32];
    514  1.11      yamt 	struct pollfd	*fds;
    515  1.17     rmind 	int		error;
    516  1.20       dsl 	size_t		ni;
    517   1.1        ad 
    518  1.45  christos 	if (nfds > curlwp->l_proc->p_rlimit[RLIMIT_NOFILE].rlim_max + 1000) {
    519  1.20       dsl 		/*
    520  1.43  christos 		 * Prevent userland from causing over-allocation.
    521  1.43  christos 		 * Raising the default limit too high can still cause
    522  1.43  christos 		 * a lot of memory to be allocated, but this also means
    523  1.43  christos 		 * that the file descriptor array will also be large.
    524  1.43  christos 		 *
    525  1.43  christos 		 * To reduce the memory requirements here, we could
    526  1.43  christos 		 * process the 'fds' array in chunks, but that
    527  1.20       dsl 		 * is a lot of code that isn't normally useful.
    528  1.20       dsl 		 * (Or just move the copyin/out into pollscan().)
    529  1.43  christos 		 *
    530  1.20       dsl 		 * Historically the code silently truncated 'fds' to
    531  1.20       dsl 		 * dt_nfiles entries - but that does cause issues.
    532  1.44  christos 		 *
    533  1.44  christos 		 * Using the max limit equivalent to sysctl
    534  1.44  christos 		 * kern.maxfiles is the moral equivalent of OPEN_MAX
    535  1.45  christos 		 * as specified by POSIX.
    536  1.45  christos 		 *
    537  1.45  christos 		 * We add a slop of 1000 in case the resource limit was
    538  1.45  christos 		 * changed after opening descriptors or the same descriptor
    539  1.45  christos 		 * was specified more than once.
    540  1.20       dsl 		 */
    541  1.20       dsl 		return EINVAL;
    542   1.1        ad 	}
    543   1.1        ad 	ni = nfds * sizeof(struct pollfd);
    544  1.40       chs 	if (ni > sizeof(smallfds))
    545  1.11      yamt 		fds = kmem_alloc(ni, KM_SLEEP);
    546  1.40       chs 	else
    547  1.11      yamt 		fds = smallfds;
    548   1.1        ad 
    549  1.11      yamt 	error = copyin(u_fds, fds, ni);
    550   1.1        ad 	if (error)
    551  1.20       dsl 		goto fail;
    552   1.1        ad 
    553  1.49        ad 	error = sel_do_scan(selop_poll, fds, nfds, ni, ts, mask, retval);
    554   1.1        ad 	if (error == 0)
    555  1.11      yamt 		error = copyout(fds, u_fds, ni);
    556  1.20       dsl  fail:
    557  1.11      yamt 	if (fds != smallfds)
    558  1.11      yamt 		kmem_free(fds, ni);
    559   1.1        ad 	return (error);
    560   1.1        ad }
    561   1.1        ad 
    562  1.19     rmind static inline int
    563  1.23     rmind pollscan(struct pollfd *fds, const int nfd, register_t *retval)
    564   1.1        ad {
    565   1.1        ad 	file_t *fp;
    566  1.34   hannken 	int i, n = 0, revents;
    567   1.1        ad 
    568   1.1        ad 	for (i = 0; i < nfd; i++, fds++) {
    569  1.34   hannken 		fds->revents = 0;
    570   1.1        ad 		if (fds->fd < 0) {
    571  1.34   hannken 			revents = 0;
    572   1.1        ad 		} else if ((fp = fd_getfile(fds->fd)) == NULL) {
    573  1.34   hannken 			revents = POLLNVAL;
    574   1.1        ad 		} else {
    575  1.23     rmind 			/*
    576  1.23     rmind 			 * Perform poll: registers select request or returns
    577  1.23     rmind 			 * the events which are set.  Setup an argument for
    578  1.23     rmind 			 * selrecord(), which is a pointer to struct pollfd.
