sys_select.c revision 1.54.2.1 1 1.54.2.1 thorpej /* $NetBSD: sys_select.c,v 1.54.2.1 2020/12/14 14:38:14 thorpej Exp $ */
2 1.1 ad
3 1.1 ad /*-
4 1.53 ad * Copyright (c) 2007, 2008, 2009, 2010, 2019, 2020 The NetBSD Foundation, Inc.
5 1.1 ad * All rights reserved.
6 1.1 ad *
7 1.1 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.23 rmind * by Andrew Doran and Mindaugas Rasiukevicius.
9 1.1 ad *
10 1.1 ad * Redistribution and use in source and binary forms, with or without
11 1.1 ad * modification, are permitted provided that the following conditions
12 1.1 ad * are met:
13 1.1 ad * 1. Redistributions of source code must retain the above copyright
14 1.1 ad * notice, this list of conditions and the following disclaimer.
15 1.1 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 ad * notice, this list of conditions and the following disclaimer in the
17 1.1 ad * documentation and/or other materials provided with the distribution.
18 1.1 ad *
19 1.1 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.1 ad */
31 1.1 ad
32 1.1 ad /*
33 1.1 ad * Copyright (c) 1982, 1986, 1989, 1993
34 1.1 ad * The Regents of the University of California. All rights reserved.
35 1.1 ad * (c) UNIX System Laboratories, Inc.
36 1.1 ad * All or some portions of this file are derived from material licensed
37 1.1 ad * to the University of California by American Telephone and Telegraph
38 1.1 ad * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39 1.1 ad * the permission of UNIX System Laboratories, Inc.
40 1.1 ad *
41 1.1 ad * Redistribution and use in source and binary forms, with or without
42 1.1 ad * modification, are permitted provided that the following conditions
43 1.1 ad * are met:
44 1.1 ad * 1. Redistributions of source code must retain the above copyright
45 1.1 ad * notice, this list of conditions and the following disclaimer.
46 1.1 ad * 2. Redistributions in binary form must reproduce the above copyright
47 1.1 ad * notice, this list of conditions and the following disclaimer in the
48 1.1 ad * documentation and/or other materials provided with the distribution.
49 1.1 ad * 3. Neither the name of the University nor the names of its contributors
50 1.1 ad * may be used to endorse or promote products derived from this software
51 1.1 ad * without specific prior written permission.
52 1.1 ad *
53 1.1 ad * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 1.1 ad * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 1.1 ad * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 1.1 ad * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 1.1 ad * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 1.1 ad * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 1.1 ad * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 1.1 ad * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 1.1 ad * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 1.1 ad * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 1.1 ad * SUCH DAMAGE.
64 1.1 ad *
65 1.1 ad * @(#)sys_generic.c 8.9 (Berkeley) 2/14/95
66 1.1 ad */
67 1.1 ad
68 1.1 ad /*
69 1.21 rmind * System calls of synchronous I/O multiplexing subsystem.
70 1.21 rmind *
71 1.21 rmind * Locking
72 1.21 rmind *
73 1.22 ad * Two locks are used: <object-lock> and selcluster_t::sc_lock.
74 1.21 rmind *
75 1.21 rmind * The <object-lock> might be a device driver or another subsystem, e.g.
76 1.21 rmind * socket or pipe. This lock is not exported, and thus invisible to this
77 1.21 rmind * subsystem. Mainly, synchronisation between selrecord() and selnotify()
78 1.21 rmind * routines depends on this lock, as it will be described in the comments.
79 1.21 rmind *
80 1.21 rmind * Lock order
81 1.21 rmind *
82 1.21 rmind * <object-lock> ->
83 1.22 ad * selcluster_t::sc_lock
84 1.1 ad */
85 1.1 ad
86 1.1 ad #include <sys/cdefs.h>
87 1.54.2.1 thorpej __KERNEL_RCSID(0, "$NetBSD: sys_select.c,v 1.54.2.1 2020/12/14 14:38:14 thorpej Exp $");
88 1.1 ad
89 1.1 ad #include <sys/param.h>
90 1.1 ad #include <sys/systm.h>
91 1.1 ad #include <sys/filedesc.h>
92 1.1 ad #include <sys/file.h>
93 1.1 ad #include <sys/proc.h>
94 1.1 ad #include <sys/socketvar.h>
95 1.1 ad #include <sys/signalvar.h>
96 1.1 ad #include <sys/uio.h>
97 1.1 ad #include <sys/kernel.h>
98 1.29 rmind #include <sys/lwp.h>
99 1.1 ad #include <sys/poll.h>
100 1.1 ad #include <sys/mount.h>
101 1.1 ad #include <sys/syscallargs.h>
102 1.1 ad #include <sys/cpu.h>
103 1.1 ad #include <sys/atomic.h>
104 1.1 ad #include <sys/socketvar.h>
105 1.1 ad #include <sys/sleepq.h>
106 1.36 rmind #include <sys/sysctl.h>
107 1.49 ad #include <sys/bitops.h>
108 1.1 ad
109 1.1 ad /* Flags for lwp::l_selflag. */
110 1.1 ad #define SEL_RESET 0 /* awoken, interrupted, or not yet polling */
111 1.1 ad #define SEL_SCANNING 1 /* polling descriptors */
112 1.23 rmind #define SEL_BLOCKING 2 /* blocking and waiting for event */
113 1.23 rmind #define SEL_EVENT 3 /* interrupted, events set directly */
114 1.23 rmind
115 1.22 ad /*
116 1.22 ad * Per-cluster state for select()/poll(). For a system with fewer
117 1.50 ad * than 64 CPUs, this gives us per-CPU clusters.
