sys_select.c revision 1.6 1 1.6 martin /* $NetBSD: sys_select.c,v 1.6 2008/04/28 20:24:04 martin Exp $ */
2 1.1 ad
3 1.1 ad /*-
4 1.1 ad * Copyright (c) 2007, 2008 The NetBSD Foundation, Inc.
5 1.1 ad * All rights reserved.
6 1.1 ad *
7 1.1 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.1 ad * by Andrew Doran.
9 1.1 ad *
10 1.1 ad * Redistribution and use in source and binary forms, with or without
11 1.1 ad * modification, are permitted provided that the following conditions
12 1.1 ad * are met:
13 1.1 ad * 1. Redistributions of source code must retain the above copyright
14 1.1 ad * notice, this list of conditions and the following disclaimer.
15 1.1 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 ad * notice, this list of conditions and the following disclaimer in the
17 1.1 ad * documentation and/or other materials provided with the distribution.
18 1.1 ad *
19 1.1 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.1 ad */
31 1.1 ad
32 1.1 ad /*
33 1.1 ad * Copyright (c) 1982, 1986, 1989, 1993
34 1.1 ad * The Regents of the University of California. All rights reserved.
35 1.1 ad * (c) UNIX System Laboratories, Inc.
36 1.1 ad * All or some portions of this file are derived from material licensed
37 1.1 ad * to the University of California by American Telephone and Telegraph
38 1.1 ad * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39 1.1 ad * the permission of UNIX System Laboratories, Inc.
40 1.1 ad *
41 1.1 ad * Redistribution and use in source and binary forms, with or without
42 1.1 ad * modification, are permitted provided that the following conditions
43 1.1 ad * are met:
44 1.1 ad * 1. Redistributions of source code must retain the above copyright
45 1.1 ad * notice, this list of conditions and the following disclaimer.
46 1.1 ad * 2. Redistributions in binary form must reproduce the above copyright
47 1.1 ad * notice, this list of conditions and the following disclaimer in the
48 1.1 ad * documentation and/or other materials provided with the distribution.
49 1.1 ad * 3. Neither the name of the University nor the names of its contributors
50 1.1 ad * may be used to endorse or promote products derived from this software
51 1.1 ad * without specific prior written permission.
52 1.1 ad *
53 1.1 ad * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 1.1 ad * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 1.1 ad * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 1.1 ad * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 1.1 ad * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 1.1 ad * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 1.1 ad * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 1.1 ad * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 1.1 ad * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 1.1 ad * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 1.1 ad * SUCH DAMAGE.
64 1.1 ad *
65 1.1 ad * @(#)sys_generic.c 8.9 (Berkeley) 2/14/95
66 1.1 ad */
67 1.1 ad
68 1.1 ad /*
69 1.1 ad * System calls relating to files.
70 1.1 ad */
71 1.1 ad
72 1.1 ad #include <sys/cdefs.h>
73 1.6 martin __KERNEL_RCSID(0, "$NetBSD: sys_select.c,v 1.6 2008/04/28 20:24:04 martin Exp $");
74 1.1 ad
75 1.1 ad #include <sys/param.h>
76 1.1 ad #include <sys/systm.h>
77 1.1 ad #include <sys/filedesc.h>
78 1.1 ad #include <sys/ioctl.h>
79 1.1 ad #include <sys/file.h>
80 1.1 ad #include <sys/proc.h>
81 1.1 ad #include <sys/socketvar.h>
82 1.1 ad #include <sys/signalvar.h>
83 1.1 ad #include <sys/uio.h>
84 1.1 ad #include <sys/kernel.h>
85 1.1 ad #include <sys/stat.h>
86 1.1 ad #include <sys/poll.h>
87 1.1 ad #include <sys/vnode.h>
88 1.1 ad #include <sys/mount.h>
89 1.1 ad #include <sys/syscallargs.h>
90 1.1 ad #include <sys/cpu.h>
91 1.1 ad #include <sys/atomic.h>
92 1.1 ad #include <sys/socketvar.h>
93 1.1 ad #include <sys/sleepq.h>
94 1.1 ad
95 1.1 ad /* Flags for lwp::l_selflag. */
96 1.1 ad #define SEL_RESET 0 /* awoken, interrupted, or not yet polling */
97 1.1 ad #define SEL_SCANNING 1 /* polling descriptors */
98 1.1 ad #define SEL_BLOCKING 2 /* about to block on select_cv */
99 1.1 ad
100 1.1 ad /* Per-CPU state for select()/poll(). */
101 1.1 ad #if MAXCPUS > 32
102 1.1 ad #error adjust this code
103 1.1 ad #endif
104 1.1 ad typedef struct selcpu {
105 1.1 ad kmutex_t sc_lock;
106 1.1 ad sleepq_t sc_sleepq;
107 1.1 ad int sc_ncoll;
108 1.1 ad uint32_t sc_mask;
109 1.1 ad } selcpu_t;
110 1.1 ad
111 1.1 ad static int selscan(lwp_t *, fd_mask *, fd_mask *, int, register_t *);
112 1.1 ad static int pollscan(lwp_t *, struct pollfd *, int, register_t *);
113 1.1 ad static void selclear(void);
114 1.1 ad
115 1.1 ad static syncobj_t select_sobj = {
116 1.1 ad SOBJ_SLEEPQ_FIFO,
117 1.1 ad sleepq_unsleep,
118 1.1 ad sleepq_changepri,
119 1.1 ad sleepq_lendpri,
120 1.1 ad syncobj_noowner,
121 1.1 ad };
122 1.1 ad
123 1.1 ad /*
124 1.1 ad * Select system call.