    579  1.23     rmind 			 */
    580  1.23     rmind 			curlwp->l_selrec = (uintptr_t)fds;
    581  1.34   hannken 			revents = (*fp->f_ops->fo_poll)(fp,
    582   1.1        ad 			    fds->events | POLLERR | POLLHUP);
    583   1.1        ad 			fd_putfile(fds->fd);
    584   1.1        ad 		}
    585  1.34   hannken 		if (revents) {
    586  1.49        ad 			if (!direct_select)  {
    587  1.49        ad 				/* Have events: do nothing in selrecord(). */
    588  1.49        ad 				curlwp->l_selflag = SEL_RESET;
    589  1.49        ad 			}
    590  1.34   hannken 			fds->revents = revents;
    591  1.34   hannken 			n++;
    592  1.34   hannken 		}
    593   1.1        ad 	}
    594   1.1        ad 	*retval = n;
    595   1.1        ad 	return (0);
    596   1.1        ad }
    597   1.1        ad 
    598   1.1        ad int
    599   1.1        ad seltrue(dev_t dev, int events, lwp_t *l)
    600   1.1        ad {
    601   1.1        ad 
    602   1.1        ad 	return (events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
    603   1.1        ad }
    604   1.1        ad 
    605   1.1        ad /*
    606   1.1        ad  * Record a select request.  Concurrency issues:
    607   1.1        ad  *
    608   1.1        ad  * The caller holds the same lock across calls to selrecord() and
    609   1.4      yamt  * selnotify(), so we don't need to consider a concurrent wakeup
    610   1.1        ad  * while in this routine.
    611   1.1        ad  *
    612   1.1        ad  * The only activity we need to guard against is selclear(), called by
    613  1.17     rmind  * another thread that is exiting sel_do_scan().
    614   1.1        ad  * `sel_lwp' can only become non-NULL while the caller's lock is held,
    615   1.1        ad  * so it cannot become non-NULL due to a change made by another thread
    616   1.1        ad  * while we are in this routine.  It can only become _NULL_ due to a
    617   1.1        ad  * call to selclear().
    618   1.1        ad  *
    619   1.1        ad  * If it is non-NULL and != selector there is the potential for
    620   1.1        ad  * selclear() to be called by another thread.  If either of those
    621   1.1        ad  * conditions are true, we're not interested in touching the `named
    622   1.1        ad  * waiter' part of the selinfo record because we need to record a
    623   1.1        ad  * collision.  Hence there is no need for additional locking in this
    624   1.1        ad  * routine.
    625   1.1        ad  */
    626   1.1        ad void
    627   1.1        ad selrecord(lwp_t *selector, struct selinfo *sip)
    628   1.1        ad {
    629  1.22        ad 	selcluster_t *sc;
    630   1.1        ad 	lwp_t *other;
    631   1.1        ad 
    632   1.1        ad 	KASSERT(selector == curlwp);
    633   1.1        ad 
    634  1.22        ad 	sc = selector->l_selcluster;
    635   1.1        ad 	other = sip->sel_lwp;
    636   1.1        ad 
    637  1.49        ad 	if (selector->l_selflag == SEL_RESET) {
    638  1.49        ad 		/* 0. We're not going to block - will poll again if needed. */
    639  1.49        ad 	} else if (other == selector) {
    640  1.23     rmind 		/* 1. We (selector) already claimed to be the first LWP. */
    641  1.37  riastrad 		KASSERT(sip->sel_cluster == sc);
    642   1.1        ad 	} else if (other == NULL) {
    643   1.1        ad 		/*
    644  1.23     rmind 		 * 2. No first LWP, therefore we (selector) are the first.
    645  1.23     rmind 		 *
    646  1.23     rmind 		 * There may be unnamed waiters (collisions).  Issue a memory
    647  1.23     rmind 		 * barrier to ensure that we access sel_lwp (above) before
    648  1.23     rmind 		 * other fields - this guards against a call to selclear().