118 1.22 ad */
119 1.50 ad #define SELCLUSTERS 64
120 1.22 ad #define SELCLUSTERMASK (SELCLUSTERS - 1)
121 1.22 ad
122 1.22 ad typedef struct selcluster {
123 1.13 ad kmutex_t *sc_lock;
124 1.1 ad sleepq_t sc_sleepq;
125 1.49 ad uint64_t sc_mask;
126 1.1 ad int sc_ncoll;
127 1.22 ad } selcluster_t;
128 1.1 ad
129 1.23 rmind static inline int selscan(char *, const int, const size_t, register_t *);
130 1.23 rmind static inline int pollscan(struct pollfd *, const int, register_t *);
131 1.19 rmind static void selclear(void);
132 1.1 ad
133 1.23 rmind static const int sel_flag[] = {
134 1.23 rmind POLLRDNORM | POLLHUP | POLLERR,
135 1.23 rmind POLLWRNORM | POLLHUP | POLLERR,
136 1.23 rmind POLLRDBAND
137 1.23 rmind };
138 1.23 rmind
139 1.53 ad /*
140 1.53 ad * LWPs are woken using the sleep queue only due to a collision, the case
141 1.53 ad * with the maximum Suck Factor. Save the cost of sorting for named waiters
142 1.53 ad * by inserting in LIFO order. In the future it would be preferable to not
143 1.53 ad * enqueue LWPs at all, unless subject to a collision.
144 1.53 ad */
145 1.52 ad syncobj_t select_sobj = {
146 1.53 ad .sobj_flag = SOBJ_SLEEPQ_LIFO,
147 1.41 ozaki .sobj_unsleep = sleepq_unsleep,
148 1.41 ozaki .sobj_changepri = sleepq_changepri,
149 1.41 ozaki .sobj_lendpri = sleepq_lendpri,
150 1.41 ozaki .sobj_owner = syncobj_noowner,
151 1.1 ad };
152 1.1 ad
153 1.23 rmind static selcluster_t *selcluster[SELCLUSTERS] __read_mostly;
154 1.36 rmind static int direct_select __read_mostly = 0;
155 1.22 ad
156 1.49 ad /* Operations: either select() or poll(). */
157 1.49 ad const char selop_select[] = "select";
158 1.49 ad const char selop_poll[] = "poll";
159 1.49 ad
160 1.1 ad /*
161 1.1 ad * Select system call.
162 1.1 ad */
163 1.1 ad int
164 1.12 christos sys___pselect50(struct lwp *l, const struct sys___pselect50_args *uap,
165 1.12 christos register_t *retval)
166 1.1 ad {
167 1.1 ad /* {
168 1.1 ad syscallarg(int) nd;
169 1.1 ad syscallarg(fd_set *) in;
170 1.1 ad syscallarg(fd_set *) ou;
171 1.1 ad syscallarg(fd_set *) ex;
172 1.1 ad syscallarg(const struct timespec *) ts;
173 1.1 ad syscallarg(sigset_t *) mask;
174 1.1 ad } */
175 1.14 christos struct timespec ats, *ts = NULL;
176 1.1 ad sigset_t amask, *mask = NULL;
177 1.1 ad int error;
178 1.1 ad
179 1.1 ad if (SCARG(uap, ts)) {
180 1.1 ad error = copyin(SCARG(uap, ts), &ats, sizeof(ats));
181 1.1 ad if (error)
182 1.1 ad return error;
183 1.14 christos ts = &ats;
184 1.1 ad }
185 1.1 ad if (SCARG(uap, mask) != NULL) {
186 1.1 ad error = copyin(SCARG(uap, mask), &amask, sizeof(amask));
187 1.1 ad if (error)
188 1.1 ad return error;
189 1.1 ad mask = &amask;
190 1.1 ad }
191 1.1 ad
192 1.19 rmind return selcommon(retval, SCARG(uap, nd), SCARG(uap, in),
193 1.14 christos SCARG(uap, ou), SCARG(uap, ex), ts, mask);
194 1.1 ad }
195 1.1 ad
196 1.1 ad int
197 1.12 christos sys___select50(struct lwp *l, const struct sys___select50_args *uap,
198 1.12 christos register_t *retval)
199 1.1 ad {
200 1.1 ad /* {
201 1.1 ad syscallarg(int) nd;
202 1.1 ad syscallarg(fd_set *) in;
203 1.1 ad syscallarg(fd_set *) ou;
204 1.1 ad syscallarg(fd_set *) ex;
205 1.1 ad syscallarg(struct timeval *) tv;
206 1.1 ad } */
207 1.14 christos struct timeval atv;
208 1.14 christos struct timespec ats, *ts = NULL;
209 1.1 ad int error;
210 1.1 ad
211 1.1 ad if (SCARG(uap, tv)) {
212 1.14 christos error = copyin(SCARG(uap, tv), (void *)&atv, sizeof(atv));
213 1.1 ad if (error)
214 1.1 ad return error;
215 1.48 kamil
216 1.48 kamil if (atv.tv_usec < 0 || atv.tv_usec >= 1000000)
217 1.48 kamil return EINVAL;
218 1.48 kamil
219 1.14 christos TIMEVAL_TO_TIMESPEC(&atv, &ats);
220 1.14 christos ts = &ats;
221 1.1 ad }
222 1.1 ad
223 1.19 rmind return selcommon(retval, SCARG(uap, nd), SCARG(uap, in),
224 1.14 christos SCARG(uap, ou), SCARG(uap, ex), ts, NULL);
225 1.1 ad }
226 1.1 ad
227 1.17 rmind /*
228 1.17 rmind * sel_do_scan: common code to perform the scan on descriptors.
229 1.17 rmind */
230 1.17 rmind static int
231 1.49 ad sel_do_scan(const char *opname, void *fds, const int nf, const size_t ni,
232 1.23 rmind struct timespec *ts, sigset_t *mask, register_t *retval)
233 1.1 ad {
234 1.17 rmind lwp_t * const l = curlwp;
235 1.22 ad selcluster_t *sc;
236 1.13 ad kmutex_t *lock;
237 1.17 rmind struct timespec sleepts;
238 1.17 rmind int error, timo;
239 1.1 ad
240 1.1 ad timo = 0;
241 1.14 christos if (ts && inittimeleft(ts, &sleepts) == -1) {
242 1.17 rmind return EINVAL;
243 1.1 ad }
244 1.1 ad
245 1.32 christos if (__predict_false(mask))
246 1.31 christos sigsuspendsetup(l, mask);
247 1.1 ad
248 1.49 ad /*
249 1.49 ad * We may context switch during or at any time after picking a CPU
250 1.49 ad * and cluster to associate with, but it doesn't matter. In the
251 1.49 ad * unlikely event we migrate elsewhere all we risk is a little lock
252 1.49 ad * contention; correctness is not sacrificed.