125 1.1 ad */
126 1.1 ad int
127 1.1 ad sys_pselect(struct lwp *l, const struct sys_pselect_args *uap, register_t *retval)
128 1.1 ad {
129 1.1 ad /* {
130 1.1 ad syscallarg(int) nd;
131 1.1 ad syscallarg(fd_set *) in;
132 1.1 ad syscallarg(fd_set *) ou;
133 1.1 ad syscallarg(fd_set *) ex;
134 1.1 ad syscallarg(const struct timespec *) ts;
135 1.1 ad syscallarg(sigset_t *) mask;
136 1.1 ad } */
137 1.1 ad struct timespec ats;
138 1.1 ad struct timeval atv, *tv = NULL;
139 1.1 ad sigset_t amask, *mask = NULL;
140 1.1 ad int error;
141 1.1 ad
142 1.1 ad if (SCARG(uap, ts)) {
143 1.1 ad error = copyin(SCARG(uap, ts), &ats, sizeof(ats));
144 1.1 ad if (error)
145 1.1 ad return error;
146 1.1 ad atv.tv_sec = ats.tv_sec;
147 1.1 ad atv.tv_usec = ats.tv_nsec / 1000;
148 1.1 ad tv = &atv;
149 1.1 ad }
150 1.1 ad if (SCARG(uap, mask) != NULL) {
151 1.1 ad error = copyin(SCARG(uap, mask), &amask, sizeof(amask));
152 1.1 ad if (error)
153 1.1 ad return error;
154 1.1 ad mask = &amask;
155 1.1 ad }
156 1.1 ad
157 1.1 ad return selcommon(l, retval, SCARG(uap, nd), SCARG(uap, in),
158 1.1 ad SCARG(uap, ou), SCARG(uap, ex), tv, mask);
159 1.1 ad }
160 1.1 ad
161 1.1 ad int
162 1.1 ad inittimeleft(struct timeval *tv, struct timeval *sleeptv)
163 1.1 ad {
164 1.1 ad if (itimerfix(tv))
165 1.1 ad return -1;
166 1.1 ad getmicrouptime(sleeptv);
167 1.1 ad return 0;
168 1.1 ad }
169 1.1 ad
170 1.1 ad int
171 1.1 ad gettimeleft(struct timeval *tv, struct timeval *sleeptv)
172 1.1 ad {
173 1.1 ad /*
174 1.1 ad * We have to recalculate the timeout on every retry.
175 1.1 ad */
176 1.1 ad struct timeval slepttv;
177 1.1 ad /*
178 1.1 ad * reduce tv by elapsed time
179 1.1 ad * based on monotonic time scale
180 1.1 ad */
181 1.1 ad getmicrouptime(&slepttv);
182 1.1 ad timeradd(tv, sleeptv, tv);
183 1.1 ad timersub(tv, &slepttv, tv);
184 1.1 ad *sleeptv = slepttv;
185 1.1 ad return tvtohz(tv);
186 1.1 ad }
187 1.1 ad
188 1.1 ad int
189 1.1 ad sys_select(struct lwp *l, const struct sys_select_args *uap, register_t *retval)
190 1.1 ad {
191 1.1 ad /* {
192 1.1 ad syscallarg(int) nd;
193 1.1 ad syscallarg(fd_set *) in;
194 1.1 ad syscallarg(fd_set *) ou;
195 1.1 ad syscallarg(fd_set *) ex;
196 1.1 ad syscallarg(struct timeval *) tv;
197 1.1 ad } */
198 1.1 ad struct timeval atv, *tv = NULL;
199 1.1 ad int error;
200 1.1 ad
201 1.1 ad if (SCARG(uap, tv)) {
202 1.1 ad error = copyin(SCARG(uap, tv), (void *)&atv,
203 1.1 ad sizeof(atv));
204 1.1 ad if (error)
205 1.1 ad return error;
206 1.1 ad tv = &atv;
207 1.1 ad }
208 1.1 ad
209 1.1 ad return selcommon(l, retval, SCARG(uap, nd), SCARG(uap, in),
210 1.1 ad SCARG(uap, ou), SCARG(uap, ex), tv, NULL);
211 1.1 ad }
212 1.1 ad
213 1.1 ad int
214 1.1 ad selcommon(lwp_t *l, register_t *retval, int nd, fd_set *u_in,
215 1.1 ad fd_set *u_ou, fd_set *u_ex, struct timeval *tv, sigset_t *mask)
216 1.1 ad {
217 1.1 ad char smallbits[howmany(FD_SETSIZE, NFDBITS) *
218 1.1 ad sizeof(fd_mask) * 6];
219 1.1 ad proc_t * const p = l->l_proc;
220 1.1 ad char *bits;
221 1.1 ad int ncoll, error, timo;
222 1.1 ad size_t ni;
223 1.1 ad sigset_t oldmask;
224 1.1 ad struct timeval sleeptv;
225 1.1 ad selcpu_t *sc;
226 1.1 ad
227 1.1 ad error = 0;
228 1.1 ad if (nd < 0)
229 1.1 ad return (EINVAL);