    649   1.1        ad 		 */
    650   1.1        ad 		membar_enter();
    651   1.1        ad 		sip->sel_lwp = selector;
    652   1.1        ad 		SLIST_INSERT_HEAD(&selector->l_selwait, sip, sel_chain);
    653  1.23     rmind 		/* Copy the argument, which is for selnotify(). */
    654  1.23     rmind 		sip->sel_fdinfo = selector->l_selrec;
    655  1.22        ad 		/* Replace selinfo's lock with the chosen cluster's lock. */
    656  1.22        ad 		sip->sel_cluster = sc;
    657   1.1        ad 	} else {
    658  1.23     rmind 		/* 3. Multiple waiters: record a collision. */
    659   1.1        ad 		sip->sel_collision |= sc->sc_mask;
    660  1.22        ad 		KASSERT(sip->sel_cluster != NULL);
    661   1.1        ad 	}
    662   1.1        ad }
    663   1.1        ad 
    664   1.1        ad /*
    665  1.23     rmind  * sel_setevents: a helper function for selnotify(), to set the events
    666  1.23     rmind  * for LWP sleeping in selcommon() or pollcommon().
    667  1.23     rmind  */
    668  1.30     rmind static inline bool
    669  1.23     rmind sel_setevents(lwp_t *l, struct selinfo *sip, const int events)
    670  1.23     rmind {
    671  1.23     rmind 	const int oflag = l->l_selflag;
    672  1.30     rmind 	int ret = 0;
    673  1.23     rmind 
    674  1.23     rmind 	/*
    675  1.23     rmind 	 * If we require re-scan or it was required by somebody else,
    676  1.23     rmind 	 * then just (re)set SEL_RESET and return.
    677  1.23     rmind 	 */
    678  1.23     rmind 	if (__predict_false(events == 0 || oflag == SEL_RESET)) {
    679  1.23     rmind 		l->l_selflag = SEL_RESET;
    680  1.30     rmind 		return true;
    681  1.23     rmind 	}
    682  1.23     rmind 	/*
    683  1.23     rmind 	 * Direct set.  Note: select state of LWP is locked.  First,
    684  1.23     rmind 	 * determine whether it is selcommon() or pollcommon().
    685  1.23     rmind 	 */
    686  1.23     rmind 	if (l->l_selbits != NULL) {
    687  1.30     rmind 		const size_t ni = l->l_selni;
    688  1.23     rmind 		fd_mask *fds = (fd_mask *)l->l_selbits;
    689  1.30     rmind 		fd_mask *ofds = (fd_mask *)((char *)fds + ni * 3);
    690  1.30     rmind 		const int fd = sip->sel_fdinfo, fbit = 1 << (fd & __NFDMASK);
    691  1.25     rmind 		const int idx = fd >> __NFDSHIFT;
    692  1.23     rmind 		int n;
    693  1.23     rmind 
    694  1.23     rmind 		for (n = 0; n < 3; n++) {
    695  1.34   hannken 			if ((fds[idx] & fbit) != 0 &&
    696  1.34   hannken 			    (ofds[idx] & fbit) == 0 &&
    697  1.34   hannken 			    (sel_flag[n] & events)) {
    698  1.30     rmind 				ofds[idx] |= fbit;
    699  1.30     rmind 				ret++;
    700  1.23     rmind 			}
    701  1.23     rmind 			fds = (fd_mask *)((char *)fds + ni);
    702  1.30     rmind 			ofds = (fd_mask *)((char *)ofds + ni);
    703  1.23     rmind 		}
    704  1.23     rmind 	} else {
    705  1.23     rmind 		struct pollfd *pfd = (void *)sip->sel_fdinfo;
    706  1.30     rmind 		int revents = events & (pfd->events | POLLERR | POLLHUP);
    707  1.30     rmind 
    708  1.30     rmind 		if (revents) {
    709  1.34   hannken 			if (pfd->revents == 0)
    710  1.34   hannken 				ret = 1;
    711  1.30     rmind 			pfd->revents |= revents;
    712  1.30     rmind 		}
    713  1.30     rmind 	}
    714  1.30     rmind 	/* Check whether there are any events to return. */
    715  1.30     rmind 	if (!ret) {
    716  1.30     rmind 		return false;
    717  1.23     rmind 	}
    718  1.23     rmind 	/* Indicate direct set and note the event (cluster lock is held). */
    719  1.23     rmind 	l->l_selflag = SEL_EVENT;
    720  1.30     rmind 	l->l_selret += ret;
    721  1.30     rmind 	return true;
    722  1.23     rmind }
    723  1.23     rmind 
    724  1.23     rmind /*
    725   1.1        ad  * Do a wakeup when a selectable event occurs.  Concurrency issues:
    726   1.1        ad  *
    727   1.1        ad  * As per selrecord(), the caller's object lock is held.  If there
    728  1.22        ad  * is a named waiter, we must acquire the associated selcluster's lock
    729   1.1        ad  * in order to synchronize with selclear() and pollers going to sleep
    730  1.17     rmind  * in sel_do_scan().