253 1.49 ad */
254 1.22 ad sc = curcpu()->ci_data.cpu_selcluster;
255 1.13 ad lock = sc->sc_lock;
256 1.22 ad l->l_selcluster = sc;
257 1.49 ad
258 1.49 ad if (opname == selop_select) {
259 1.30 rmind l->l_selbits = fds;
260 1.23 rmind l->l_selni = ni;
261 1.23 rmind } else {
262 1.23 rmind l->l_selbits = NULL;
263 1.23 rmind }
264 1.34 hannken
265 1.1 ad for (;;) {
266 1.17 rmind int ncoll;
267 1.17 rmind
268 1.34 hannken SLIST_INIT(&l->l_selwait);
269 1.34 hannken l->l_selret = 0;
270 1.34 hannken
271 1.1 ad /*
272 1.17 rmind * No need to lock. If this is overwritten by another value
273 1.17 rmind * while scanning, we will retry below. We only need to see
274 1.17 rmind * exact state from the descriptors that we are about to poll,
275 1.17 rmind * and lock activity resulting from fo_poll is enough to
276 1.17 rmind * provide an up to date value for new polling activity.
277 1.1 ad */
278 1.49 ad if (ts && (ts->tv_sec | ts->tv_nsec | direct_select) == 0) {
279 1.49 ad /* Non-blocking: no need for selrecord()/selclear() */
280 1.49 ad l->l_selflag = SEL_RESET;
281 1.49 ad } else {
282 1.49 ad l->l_selflag = SEL_SCANNING;
283 1.49 ad }
284 1.1 ad ncoll = sc->sc_ncoll;
285 1.49 ad membar_exit();
286 1.1 ad
287 1.49 ad if (opname == selop_select) {
288 1.23 rmind error = selscan((char *)fds, nf, ni, retval);
289 1.17 rmind } else {
290 1.23 rmind error = pollscan((struct pollfd *)fds, nf, retval);
291 1.17 rmind }
292 1.1 ad if (error || *retval)
293 1.1 ad break;
294 1.14 christos if (ts && (timo = gettimeleft(ts, &sleepts)) <= 0)
295 1.1 ad break;
296 1.23 rmind /*
297 1.23 rmind * Acquire the lock and perform the (re)checks. Note, if
298 1.23 rmind * collision has occured, then our state does not matter,
299 1.23 rmind * as we must perform re-scan. Therefore, check it first.
300 1.23 rmind */
301 1.23 rmind state_check:
302 1.13 ad mutex_spin_enter(lock);
303 1.23 rmind if (__predict_false(sc->sc_ncoll != ncoll)) {
304 1.23 rmind /* Collision: perform re-scan. */
305 1.23 rmind mutex_spin_exit(lock);
306 1.34 hannken selclear();
307 1.23 rmind continue;
308 1.23 rmind }
309 1.23 rmind if (__predict_true(l->l_selflag == SEL_EVENT)) {
310 1.23 rmind /* Events occured, they are set directly. */
311 1.23 rmind mutex_spin_exit(lock);
312 1.23 rmind break;
313 1.23 rmind }
314 1.23 rmind if (__predict_true(l->l_selflag == SEL_RESET)) {
315 1.23 rmind /* Events occured, but re-scan is requested. */
316 1.13 ad mutex_spin_exit(lock);
317 1.34 hannken selclear();
318 1.1 ad continue;
319 1.1 ad }
320 1.23 rmind /* Nothing happen, therefore - sleep. */
321 1.1 ad l->l_selflag = SEL_BLOCKING;
322 1.7 ad l->l_kpriority = true;
323 1.13 ad sleepq_enter(&sc->sc_sleepq, l, lock);
324 1.54 ad sleepq_enqueue(&sc->sc_sleepq, sc, opname, &select_sobj, true);
325 1.1 ad error = sleepq_block(timo, true);
326 1.23 rmind if (error != 0) {
327 1.1 ad break;
328 1.23 rmind }
329 1.23 rmind /* Awoken: need to check the state. */
330 1.23 rmind goto state_check;
331 1.1 ad }
332 1.1 ad selclear();
333 1.1 ad
334 1.34 hannken /* Add direct events if any. */
335 1.34 hannken if (l->l_selflag == SEL_EVENT) {
336 1.34 hannken KASSERT(l->l_selret != 0);
337 1.34 hannken *retval += l->l_selret;
338 1.34 hannken }
339 1.34 hannken
340 1.33 christos if (__predict_false(mask))
341 1.33 christos sigsuspendteardown(l);
342 1.33 christos
343 1.20 dsl /* select and poll are not restarted after signals... */
344 1.20 dsl if (error == ERESTART)
345 1.20 dsl return EINTR;
346 1.20 dsl if (error == EWOULDBLOCK)
347 1.20 dsl return 0;
348 1.17 rmind return error;
349 1.17 rmind }
350 1.17 rmind
351 1.17 rmind int
352 1.19 rmind selcommon(register_t *retval, int nd, fd_set *u_in, fd_set *u_ou,
353 1.19 rmind fd_set *u_ex, struct timespec *ts, sigset_t *mask)
354 1.17 rmind {
355 1.17 rmind char smallbits[howmany(FD_SETSIZE, NFDBITS) *
356 1.17 rmind sizeof(fd_mask) * 6];
357 1.17 rmind char *bits;
358 1.17 rmind int error, nf;
359 1.17 rmind size_t ni;
360 1.17 rmind