230 1.1 ad if (nd > p->p_fd->fd_nfiles) {
231 1.1 ad /* forgiving; slightly wrong */
232 1.1 ad nd = p->p_fd->fd_nfiles;
233 1.1 ad }
234 1.1 ad ni = howmany(nd, NFDBITS) * sizeof(fd_mask);
235 1.1 ad if (ni * 6 > sizeof(smallbits))
236 1.1 ad bits = kmem_alloc(ni * 6, KM_SLEEP);
237 1.1 ad else
238 1.1 ad bits = smallbits;
239 1.1 ad
240 1.1 ad #define getbits(name, x) \
241 1.1 ad if (u_ ## name) { \
242 1.1 ad error = copyin(u_ ## name, bits + ni * x, ni); \
243 1.1 ad if (error) \
244 1.1 ad goto done; \
245 1.1 ad } else \
246 1.1 ad memset(bits + ni * x, 0, ni);
247 1.1 ad getbits(in, 0);
248 1.1 ad getbits(ou, 1);
249 1.1 ad getbits(ex, 2);
250 1.1 ad #undef getbits
251 1.1 ad
252 1.1 ad timo = 0;
253 1.1 ad if (tv && inittimeleft(tv, &sleeptv) == -1) {
254 1.1 ad error = EINVAL;
255 1.1 ad goto done;
256 1.1 ad }
257 1.1 ad
258 1.1 ad if (mask) {
259 1.1 ad sigminusset(&sigcantmask, mask);
260 1.5 ad mutex_enter(p->p_lock);
261 1.1 ad oldmask = l->l_sigmask;
262 1.1 ad l->l_sigmask = *mask;
263 1.5 ad mutex_exit(p->p_lock);
264 1.1 ad } else
265 1.1 ad oldmask = l->l_sigmask; /* XXXgcc */
266 1.1 ad
267 1.1 ad sc = curcpu()->ci_data.cpu_selcpu;
268 1.1 ad l->l_selcpu = sc;
269 1.1 ad SLIST_INIT(&l->l_selwait);
270 1.1 ad for (;;) {
271 1.1 ad /*
272 1.1 ad * No need to lock. If this is overwritten by another
273 1.1 ad * value while scanning, we will retry below. We only
274 1.1 ad * need to see exact state from the descriptors that
275 1.1 ad * we are about to poll, and lock activity resulting
276 1.1 ad * from fo_poll is enough to provide an up to date value
277 1.1 ad * for new polling activity.
278 1.1 ad */
279 1.1 ad l->l_selflag = SEL_SCANNING;
280 1.1 ad ncoll = sc->sc_ncoll;
281 1.1 ad
282 1.1 ad error = selscan(l, (fd_mask *)(bits + ni * 0),
283 1.1 ad (fd_mask *)(bits + ni * 3), nd, retval);
284 1.1 ad
285 1.1 ad if (error || *retval)
286 1.1 ad break;
287 1.1 ad if (tv && (timo = gettimeleft(tv, &sleeptv)) <= 0)
288 1.1 ad break;
289 1.1 ad mutex_spin_enter(&sc->sc_lock);
290 1.1 ad if (l->l_selflag != SEL_SCANNING || sc->sc_ncoll != ncoll) {
291 1.1 ad mutex_spin_exit(&sc->sc_lock);
292 1.1 ad continue;
293 1.1 ad }
294 1.1 ad l->l_selflag = SEL_BLOCKING;
295 1.1 ad lwp_lock(l);
296 1.1 ad lwp_unlock_to(l, &sc->sc_lock);
297 1.1 ad sleepq_enqueue(&sc->sc_sleepq, sc, "select", &select_sobj);
298 1.1 ad KERNEL_UNLOCK_ALL(NULL, &l->l_biglocks); /* XXX */
299 1.1 ad error = sleepq_block(timo, true);
300 1.1 ad if (error != 0)
301 1.1 ad break;
302 1.1 ad }
303 1.1 ad selclear();
304 1.1 ad
305 1.1 ad if (mask) {
306 1.5 ad mutex_enter(p->p_lock);
307 1.1 ad l->l_sigmask = oldmask;
308 1.5 ad mutex_exit(p->p_lock);
309 1.1 ad }
310 1.1 ad
311 1.1 ad done:
312 1.1 ad /* select is not restarted after signals... */
313 1.1 ad if (error == ERESTART)
314 1.1 ad error = EINTR;
315 1.1 ad if (error == EWOULDBLOCK)
316 1.1 ad error = 0;
317 1.1 ad if (error == 0 && u_in != NULL)
318 1.1 ad error = copyout(bits + ni * 3, u_in, ni);
319 1.1 ad if (error == 0 && u_ou != NULL)
320 1.1 ad error = copyout(bits + ni * 4, u_ou, ni);
321 1.1 ad if (error == 0 && u_ex != NULL)
322 1.1 ad error = copyout(bits + ni * 5, u_ex, ni);
323 1.1 ad if (bits != smallbits)
324 1.1 ad kmem_free(bits, ni * 6);
325 1.1 ad return (error);
326 1.1 ad }