    731   1.1        ad  *
    732  1.22        ad  * sip->sel_cluser cannot change at this point, as it is only changed
    733   1.1        ad  * in selrecord(), and concurrent calls to selrecord() are locked
    734   1.1        ad  * out by the caller.
    735   1.1        ad  */
    736   1.1        ad void
    737   1.1        ad selnotify(struct selinfo *sip, int events, long knhint)
    738   1.1        ad {
    739  1.22        ad 	selcluster_t *sc;
    740  1.49        ad 	uint64_t mask;
    741  1.16     rmind 	int index, oflag;
    742   1.1        ad 	lwp_t *l;
    743  1.13        ad 	kmutex_t *lock;
    744   1.1        ad 
    745   1.1        ad 	KNOTE(&sip->sel_klist, knhint);
    746   1.1        ad 
    747   1.1        ad 	if (sip->sel_lwp != NULL) {
    748   1.1        ad 		/* One named LWP is waiting. */
    749  1.22        ad 		sc = sip->sel_cluster;
    750  1.13        ad 		lock = sc->sc_lock;
    751  1.13        ad 		mutex_spin_enter(lock);
    752   1.1        ad 		/* Still there? */
    753   1.1        ad 		if (sip->sel_lwp != NULL) {
    754  1.23     rmind 			/*
    755  1.23     rmind 			 * Set the events for our LWP and indicate that.
    756  1.23     rmind 			 * Otherwise, request for a full re-scan.
    757  1.23     rmind 			 */
    758   1.1        ad 			l = sip->sel_lwp;
    759  1.23     rmind 			oflag = l->l_selflag;
    760  1.36     rmind 
    761  1.36     rmind 			if (!direct_select) {
    762  1.36     rmind 				l->l_selflag = SEL_RESET;
    763  1.36     rmind 			} else if (!sel_setevents(l, sip, events)) {
    764  1.30     rmind 				/* No events to return. */
    765  1.30     rmind 				mutex_spin_exit(lock);
    766  1.30     rmind 				return;
    767  1.30     rmind 			}
    768  1.36     rmind 
    769   1.1        ad 			/*
    770   1.1        ad 			 * If thread is sleeping, wake it up.  If it's not
    771   1.1        ad 			 * yet asleep, it will notice the change in state
    772   1.1        ad 			 * and will re-poll the descriptors.
    773   1.1        ad 			 */
    774  1.13        ad 			if (oflag == SEL_BLOCKING && l->l_mutex == lock) {
    775   1.1        ad 				KASSERT(l->l_wchan == sc);
    776  1.16     rmind 				sleepq_unsleep(l, false);
    777   1.1        ad 			}
    778   1.1        ad 		}
    779  1.13        ad 		mutex_spin_exit(lock);
    780   1.1        ad 	}
    781   1.1        ad 
    782   1.1        ad 	if ((mask = sip->sel_collision) != 0) {
    783   1.1        ad 		/*
    784   1.1        ad 		 * There was a collision (multiple waiters): we must
    785   1.1        ad 		 * inform all potentially interested waiters.