361 1.17 rmind if (nd < 0)
362 1.17 rmind return (EINVAL);
363 1.51 riastrad nf = atomic_load_consume(&curlwp->l_fd->fd_dt)->dt_nfiles;
364 1.17 rmind if (nd > nf) {
365 1.17 rmind /* forgiving; slightly wrong */
366 1.17 rmind nd = nf;
367 1.17 rmind }
368 1.17 rmind ni = howmany(nd, NFDBITS) * sizeof(fd_mask);
369 1.40 chs if (ni * 6 > sizeof(smallbits))
370 1.17 rmind bits = kmem_alloc(ni * 6, KM_SLEEP);
371 1.40 chs else
372 1.17 rmind bits = smallbits;
373 1.17 rmind
374 1.17 rmind #define getbits(name, x) \
375 1.17 rmind if (u_ ## name) { \
376 1.17 rmind error = copyin(u_ ## name, bits + ni * x, ni); \
377 1.17 rmind if (error) \
378 1.20 dsl goto fail; \
379 1.17 rmind } else \
380 1.17 rmind memset(bits + ni * x, 0, ni);
381 1.17 rmind getbits(in, 0);
382 1.17 rmind getbits(ou, 1);
383 1.17 rmind getbits(ex, 2);
384 1.17 rmind #undef getbits
385 1.1 ad
386 1.49 ad error = sel_do_scan(selop_select, bits, nd, ni, ts, mask, retval);
387 1.1 ad if (error == 0 && u_in != NULL)
388 1.1 ad error = copyout(bits + ni * 3, u_in, ni);
389 1.1 ad if (error == 0 && u_ou != NULL)
390 1.1 ad error = copyout(bits + ni * 4, u_ou, ni);
391 1.1 ad if (error == 0 && u_ex != NULL)
392 1.1 ad error = copyout(bits + ni * 5, u_ex, ni);
393 1.20 dsl fail:
394 1.1 ad if (bits != smallbits)
395 1.1 ad kmem_free(bits, ni * 6);
396 1.1 ad return (error);
397 1.1 ad }
398 1.1 ad
399 1.19 rmind static inline int
400 1.23 rmind selscan(char *bits, const int nfd, const size_t ni, register_t *retval)
401 1.1 ad {
402 1.17 rmind fd_mask *ibitp, *obitp;
403 1.23 rmind int msk, i, j, fd, n;
404 1.1 ad file_t *fp;
405 1.49 ad lwp_t *l;
406 1.1 ad
407 1.17 rmind ibitp = (fd_mask *)(bits + ni * 0);
408 1.17 rmind obitp = (fd_mask *)(bits + ni * 3);
409 1.1 ad n = 0;
410 1.49 ad l = curlwp;
411 1.17 rmind
412 1.34 hannken memset(obitp, 0, ni * 3);
413 1.1 ad for (msk = 0; msk < 3; msk++) {
414 1.1 ad for (i = 0; i < nfd; i += NFDBITS) {
415 1.23 rmind fd_mask ibits, obits;
416 1.23 rmind
417 1.35 hannken ibits = *ibitp;
418 1.1 ad obits = 0;
419 1.1 ad while ((j = ffs(ibits)) && (fd = i + --j) < nfd) {
420 1.47 msaitoh ibits &= ~(1U << j);
421 1.1 ad if ((fp = fd_getfile(fd)) == NULL)
422 1.1 ad return (EBADF);
423 1.23 rmind /*
424 1.23 rmind * Setup an argument to selrecord(), which is
425 1.23 rmind * a file descriptor number.
426 1.23 rmind */
427 1.49 ad l->l_selrec = fd;
428 1.23 rmind if ((*fp->f_ops->fo_poll)(fp, sel_flag[msk])) {
429 1.49 ad if (!direct_select) {
430 1.49 ad /*
431 1.49 ad * Have events: do nothing in
432 1.49 ad * selrecord().
433 1.49 ad */
434 1.49 ad l->l_selflag = SEL_RESET;
435 1.49 ad }
436 1.47 msaitoh obits |= (1U << j);
437 1.1 ad n++;
438 1.1 ad }
439 1.1 ad fd_putfile(fd);
440 1.1 ad }
441 1.34 hannken if (obits != 0) {
442 1.36 rmind if (direct_select) {
443 1.36 rmind kmutex_t *lock;
444 1.49 ad lock = l->l_selcluster->sc_lock;
445 1.35 hannken mutex_spin_enter(lock);
446 1.36 rmind *obitp |= obits;
447 1.35 hannken mutex_spin_exit(lock);
448 1.36 rmind } else {
449 1.36 rmind *obitp |= obits;
450 1.36 rmind }
451 1.34 hannken }
452 1.35 hannken ibitp++;
453 1.34 hannken obitp++;
454 1.1 ad }
455 1.1 ad }
456 1.1 ad *retval = n;
457 1.1 ad return (0);
458 1.1 ad }
459 1.1 ad
460 1.1 ad /*
461 1.1 ad * Poll system call.
462 1.1 ad */
463 1.1 ad int
464 1.1 ad sys_poll(struct lwp *l, const struct sys_poll_args *uap, register_t *retval)
465 1.1 ad {
466 1.1 ad /* {
467 1.1 ad syscallarg(struct pollfd *) fds;
468 1.1 ad syscallarg(u_int) nfds;
469 1.1 ad syscallarg(int) timeout;
470 1.1 ad } */
471 1.14 christos struct timespec ats, *ts = NULL;
472 1.1 ad
473 1.1 ad if (SCARG(uap, timeout) != INFTIM) {
474 1.14 christos ats.tv_sec = SCARG(uap, timeout) / 1000;
475 1.14 christos ats.tv_nsec = (SCARG(uap, timeout) % 1000) * 1000000;
476 1.14 christos ts = &ats;
477 1.1 ad }
478 1.1 ad
479 1.19 rmind return pollcommon(retval, SCARG(uap, fds), SCARG(uap, nfds), ts, NULL);
480 1.1 ad }
481 1.1 ad
482 1.1 ad /*
483 1.1 ad * Poll system call.