327 1.1 ad
328 1.1 ad int
329 1.1 ad selscan(lwp_t *l, fd_mask *ibitp, fd_mask *obitp, int nfd,
330 1.1 ad register_t *retval)
331 1.1 ad {
332 1.1 ad static const int flag[3] = { POLLRDNORM | POLLHUP | POLLERR,
333 1.1 ad POLLWRNORM | POLLHUP | POLLERR,
334 1.1 ad POLLRDBAND };
335 1.1 ad int msk, i, j, fd, n;
336 1.1 ad fd_mask ibits, obits;
337 1.1 ad file_t *fp;
338 1.1 ad
339 1.1 ad n = 0;
340 1.1 ad for (msk = 0; msk < 3; msk++) {
341 1.1 ad for (i = 0; i < nfd; i += NFDBITS) {
342 1.1 ad ibits = *ibitp++;
343 1.1 ad obits = 0;
344 1.1 ad while ((j = ffs(ibits)) && (fd = i + --j) < nfd) {
345 1.1 ad ibits &= ~(1 << j);
346 1.1 ad if ((fp = fd_getfile(fd)) == NULL)
347 1.1 ad return (EBADF);
348 1.1 ad if ((*fp->f_ops->fo_poll)(fp, flag[msk])) {
349 1.1 ad obits |= (1 << j);
350 1.1 ad n++;
351 1.1 ad }
352 1.1 ad fd_putfile(fd);
353 1.1 ad }
354 1.1 ad *obitp++ = obits;
355 1.1 ad }
356 1.1 ad }
357 1.1 ad *retval = n;
358 1.1 ad return (0);
359 1.1 ad }
360 1.1 ad
361 1.1 ad /*
362 1.1 ad * Poll system call.
363 1.1 ad */
364 1.1 ad int
365 1.1 ad sys_poll(struct lwp *l, const struct sys_poll_args *uap, register_t *retval)
366 1.1 ad {
367 1.1 ad /* {
368 1.1 ad syscallarg(struct pollfd *) fds;
369 1.1 ad syscallarg(u_int) nfds;
370 1.1 ad syscallarg(int) timeout;
371 1.1 ad } */
372 1.1 ad struct timeval atv, *tv = NULL;
373 1.1 ad
374 1.1 ad if (SCARG(uap, timeout) != INFTIM) {
375 1.1 ad atv.tv_sec = SCARG(uap, timeout) / 1000;
376 1.1 ad atv.tv_usec = (SCARG(uap, timeout) % 1000) * 1000;
377 1.1 ad tv = &atv;
378 1.1 ad }
379 1.1 ad
380 1.1 ad return pollcommon(l, retval, SCARG(uap, fds), SCARG(uap, nfds),
381 1.1 ad tv, NULL);
382 1.1 ad }
383 1.1 ad
384 1.1 ad /*
385 1.1 ad * Poll system call.
386 1.1 ad */
387 1.1 ad int
388 1.1 ad sys_pollts(struct lwp *l, const struct sys_pollts_args *uap, register_t *retval)
389 1.1 ad {
390 1.1 ad /* {
391 1.1 ad syscallarg(struct pollfd *) fds;
392 1.1 ad syscallarg(u_int) nfds;
393 1.1 ad syscallarg(const struct timespec *) ts;
394 1.1 ad syscallarg(const sigset_t *) mask;
395 1.1 ad } */
396 1.1 ad struct timespec ats;
397 1.1 ad struct timeval atv, *tv = NULL;
398 1.1 ad sigset_t amask, *mask = NULL;
399 1.1 ad int error;
400 1.1 ad
401 1.1 ad if (SCARG(uap, ts)) {
402 1.1 ad error = copyin(SCARG(uap, ts), &ats, sizeof(ats));
403 1.1 ad if (error)
404 1.1 ad return error;
405 1.1 ad atv.tv_sec = ats.tv_sec;
406 1.1 ad atv.tv_usec = ats.tv_nsec / 1000;
407 1.1 ad tv = &atv;
408 1.1 ad }
409 1.1 ad if (SCARG(uap, mask)) {
410 1.1 ad error = copyin(SCARG(uap, mask), &amask, sizeof(amask));
411 1.1 ad if (error)
412 1.1 ad return error;
413 1.1 ad mask = &amask;
414 1.1 ad }
415 1.1 ad
416 1.1 ad return pollcommon(l, retval, SCARG(uap, fds), SCARG(uap, nfds),
417 1.1 ad tv, mask);
418 1.1 ad }
419 1.1 ad
420 1.1 ad int
421 1.1 ad pollcommon(lwp_t *l, register_t *retval,
422 1.1 ad struct pollfd *u_fds, u_int nfds,
423 1.1 ad struct timeval *tv, sigset_t *mask)
424 1.1 ad {
425 1.1 ad char smallbits[32 * sizeof(struct pollfd)];
426 1.1 ad proc_t * const p = l->l_proc;
427 1.1 ad void * bits;
428 1.1 ad sigset_t oldmask;
429 1.1 ad int ncoll, error, timo;
430 1.1 ad size_t ni;
431 1.1 ad struct timeval sleeptv;
432 1.1 ad selcpu_t *sc;
433 1.1 ad