    786   1.1        ad 		 */
    787   1.1        ad 		sip->sel_collision = 0;
    788   1.3        ad 		do {
    789  1.49        ad 			index = ffs64(mask) - 1;
    790  1.49        ad 			mask ^= __BIT(index);
    791  1.22        ad 			sc = selcluster[index];
    792  1.13        ad 			lock = sc->sc_lock;
    793  1.13        ad 			mutex_spin_enter(lock);
    794   1.1        ad 			sc->sc_ncoll++;
    795  1.13        ad 			sleepq_wake(&sc->sc_sleepq, sc, (u_int)-1, lock);
    796   1.3        ad 		} while (__predict_false(mask != 0));
    797   1.1        ad 	}
    798   1.1        ad }
    799   1.1        ad 
    800   1.1        ad /*
    801   1.1        ad  * Remove an LWP from all objects that it is waiting for.  Concurrency
    802   1.1        ad  * issues:
    803   1.1        ad  *
    804   1.1        ad  * The object owner's (e.g. device driver) lock is not held here.  Calls
    805   1.1        ad  * can be made to selrecord() and we do not synchronize against those
    806   1.1        ad  * directly using locks.  However, we use `sel_lwp' to lock out changes.
    807   1.1        ad  * Before clearing it we must use memory barriers to ensure that we can
    808   1.1        ad  * safely traverse the list of selinfo records.
    809   1.1        ad  */
    810   1.1        ad static void
    811   1.1        ad selclear(void)
    812   1.1        ad {
    813   1.1        ad 	struct selinfo *sip, *next;
    814  1.22        ad 	selcluster_t *sc;
    815   1.1        ad 	lwp_t *l;
    816  1.13        ad 	kmutex_t *lock;
    817   1.1        ad 
    818   1.1        ad 	l = curlwp;
    819  1.22        ad 	sc = l->l_selcluster;
    820  1.13        ad 	lock = sc->sc_lock;
    821   1.1        ad 
    822  1.49        ad 	/*
    823  1.49        ad 	 * If the request was non-blocking, or we found events on the first
    824  1.49        ad 	 * descriptor, there will be no need to clear anything - avoid
    825  1.49        ad 	 * taking the lock.
    826  1.49        ad 	 */
    827  1.49        ad 	if (SLIST_EMPTY(&l->l_selwait)) {
    828  1.49        ad 		return;
    829  1.49        ad 	}
    830  1.49        ad 
    831  1.13        ad 	mutex_spin_enter(lock);
    832   1.1        ad 	for (sip = SLIST_FIRST(&l->l_selwait); sip != NULL; sip = next) {
    833   1.1        ad 		KASSERT(sip->sel_lwp == l);
    834  1.22        ad 		KASSERT(sip->sel_cluster == l->l_selcluster);
    835  1.22        ad 
    836   1.1        ad 		/*
    837   1.1        ad 		 * Read link to next selinfo record, if any.
    838   1.1        ad 		 * It's no longer safe to touch `sip' after clearing
    839   1.1        ad 		 * `sel_lwp', so ensure that the read of `sel_chain'
    840   1.1        ad 		 * completes before the clearing of sel_lwp becomes
    841   1.1        ad 		 * globally visible.
    842   1.1        ad 		 */
    843   1.1        ad 		next = SLIST_NEXT(sip, sel_chain);
    844   1.1        ad 		membar_exit();
    845   1.1        ad 		/* Release the record for another named waiter to use. */
    846   1.1        ad 		sip->sel_lwp = NULL;
    847   1.1        ad 	}
    848  1.13        ad 	mutex_spin_exit(lock);
    849   1.1        ad }
    850   1.1        ad 
    851   1.1        ad /*
    852   1.1        ad  * Initialize the select/poll system calls.  Called once for each
    853   1.1        ad  * CPU in the system, as they are attached.
    854   1.1        ad  */
    855   1.1        ad void
    856   1.1        ad selsysinit(struct cpu_info *ci)
    857   1.1        ad {
    858  1.22        ad 	selcluster_t *sc;
    859  1.22        ad 	u_int index;
    860   1.1        ad 
    861  1.22        ad 	/* If already a cluster in place for this bit, re-use. */
    862  1.22        ad 	index = cpu_index(ci) & SELCLUSTERMASK;
    863  1.22        ad 	sc = selcluster[index];
    864  1.22        ad 	if (sc == NULL) {
    865  1.22        ad 		sc = kmem_alloc(roundup2(sizeof(selcluster_t),
    866  1.22        ad 		    coherency_unit) + coherency_unit, KM_SLEEP);
    867  1.22        ad 		sc = (void *)roundup2((uintptr_t)sc, coherency_unit);
    868  1.22        ad 		sc->sc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
    869  1.22        ad 		sleepq_init(&sc->sc_sleepq);
    870  1.22        ad 		sc->sc_ncoll = 0;
    871  1.46   msaitoh 		sc->sc_mask = __BIT(index);
    872  1.22        ad 		selcluster[index] = sc;
    873  1.22        ad 	}
    874  1.22        ad 	ci->ci_data.cpu_selcluster = sc;
    875   1.1        ad }
    876   1.1        ad 
    877   1.1        ad /*
    878   1.1        ad  * Initialize a selinfo record.