484 1.1 ad */
485 1.1 ad int
486 1.12 christos sys___pollts50(struct lwp *l, const struct sys___pollts50_args *uap,
487 1.12 christos register_t *retval)
488 1.1 ad {
489 1.1 ad /* {
490 1.1 ad syscallarg(struct pollfd *) fds;
491 1.1 ad syscallarg(u_int) nfds;
492 1.1 ad syscallarg(const struct timespec *) ts;
493 1.1 ad syscallarg(const sigset_t *) mask;
494 1.1 ad } */
495 1.14 christos struct timespec ats, *ts = NULL;
496 1.1 ad sigset_t amask, *mask = NULL;
497 1.1 ad int error;
498 1.1 ad
499 1.1 ad if (SCARG(uap, ts)) {
500 1.1 ad error = copyin(SCARG(uap, ts), &ats, sizeof(ats));
501 1.1 ad if (error)
502 1.1 ad return error;
503 1.14 christos ts = &ats;
504 1.1 ad }
505 1.1 ad if (SCARG(uap, mask)) {
506 1.1 ad error = copyin(SCARG(uap, mask), &amask, sizeof(amask));
507 1.1 ad if (error)
508 1.1 ad return error;
509 1.1 ad mask = &amask;
510 1.1 ad }
511 1.1 ad
512 1.19 rmind return pollcommon(retval, SCARG(uap, fds), SCARG(uap, nfds), ts, mask);
513 1.1 ad }
514 1.1 ad
515 1.1 ad int
516 1.19 rmind pollcommon(register_t *retval, struct pollfd *u_fds, u_int nfds,
517 1.14 christos struct timespec *ts, sigset_t *mask)
518 1.1 ad {
519 1.11 yamt struct pollfd smallfds[32];
520 1.11 yamt struct pollfd *fds;
521 1.17 rmind int error;
522 1.20 dsl size_t ni;
523 1.1 ad
524 1.45 christos if (nfds > curlwp->l_proc->p_rlimit[RLIMIT_NOFILE].rlim_max + 1000) {
525 1.20 dsl /*
526 1.43 christos * Prevent userland from causing over-allocation.
527 1.43 christos * Raising the default limit too high can still cause
528 1.43 christos * a lot of memory to be allocated, but this also means
529 1.43 christos * that the file descriptor array will also be large.
530 1.43 christos *
531 1.43 christos * To reduce the memory requirements here, we could
532 1.43 christos * process the 'fds' array in chunks, but that
533 1.20 dsl * is a lot of code that isn't normally useful.
534 1.20 dsl * (Or just move the copyin/out into pollscan().)
535 1.43 christos *
536 1.20 dsl * Historically the code silently truncated 'fds' to
537 1.20 dsl * dt_nfiles entries - but that does cause issues.
538 1.44 christos *
539 1.44 christos * Using the max limit equivalent to sysctl
540 1.44 christos * kern.maxfiles is the moral equivalent of OPEN_MAX
541 1.45 christos * as specified by POSIX.
542 1.45 christos *
543 1.45 christos * We add a slop of 1000 in case the resource limit was
544 1.45 christos * changed after opening descriptors or the same descriptor
545 1.45 christos * was specified more than once.
546 1.20 dsl */
547 1.20 dsl return EINVAL;
548 1.1 ad }
549 1.1 ad ni = nfds * sizeof(struct pollfd);
550 1.40 chs if (ni > sizeof(smallfds))
551 1.11 yamt fds = kmem_alloc(ni, KM_SLEEP);
552 1.40 chs else
553 1.11 yamt fds = smallfds;
554 1.1 ad
555 1.11 yamt error = copyin(u_fds, fds, ni);
556 1.1 ad if (error)
557 1.20 dsl goto fail;
558 1.1 ad
559 1.49 ad error = sel_do_scan(selop_poll, fds, nfds, ni, ts, mask, retval);
560 1.1 ad if (error == 0)
561 1.11 yamt error = copyout(fds, u_fds, ni);
562 1.20 dsl fail:
563 1.11 yamt if (fds != smallfds)
564 1.11 yamt kmem_free(fds, ni);
565 1.1 ad return (error);
566 1.1 ad }
567 1.1 ad
568 1.19 rmind static inline int
569 1.23 rmind pollscan(struct pollfd *fds, const int nfd, register_t *retval)
570 1.1 ad {
571 1.1 ad file_t *fp;
572 1.34 hannken int i, n = 0, revents;
573 1.1 ad
574 1.1 ad for (i = 0; i < nfd; i++, fds++) {
575 1.34 hannken fds->revents = 0;
576 1.1 ad if (fds->fd < 0) {
577 1.34 hannken revents = 0;
578 1.1 ad } else if ((fp = fd_getfile(fds->fd)) == NULL) {
579 1.34 hannken revents = POLLNVAL;
580 1.1 ad } else {
581 1.23 rmind /*
582 1.23 rmind * Perform poll: registers select request or returns
583 1.23 rmind * the events which are set. Setup an argument for
584 1.23 rmind * selrecord(), which is a pointer to struct pollfd.
585 1.23 rmind */
586 1.23 rmind curlwp->l_selrec = (uintptr_t)fds;
587 1.34 hannken revents = (*fp->f_ops->fo_poll)(fp,
588 1.1 ad fds->events | POLLERR | POLLHUP);
589 1.1 ad fd_putfile(fds->fd);
590 1.1 ad }
591 1.34 hannken if (revents) {
592 1.49 ad if (!direct_select) {
593 1.49 ad /* Have events: do nothing in selrecord(). */
594 1.49 ad curlwp->l_selflag = SEL_RESET;
595 1.49 ad }
596 1.34 hannken fds->revents = revents;
597 1.34 hannken n++;
598 1.34 hannken }
599 1.1 ad }
600 1.1 ad *retval = n;
601 1.1 ad return (0);
602 1.1 ad }
603 1.1 ad
604 1.1 ad int
605 1.1 ad seltrue(dev_t dev, int events, lwp_t *l)
606 1.1 ad {
607 1.1 ad
608 1.1 ad return (events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
609 1.1 ad }
610 1.1 ad
611 1.1 ad /*
612 1.1 ad * Record a select request. Concurrency issues:
613 1.1 ad *
614 1.1 ad * The caller holds the same lock across calls to selrecord() and
615 1.4 yamt * selnotify(), so we don't need to consider a concurrent wakeup
616 1.1 ad * while in this routine.