434 1.1 ad if (nfds > p->p_fd->fd_nfiles) {
435 1.1 ad /* forgiving; slightly wrong */
436 1.1 ad nfds = p->p_fd->fd_nfiles;
437 1.1 ad }
438 1.1 ad ni = nfds * sizeof(struct pollfd);
439 1.1 ad if (ni > sizeof(smallbits))
440 1.1 ad bits = kmem_alloc(ni, KM_SLEEP);
441 1.1 ad else
442 1.1 ad bits = smallbits;
443 1.1 ad
444 1.1 ad error = copyin(u_fds, bits, ni);
445 1.1 ad if (error)
446 1.1 ad goto done;
447 1.1 ad
448 1.1 ad timo = 0;
449 1.1 ad if (tv && inittimeleft(tv, &sleeptv) == -1) {
450 1.1 ad error = EINVAL;
451 1.1 ad goto done;
452 1.1 ad }
453 1.1 ad
454 1.1 ad if (mask) {
455 1.1 ad sigminusset(&sigcantmask, mask);
456 1.5 ad mutex_enter(p->p_lock);
457 1.1 ad oldmask = l->l_sigmask;
458 1.1 ad l->l_sigmask = *mask;
459 1.5 ad mutex_exit(p->p_lock);
460 1.1 ad } else
461 1.1 ad oldmask = l->l_sigmask; /* XXXgcc */
462 1.1 ad
463 1.1 ad sc = curcpu()->ci_data.cpu_selcpu;
464 1.1 ad l->l_selcpu = sc;
465 1.1 ad SLIST_INIT(&l->l_selwait);
466 1.1 ad for (;;) {
467 1.1 ad /*
468 1.1 ad * No need to lock. If this is overwritten by another
469 1.1 ad * value while scanning, we will retry below. We only
470 1.1 ad * need to see exact state from the descriptors that
471 1.1 ad * we are about to poll, and lock activity resulting
472 1.1 ad * from fo_poll is enough to provide an up to date value
473 1.1 ad * for new polling activity.
474 1.1 ad */
475 1.1 ad ncoll = sc->sc_ncoll;
476 1.1 ad l->l_selflag = SEL_SCANNING;
477 1.1 ad
478 1.1 ad error = pollscan(l, (struct pollfd *)bits, nfds, retval);
479 1.1 ad
480 1.1 ad if (error || *retval)
481 1.1 ad break;
482 1.1 ad if (tv && (timo = gettimeleft(tv, &sleeptv)) <= 0)
483 1.1 ad break;
484 1.1 ad mutex_spin_enter(&sc->sc_lock);
485 1.1 ad if (l->l_selflag != SEL_SCANNING || sc->sc_ncoll != ncoll) {
486 1.1 ad mutex_spin_exit(&sc->sc_lock);
487 1.1 ad continue;
488 1.1 ad }
489 1.1 ad l->l_selflag = SEL_BLOCKING;
490 1.1 ad lwp_lock(l);
491 1.1 ad lwp_unlock_to(l, &sc->sc_lock);
492 1.1 ad sleepq_enqueue(&sc->sc_sleepq, sc, "select", &select_sobj);
493 1.1 ad KERNEL_UNLOCK_ALL(NULL, &l->l_biglocks); /* XXX */
494 1.1 ad error = sleepq_block(timo, true);
495 1.1 ad if (error != 0)
496 1.1 ad break;
497 1.1 ad }
498 1.1 ad selclear();
499 1.1 ad
500 1.1 ad if (mask) {
501 1.5 ad mutex_enter(p->p_lock);
502 1.1 ad l->l_sigmask = oldmask;
503 1.5 ad mutex_exit(p->p_lock);
504 1.1 ad }
505 1.1 ad done:
506 1.1 ad /* poll is not restarted after signals... */
507 1.1 ad if (error == ERESTART)
508 1.1 ad error = EINTR;
509 1.1 ad if (error == EWOULDBLOCK)
510 1.1 ad error = 0;
511 1.1 ad if (error == 0)
512 1.1 ad error = copyout(bits, u_fds, ni);
513 1.1 ad if (bits != smallbits)
514 1.1 ad kmem_free(bits, ni);
515 1.1 ad return (error);
516 1.1 ad }
517 1.1 ad
518 1.1 ad int
519 1.1 ad pollscan(lwp_t *l, struct pollfd *fds, int nfd, register_t *retval)
520 1.1 ad {
521 1.1 ad int i, n;
522 1.1 ad file_t *fp;
523 1.1 ad
524 1.1 ad n = 0;
525 1.1 ad for (i = 0; i < nfd; i++, fds++) {
526 1.1 ad if (fds->fd < 0) {
527 1.1 ad fds->revents = 0;
528 1.1 ad } else if ((fp = fd_getfile(fds->fd)) == NULL) {
529 1.1 ad fds->revents = POLLNVAL;
530 1.1 ad n++;
531 1.1 ad } else {
532 1.1 ad fds->revents = (*fp->f_ops->fo_poll)(fp,
533 1.1 ad fds->events | POLLERR | POLLHUP);