    879   1.1        ad  */
    880   1.1        ad void
    881   1.1        ad selinit(struct selinfo *sip)
    882   1.1        ad {
    883   1.1        ad 
    884   1.1        ad 	memset(sip, 0, sizeof(*sip));
    885   1.1        ad }
    886   1.1        ad 
    887   1.1        ad /*
    888   1.1        ad  * Destroy a selinfo record.  The owning object must not gain new
    889   1.1        ad  * references while this is in progress: all activity on the record
    890   1.1        ad  * must be stopped.
    891   1.1        ad  *
    892   1.1        ad  * Concurrency issues: we only need guard against a call to selclear()
    893  1.17     rmind  * by a thread exiting sel_do_scan().  The caller has prevented further
    894  1.17     rmind  * references being made to the selinfo record via selrecord(), and it
    895  1.23     rmind  * will not call selnotify() again.
    896   1.1        ad  */
    897   1.1        ad void
    898   1.1        ad seldestroy(struct selinfo *sip)
    899   1.1        ad {
    900  1.22        ad 	selcluster_t *sc;
    901  1.13        ad 	kmutex_t *lock;
    902   1.1        ad 	lwp_t *l;
    903   1.1        ad 
    904   1.1        ad 	if (sip->sel_lwp == NULL)
    905   1.1        ad 		return;
    906   1.1        ad 
    907   1.1        ad 	/*
    908  1.22        ad 	 * Lock out selclear().  The selcluster pointer can't change while
    909   1.1        ad 	 * we are here since it is only ever changed in selrecord(),
    910   1.1        ad 	 * and that will not be entered again for this record because
    911   1.1        ad 	 * it is dying.
    912   1.1        ad 	 */
    913  1.22        ad 	KASSERT(sip->sel_cluster != NULL);
    914  1.22        ad 	sc = sip->sel_cluster;
    915  1.13        ad 	lock = sc->sc_lock;
    916  1.13        ad 	mutex_spin_enter(lock);
    917   1.1        ad 	if ((l = sip->sel_lwp) != NULL) {
    918   1.1        ad 		/*
    919   1.1        ad 		 * This should rarely happen, so although SLIST_REMOVE()
    920   1.1        ad 		 * is slow, using it here is not a problem.
    921   1.1        ad 		 */
    922  1.22        ad 		KASSERT(l->l_selcluster == sc);
    923   1.1        ad 		SLIST_REMOVE(&l->l_selwait, sip, selinfo, sel_chain);
    924   1.1        ad 		sip->sel_lwp = NULL;
    925   1.1        ad 	}
    926  1.13        ad 	mutex_spin_exit(lock);
    927   1.1        ad }
    928   1.1        ad 
    929  1.36     rmind /*
    930  1.36     rmind  * System control nodes.
    931  1.36     rmind  */
    932  1.36     rmind SYSCTL_SETUP(sysctl_select_setup, "sysctl select setup")
    933  1.36     rmind {
    934  1.36     rmind 
    935  1.38     pooka 	sysctl_createv(clog, 0, NULL, NULL,
    936  1.36     rmind 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
    937  1.36     rmind 		CTLTYPE_INT, "direct_select",
    938  1.36     rmind 		SYSCTL_DESCR("Enable/disable direct select (for testing)"),
    939  1.36     rmind 		NULL, 0, &direct_select, 0,
    940  1.38     pooka 		CTL_KERN, CTL_CREATE, CTL_EOL);
    941  1.36     rmind }
    942