617 1.1 ad *
618 1.1 ad * The only activity we need to guard against is selclear(), called by
619 1.17 rmind * another thread that is exiting sel_do_scan().
620 1.1 ad * `sel_lwp' can only become non-NULL while the caller's lock is held,
621 1.1 ad * so it cannot become non-NULL due to a change made by another thread
622 1.1 ad * while we are in this routine. It can only become _NULL_ due to a
623 1.1 ad * call to selclear().
624 1.1 ad *
625 1.1 ad * If it is non-NULL and != selector there is the potential for
626 1.1 ad * selclear() to be called by another thread. If either of those
627 1.1 ad * conditions are true, we're not interested in touching the `named
628 1.1 ad * waiter' part of the selinfo record because we need to record a
629 1.1 ad * collision. Hence there is no need for additional locking in this
630 1.1 ad * routine.
631 1.1 ad */
632 1.1 ad void
633 1.1 ad selrecord(lwp_t *selector, struct selinfo *sip)
634 1.1 ad {
635 1.22 ad selcluster_t *sc;
636 1.1 ad lwp_t *other;
637 1.1 ad
638 1.1 ad KASSERT(selector == curlwp);
639 1.1 ad
640 1.22 ad sc = selector->l_selcluster;
641 1.1 ad other = sip->sel_lwp;
642 1.1 ad
643 1.49 ad if (selector->l_selflag == SEL_RESET) {
644 1.49 ad /* 0. We're not going to block - will poll again if needed. */
645 1.49 ad } else if (other == selector) {
646 1.23 rmind /* 1. We (selector) already claimed to be the first LWP. */
647 1.37 riastrad KASSERT(sip->sel_cluster == sc);
648 1.1 ad } else if (other == NULL) {
649 1.1 ad /*
650 1.23 rmind * 2. No first LWP, therefore we (selector) are the first.
651 1.23 rmind *
652 1.23 rmind * There may be unnamed waiters (collisions). Issue a memory
653 1.23 rmind * barrier to ensure that we access sel_lwp (above) before
654 1.23 rmind * other fields - this guards against a call to selclear().
655 1.1 ad */
656 1.1 ad membar_enter();
657 1.1 ad sip->sel_lwp = selector;
658 1.1 ad SLIST_INSERT_HEAD(&selector->l_selwait, sip, sel_chain);
659 1.23 rmind /* Copy the argument, which is for selnotify(). */
660 1.23 rmind sip->sel_fdinfo = selector->l_selrec;
661 1.22 ad /* Replace selinfo's lock with the chosen cluster's lock. */
662 1.22 ad sip->sel_cluster = sc;
663 1.1 ad } else {
664 1.23 rmind /* 3. Multiple waiters: record a collision. */
665 1.1 ad sip->sel_collision |= sc->sc_mask;
666 1.22 ad KASSERT(sip->sel_cluster != NULL);
667 1.1 ad }
668 1.1 ad }
669 1.1 ad
670 1.1 ad /*
671 1.54.2.1 thorpej * Record a knote.
672 1.54.2.1 thorpej *
673 1.54.2.1 thorpej * The caller holds the same lock as for selrecord().
674 1.54.2.1 thorpej */
675 1.54.2.1 thorpej void
676 1.54.2.1 thorpej selrecord_knote(struct selinfo *sip, struct knote *kn)
677 1.54.2.1 thorpej {
678 1.54.2.1 thorpej SLIST_INSERT_HEAD(&sip->sel_klist, kn, kn_selnext);
679 1.54.2.1 thorpej }
680 1.54.2.1 thorpej
681 1.54.2.1 thorpej /*
682 1.54.2.1 thorpej * Remove a knote.
683 1.54.2.1 thorpej *
684 1.54.2.1 thorpej * The caller holds the same lock as for selrecord().
685 1.54.2.1 thorpej */
686 1.54.2.1 thorpej void
687 1.54.2.1 thorpej selremove_knote(struct selinfo *sip, struct knote *kn)
688 1.54.2.1 thorpej {
689 1.54.2.1 thorpej SLIST_REMOVE(&sip->sel_klist, kn, knote, kn_selnext);
690 1.54.2.1 thorpej }
691 1.54.2.1 thorpej
692 1.54.2.1 thorpej /*
693 1.23 rmind * sel_setevents: a helper function for selnotify(), to set the events
694 1.23 rmind * for LWP sleeping in selcommon() or pollcommon().
695 1.23 rmind */
696 1.30 rmind static inline bool
697 1.23 rmind sel_setevents(lwp_t *l, struct selinfo *sip, const int events)
698 1.23 rmind {
699 1.23 rmind const int oflag = l->l_selflag;
700 1.30 rmind int ret = 0;
701 1.23 rmind
702 1.23 rmind /*
703 1.23 rmind * If we require re-scan or it was required by somebody else,
704 1.23 rmind * then just (re)set SEL_RESET and return.
705 1.23 rmind */
706 1.23 rmind if (__predict_false(events == 0 || oflag == SEL_RESET)) {
707 1.23 rmind l->l_selflag = SEL_RESET;
708 1.30 rmind return true;
709 1.23 rmind }
710 1.23 rmind /*
711 1.23 rmind * Direct set. Note: select state of LWP is locked. First,
712 1.23 rmind * determine whether it is selcommon() or pollcommon().