534 1.1 ad if (fds->revents != 0)
535 1.1 ad n++;
536 1.1 ad fd_putfile(fds->fd);
537 1.1 ad }
538 1.1 ad }
539 1.1 ad *retval = n;
540 1.1 ad return (0);
541 1.1 ad }
542 1.1 ad
543 1.1 ad /*ARGSUSED*/
544 1.1 ad int
545 1.1 ad seltrue(dev_t dev, int events, lwp_t *l)
546 1.1 ad {
547 1.1 ad
548 1.1 ad return (events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
549 1.1 ad }
550 1.1 ad
551 1.1 ad /*
552 1.1 ad * Record a select request. Concurrency issues:
553 1.1 ad *
554 1.1 ad * The caller holds the same lock across calls to selrecord() and
555 1.4 yamt * selnotify(), so we don't need to consider a concurrent wakeup
556 1.1 ad * while in this routine.
557 1.1 ad *
558 1.1 ad * The only activity we need to guard against is selclear(), called by
559 1.1 ad * another thread that is exiting selcommon() or pollcommon().
560 1.1 ad * `sel_lwp' can only become non-NULL while the caller's lock is held,
561 1.1 ad * so it cannot become non-NULL due to a change made by another thread
562 1.1 ad * while we are in this routine. It can only become _NULL_ due to a
563 1.1 ad * call to selclear().
564 1.1 ad *
565 1.1 ad * If it is non-NULL and != selector there is the potential for
566 1.1 ad * selclear() to be called by another thread. If either of those
567 1.1 ad * conditions are true, we're not interested in touching the `named
568 1.1 ad * waiter' part of the selinfo record because we need to record a
569 1.1 ad * collision. Hence there is no need for additional locking in this
570 1.1 ad * routine.
571 1.1 ad */
572 1.1 ad void
573 1.1 ad selrecord(lwp_t *selector, struct selinfo *sip)
574 1.1 ad {
575 1.1 ad selcpu_t *sc;
576 1.1 ad lwp_t *other;
577 1.1 ad
578 1.1 ad KASSERT(selector == curlwp);
579 1.1 ad
580 1.1 ad sc = selector->l_selcpu;
581 1.1 ad other = sip->sel_lwp;
582 1.1 ad
583 1.1 ad if (other == selector) {
584 1.1 ad /* `selector' has already claimed it. */
585 1.1 ad KASSERT(sip->sel_cpu = sc);
586 1.1 ad } else if (other == NULL) {
587 1.1 ad /*
588 1.1 ad * First named waiter, although there may be unnamed
589 1.1 ad * waiters (collisions). Issue a memory barrier to
590 1.1 ad * ensure that we access sel_lwp (above) before other
591 1.1 ad * fields - this guards against a call to selclear().
592 1.1 ad */
593 1.1 ad membar_enter();
594 1.1 ad sip->sel_lwp = selector;
595 1.1 ad SLIST_INSERT_HEAD(&selector->l_selwait, sip, sel_chain);
596 1.1 ad /* Replace selinfo's lock with our chosen CPU's lock. */
597 1.1 ad sip->sel_cpu = sc;
598 1.1 ad } else {
599 1.1 ad /* Multiple waiters: record a collision. */
600 1.1 ad sip->sel_collision |= sc->sc_mask;
601 1.1 ad KASSERT(sip->sel_cpu != NULL);
602 1.1 ad }
603 1.1 ad }
604 1.1 ad
605 1.1 ad /*
606 1.1 ad * Do a wakeup when a selectable event occurs. Concurrency issues:
607 1.1 ad *
608 1.1 ad * As per selrecord(), the caller's object lock is held. If there
609 1.1 ad * is a named waiter, we must acquire the associated selcpu's lock
610 1.1 ad * in order to synchronize with selclear() and pollers going to sleep
611 1.1 ad * in selcommon() and/or pollcommon().
612 1.1 ad *
613 1.1 ad * sip->sel_cpu cannot change at this point, as it is only changed
614 1.1 ad * in selrecord(), and concurrent calls to selrecord() are locked
615 1.1 ad * out by the caller.