713 1.23 rmind */
714 1.23 rmind if (l->l_selbits != NULL) {
715 1.30 rmind const size_t ni = l->l_selni;
716 1.23 rmind fd_mask *fds = (fd_mask *)l->l_selbits;
717 1.30 rmind fd_mask *ofds = (fd_mask *)((char *)fds + ni * 3);
718 1.30 rmind const int fd = sip->sel_fdinfo, fbit = 1 << (fd & __NFDMASK);
719 1.25 rmind const int idx = fd >> __NFDSHIFT;
720 1.23 rmind int n;
721 1.23 rmind
722 1.23 rmind for (n = 0; n < 3; n++) {
723 1.34 hannken if ((fds[idx] & fbit) != 0 &&
724 1.34 hannken (ofds[idx] & fbit) == 0 &&
725 1.34 hannken (sel_flag[n] & events)) {
726 1.30 rmind ofds[idx] |= fbit;
727 1.30 rmind ret++;
728 1.23 rmind }
729 1.23 rmind fds = (fd_mask *)((char *)fds + ni);
730 1.30 rmind ofds = (fd_mask *)((char *)ofds + ni);
731 1.23 rmind }
732 1.23 rmind } else {
733 1.23 rmind struct pollfd *pfd = (void *)sip->sel_fdinfo;
734 1.30 rmind int revents = events & (pfd->events | POLLERR | POLLHUP);
735 1.30 rmind
736 1.30 rmind if (revents) {
737 1.34 hannken if (pfd->revents == 0)
738 1.34 hannken ret = 1;
739 1.30 rmind pfd->revents |= revents;
740 1.30 rmind }
741 1.30 rmind }
742 1.30 rmind /* Check whether there are any events to return. */
743 1.30 rmind if (!ret) {
744 1.30 rmind return false;
745 1.23 rmind }
746 1.23 rmind /* Indicate direct set and note the event (cluster lock is held). */
747 1.23 rmind l->l_selflag = SEL_EVENT;
748 1.30 rmind l->l_selret += ret;
749 1.30 rmind return true;
750 1.23 rmind }
751 1.23 rmind
752 1.23 rmind /*
753 1.1 ad * Do a wakeup when a selectable event occurs. Concurrency issues:
754 1.1 ad *
755 1.1 ad * As per selrecord(), the caller's object lock is held. If there
756 1.22 ad * is a named waiter, we must acquire the associated selcluster's lock
757 1.1 ad * in order to synchronize with selclear() and pollers going to sleep
758 1.17 rmind * in sel_do_scan().
759 1.1 ad *
760 1.22 ad * sip->sel_cluser cannot change at this point, as it is only changed
761 1.1 ad * in selrecord(), and concurrent calls to selrecord() are locked
762 1.1 ad * out by the caller.
763 1.1 ad */
764 1.1 ad void
765 1.1 ad selnotify(struct selinfo *sip, int events, long knhint)
766 1.1 ad {
767 1.22 ad selcluster_t *sc;
768 1.49 ad uint64_t mask;
769 1.16 rmind int index, oflag;
770 1.1 ad lwp_t *l;
771 1.13 ad kmutex_t *lock;
772 1.1 ad
773 1.1 ad KNOTE(&sip->sel_klist, knhint);
774 1.1 ad
775 1.1 ad if (sip->sel_lwp != NULL) {
776 1.1 ad /* One named LWP is waiting. */
777 1.22 ad sc = sip->sel_cluster;
778 1.13 ad lock = sc->sc_lock;
779 1.13 ad mutex_spin_enter(lock);
780 1.1 ad /* Still there? */
781 1.1 ad if (sip->sel_lwp != NULL) {
782 1.23 rmind /*
783 1.23 rmind * Set the events for our LWP and indicate that.
784 1.23 rmind * Otherwise, request for a full re-scan.
785 1.23 rmind */
786 1.1 ad l = sip->sel_lwp;
787 1.23 rmind oflag = l->l_selflag;
788 1.36 rmind
789 1.36 rmind if (!direct_select) {
790 1.36 rmind l->l_selflag = SEL_RESET;
791 1.36 rmind } else if (!sel_setevents(l, sip, events)) {
792 1.30 rmind /* No events to return. */
793 1.30 rmind mutex_spin_exit(lock);
794 1.30 rmind return;
795 1.30 rmind }
796 1.36 rmind
797 1.1 ad /*
798 1.1 ad * If thread is sleeping, wake it up. If it's not
799 1.1 ad * yet asleep, it will notice the change in state
800 1.1 ad * and will re-poll the descriptors.
801 1.1 ad */
802 1.13 ad if (oflag == SEL_BLOCKING && l->l_mutex == lock) {
803 1.1 ad KASSERT(l->l_wchan == sc);
804 1.16 rmind sleepq_unsleep(l, false);
805 1.1 ad }
806 1.1 ad }
807 1.13 ad mutex_spin_exit(lock);
808 1.1 ad }
809 1.1 ad
810 1.1 ad if ((mask = sip->sel_collision) != 0) {
811 1.1 ad /*
812 1.1 ad * There was a collision (multiple waiters): we must
813 1.1 ad * inform all potentially interested waiters.
814 1.1 ad */
815 1.1 ad sip->sel_collision = 0;
816 1.3 ad do {
817 1.49 ad index = ffs64(mask) - 1;
818 1.49 ad mask ^= __BIT(index);
819 1.22 ad sc = selcluster[index];
820 1.13 ad lock = sc->sc_lock;
821 1.13 ad mutex_spin_enter(lock);
822 1.1 ad sc->sc_ncoll++;
823 1.13 ad sleepq_wake(&sc->sc_sleepq, sc, (u_int)-1, lock);
824 1.3 ad } while (__predict_false(mask != 0));
825 1.1 ad }
826 1.1 ad }
827 1.1 ad
828 1.1 ad /*
829 1.1 ad * Remove an LWP from all objects that it is waiting for. Concurrency
830 1.1 ad * issues:
831 1.1 ad *
832 1.1 ad * The object owner's (e.g. device driver) lock is not held here. Calls
833 1.1 ad * can be made to selrecord() and we do not synchronize against those
834 1.1 ad * directly using locks. However, we use `sel_lwp' to lock out changes.
835 1.1 ad * Before clearing it we must use memory barriers to ensure that we can
836 1.1 ad * safely traverse the list of selinfo records.
837 1.1 ad */
838 1.1 ad static void
839 1.1 ad selclear(void)
840 1.1 ad {
841 1.1 ad struct selinfo *sip, *next;
842 1.22 ad selcluster_t *sc;
843 1.1 ad lwp_t *l;
844 1.13 ad kmutex_t *lock;
845 1.1 ad
846 1.1 ad l = curlwp;
847 1.22 ad sc = l->l_selcluster;
848 1.13 ad lock = sc->sc_lock;
849 1.1 ad
850 1.49 ad /*
851 1.49 ad * If the request was non-blocking, or we found events on the first
852 1.49 ad * descriptor, there will be no need to clear anything - avoid
853 1.49 ad * taking the lock.