616 1.1 ad */
617 1.1 ad void
618 1.1 ad selnotify(struct selinfo *sip, int events, long knhint)
619 1.1 ad {
620 1.1 ad selcpu_t *sc;
621 1.1 ad uint32_t mask;
622 1.1 ad int index, oflag, swapin;
623 1.1 ad lwp_t *l;
624 1.1 ad
625 1.1 ad KNOTE(&sip->sel_klist, knhint);
626 1.1 ad
627 1.1 ad if (sip->sel_lwp != NULL) {
628 1.1 ad /* One named LWP is waiting. */
629 1.1 ad swapin = 0;
630 1.1 ad sc = sip->sel_cpu;
631 1.1 ad mutex_spin_enter(&sc->sc_lock);
632 1.1 ad /* Still there? */
633 1.1 ad if (sip->sel_lwp != NULL) {
634 1.1 ad l = sip->sel_lwp;
635 1.1 ad /*
636 1.1 ad * If thread is sleeping, wake it up. If it's not
637 1.1 ad * yet asleep, it will notice the change in state
638 1.1 ad * and will re-poll the descriptors.
639 1.1 ad */
640 1.1 ad oflag = l->l_selflag;
641 1.1 ad l->l_selflag = SEL_RESET;
642 1.1 ad if (oflag == SEL_BLOCKING &&
643 1.1 ad l->l_mutex == &sc->sc_lock) {
644 1.1 ad KASSERT(l->l_wchan == sc);
645 1.1 ad swapin = sleepq_unsleep(l, false);
646 1.1 ad }
647 1.1 ad }
648 1.1 ad mutex_spin_exit(&sc->sc_lock);
649 1.1 ad if (swapin)
650 1.1 ad uvm_kick_scheduler();
651 1.1 ad }
652 1.1 ad
653 1.1 ad if ((mask = sip->sel_collision) != 0) {
654 1.1 ad /*
655 1.1 ad * There was a collision (multiple waiters): we must
656 1.1 ad * inform all potentially interested waiters.
657 1.1 ad */
658 1.1 ad sip->sel_collision = 0;
659 1.3 ad do {
660 1.1 ad index = ffs(mask) - 1;
661 1.1 ad mask &= ~(1 << index);
662 1.1 ad sc = cpu_lookup_byindex(index)->ci_data.cpu_selcpu;
663 1.1 ad mutex_spin_enter(&sc->sc_lock);
664 1.1 ad sc->sc_ncoll++;
665 1.1 ad sleepq_wake(&sc->sc_sleepq, sc, (u_int)-1);
666 1.3 ad } while (__predict_false(mask != 0));
667 1.1 ad }
668 1.1 ad }
669 1.1 ad
670 1.1 ad /*
671 1.1 ad * Remove an LWP from all objects that it is waiting for. Concurrency
672 1.1 ad * issues:
673 1.1 ad *
674 1.1 ad * The object owner's (e.g. device driver) lock is not held here. Calls
675 1.1 ad * can be made to selrecord() and we do not synchronize against those
676 1.1 ad * directly using locks. However, we use `sel_lwp' to lock out changes.
677 1.1 ad * Before clearing it we must use memory barriers to ensure that we can
678 1.1 ad * safely traverse the list of selinfo records.
679 1.1 ad */
680 1.1 ad static void
681 1.1 ad selclear(void)
682 1.1 ad {
683 1.1 ad struct selinfo *sip, *next;
684 1.1 ad selcpu_t *sc;
685 1.1 ad lwp_t *l;
686 1.1 ad
687 1.1 ad l = curlwp;
688 1.1 ad sc = l->l_selcpu;
689 1.1 ad
690 1.1 ad mutex_spin_enter(&sc->sc_lock);
691 1.1 ad for (sip = SLIST_FIRST(&l->l_selwait); sip != NULL; sip = next) {
692 1.1 ad KASSERT(sip->sel_lwp == l);
693 1.1 ad KASSERT(sip->sel_cpu == l->l_selcpu);
694 1.1 ad /*
695 1.1 ad * Read link to next selinfo record, if any.
696 1.1 ad * It's no longer safe to touch `sip' after clearing
697 1.1 ad * `sel_lwp', so ensure that the read of `sel_chain'
698 1.1 ad * completes before the clearing of sel_lwp becomes
699 1.1 ad * globally visible.
700 1.1 ad */
701 1.1 ad next = SLIST_NEXT(sip, sel_chain);
702 1.1 ad membar_exit();
703 1.1 ad /* Release the record for another named waiter to use. */
704 1.1 ad sip->sel_lwp = NULL;
705 1.1 ad }
706 1.1 ad mutex_spin_exit(&sc->sc_lock);
707 1.1 ad }
708 1.1 ad
709 1.1 ad /*
710 1.1 ad * Initialize the select/poll system calls. Called once for each
711 1.1 ad * CPU in the system, as they are attached.
712 1.1 ad */
713 1.1 ad void
714 1.1 ad selsysinit(struct cpu_info *ci)
715 1.1 ad {
716 1.1 ad selcpu_t *sc;
717 1.1 ad
718 1.2 ad sc = kmem_alloc(roundup2(sizeof(selcpu_t), coherency_unit) +
719 1.2 ad coherency_unit, KM_SLEEP);
720 1.2 ad sc = (void *)roundup2((uintptr_t)sc, coherency_unit);
721 1.1 ad mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SCHED);
722 1.1 ad sleepq_init(&sc->sc_sleepq, &sc->sc_lock);
723 1.1 ad sc->sc_ncoll = 0;
724 1.1 ad sc->sc_mask = (1 << cpu_index(ci));
725 1.1 ad ci->ci_data.cpu_selcpu = sc;
726 1.1 ad }
727 1.1 ad
728 1.1 ad /*
729 1.1 ad * Initialize a selinfo record.