854 1.49 ad */
855 1.49 ad if (SLIST_EMPTY(&l->l_selwait)) {
856 1.49 ad return;
857 1.49 ad }
858 1.49 ad
859 1.13 ad mutex_spin_enter(lock);
860 1.1 ad for (sip = SLIST_FIRST(&l->l_selwait); sip != NULL; sip = next) {
861 1.1 ad KASSERT(sip->sel_lwp == l);
862 1.22 ad KASSERT(sip->sel_cluster == l->l_selcluster);
863 1.22 ad
864 1.1 ad /*
865 1.1 ad * Read link to next selinfo record, if any.
866 1.1 ad * It's no longer safe to touch `sip' after clearing
867 1.1 ad * `sel_lwp', so ensure that the read of `sel_chain'
868 1.1 ad * completes before the clearing of sel_lwp becomes
869 1.1 ad * globally visible.
870 1.1 ad */
871 1.1 ad next = SLIST_NEXT(sip, sel_chain);
872 1.1 ad membar_exit();
873 1.1 ad /* Release the record for another named waiter to use. */
874 1.1 ad sip->sel_lwp = NULL;
875 1.1 ad }
876 1.13 ad mutex_spin_exit(lock);
877 1.1 ad }
878 1.1 ad
879 1.1 ad /*
880 1.1 ad * Initialize the select/poll system calls. Called once for each
881 1.1 ad * CPU in the system, as they are attached.
882 1.1 ad */
883 1.1 ad void
884 1.1 ad selsysinit(struct cpu_info *ci)
885 1.1 ad {
886 1.22 ad selcluster_t *sc;
887 1.22 ad u_int index;
888 1.1 ad
889 1.22 ad /* If already a cluster in place for this bit, re-use. */
890 1.22 ad index = cpu_index(ci) & SELCLUSTERMASK;
891 1.22 ad sc = selcluster[index];
892 1.22 ad if (sc == NULL) {
893 1.22 ad sc = kmem_alloc(roundup2(sizeof(selcluster_t),
894 1.22 ad coherency_unit) + coherency_unit, KM_SLEEP);
895 1.22 ad sc = (void *)roundup2((uintptr_t)sc, coherency_unit);
896 1.22 ad sc->sc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
897 1.22 ad sleepq_init(&sc->sc_sleepq);
898 1.22 ad sc->sc_ncoll = 0;
899 1.46 msaitoh sc->sc_mask = __BIT(index);
900 1.22 ad selcluster[index] = sc;
901 1.22 ad }
902 1.22 ad ci->ci_data.cpu_selcluster = sc;
903 1.1 ad }
904 1.1 ad
905 1.1 ad /*
906 1.1 ad * Initialize a selinfo record.
907 1.1 ad */
908 1.1 ad void
909 1.1 ad selinit(struct selinfo *sip)
910 1.1 ad {
911 1.1 ad
912 1.1 ad memset(sip, 0, sizeof(*sip));
913 1.1 ad }
914 1.1 ad
915 1.1 ad /*
916 1.1 ad * Destroy a selinfo record. The owning object must not gain new
917 1.1 ad * references while this is in progress: all activity on the record
918 1.1 ad * must be stopped.
919 1.1 ad *
920 1.1 ad * Concurrency issues: we only need guard against a call to selclear()
921 1.17 rmind * by a thread exiting sel_do_scan(). The caller has prevented further
922 1.17 rmind * references being made to the selinfo record via selrecord(), and it
923 1.23 rmind * will not call selnotify() again.
924 1.1 ad */
925 1.1 ad void
926 1.1 ad seldestroy(struct selinfo *sip)
927 1.1 ad {
928 1.22 ad selcluster_t *sc;
929 1.13 ad kmutex_t *lock;
930 1.1 ad lwp_t *l;
931 1.1 ad
932 1.1 ad if (sip->sel_lwp == NULL)
933 1.1 ad return;
934 1.1 ad
935 1.1 ad /*
936 1.22 ad * Lock out selclear(). The selcluster pointer can't change while
937 1.1 ad * we are here since it is only ever changed in selrecord(),
938 1.1 ad * and that will not be entered again for this record because
939 1.1 ad * it is dying.
940 1.1 ad */
941 1.22 ad KASSERT(sip->sel_cluster != NULL);
942 1.22 ad sc = sip->sel_cluster;
943 1.13 ad lock = sc->sc_lock;
944 1.13 ad mutex_spin_enter(lock);
945 1.1 ad if ((l = sip->sel_lwp) != NULL) {
946 1.1 ad /*
947 1.1 ad * This should rarely happen, so although SLIST_REMOVE()
948 1.1 ad * is slow, using it here is not a problem.
949 1.1 ad */
950 1.22 ad KASSERT(l->l_selcluster == sc);
951 1.1 ad SLIST_REMOVE(&l->l_selwait, sip, selinfo, sel_chain);
952 1.1 ad sip->sel_lwp = NULL;
953 1.1 ad }
954 1.13 ad mutex_spin_exit(lock);
955 1.1 ad }
956 1.1 ad
957 1.36 rmind /*
958 1.36 rmind * System control nodes.
959 1.36 rmind */
960 1.36 rmind SYSCTL_SETUP(sysctl_select_setup, "sysctl select setup")
961 1.36 rmind {
962 1.36 rmind
963 1.38 pooka sysctl_createv(clog, 0, NULL, NULL,
964 1.36 rmind CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
965 1.36 rmind CTLTYPE_INT, "direct_select",
966 1.36 rmind SYSCTL_DESCR("Enable/disable direct select (for testing)"),
967 1.36 rmind NULL, 0, &direct_select, 0,
968 1.38 pooka CTL_KERN, CTL_CREATE, CTL_EOL);
969 1.36 rmind }
970