730 1.1 ad */
731 1.1 ad void
732 1.1 ad selinit(struct selinfo *sip)
733 1.1 ad {
734 1.1 ad
735 1.1 ad memset(sip, 0, sizeof(*sip));
736 1.1 ad }
737 1.1 ad
738 1.1 ad /*
739 1.1 ad * Destroy a selinfo record. The owning object must not gain new
740 1.1 ad * references while this is in progress: all activity on the record
741 1.1 ad * must be stopped.
742 1.1 ad *
743 1.1 ad * Concurrency issues: we only need guard against a call to selclear()
744 1.1 ad * by a thread exiting selcommon() and/or pollcommon(). The caller has
745 1.1 ad * prevented further references being made to the selinfo record via
746 1.1 ad * selrecord(), and it won't call selwakeup() again.
747 1.1 ad */
748 1.1 ad void
749 1.1 ad seldestroy(struct selinfo *sip)
750 1.1 ad {
751 1.1 ad selcpu_t *sc;
752 1.1 ad lwp_t *l;
753 1.1 ad
754 1.1 ad if (sip->sel_lwp == NULL)
755 1.1 ad return;
756 1.1 ad
757 1.1 ad /*
758 1.1 ad * Lock out selclear(). The selcpu pointer can't change while
759 1.1 ad * we are here since it is only ever changed in selrecord(),
760 1.1 ad * and that will not be entered again for this record because
761 1.1 ad * it is dying.
762 1.1 ad */
763 1.1 ad KASSERT(sip->sel_cpu != NULL);
764 1.1 ad sc = sip->sel_cpu;
765 1.1 ad mutex_spin_enter(&sc->sc_lock);
766 1.1 ad if ((l = sip->sel_lwp) != NULL) {
767 1.1 ad /*
768 1.1 ad * This should rarely happen, so although SLIST_REMOVE()
769 1.1 ad * is slow, using it here is not a problem.
770 1.1 ad */
771 1.1 ad KASSERT(l->l_selcpu == sc);
772 1.1 ad SLIST_REMOVE(&l->l_selwait, sip, selinfo, sel_chain);
773 1.1 ad sip->sel_lwp = NULL;
774 1.1 ad }
775 1.1 ad mutex_spin_exit(&sc->sc_lock);
776 1.1 ad }
777 1.1 ad
778 1.1 ad int
779 1.1 ad pollsock(struct socket *so, const struct timeval *tvp, int events)
780 1.1 ad {
781 1.1 ad int ncoll, error, timo;
782 1.1 ad struct timeval sleeptv, tv;
783 1.1 ad selcpu_t *sc;
784 1.1 ad lwp_t *l;
785 1.1 ad
786 1.1 ad timo = 0;
787 1.1 ad if (tvp != NULL) {
788 1.1 ad tv = *tvp;
789 1.1 ad if (inittimeleft(&tv, &sleeptv) == -1)
790 1.1 ad return EINVAL;
791 1.1 ad }
792 1.1 ad
793 1.1 ad l = curlwp;
794 1.1 ad sc = l->l_cpu->ci_data.cpu_selcpu;
795 1.1 ad l->l_selcpu = sc;
796 1.1 ad SLIST_INIT(&l->l_selwait);
797 1.1 ad error = 0;
798 1.1 ad for (;;) {
799 1.1 ad /*
800 1.1 ad * No need to lock. If this is overwritten by another
801 1.1 ad * value while scanning, we will retry below. We only
802 1.1 ad * need to see exact state from the descriptors that
803 1.1 ad * we are about to poll, and lock activity resulting
804 1.1 ad * from fo_poll is enough to provide an up to date value
805 1.1 ad * for new polling activity.
806 1.1 ad */
807 1.1 ad ncoll = sc->sc_ncoll;
808 1.1 ad l->l_selflag = SEL_SCANNING;
809 1.1 ad if (sopoll(so, events) != 0)
810 1.1 ad break;
811 1.1 ad if (tvp && (timo = gettimeleft(&tv, &sleeptv)) <= 0)
812 1.1 ad break;
813 1.1 ad mutex_spin_enter(&sc->sc_lock);
814 1.1 ad if (l->l_selflag != SEL_SCANNING || sc->sc_ncoll != ncoll) {
815 1.1 ad mutex_spin_exit(&sc->sc_lock);
816 1.1 ad continue;
817 1.1 ad }
818 1.1 ad l->l_selflag = SEL_BLOCKING;
819 1.1 ad lwp_lock(l);
820 1.1 ad lwp_unlock_to(l, &sc->sc_lock);
821 1.1 ad sleepq_enqueue(&sc->sc_sleepq, sc, "pollsock", &select_sobj);
822 1.1 ad KERNEL_UNLOCK_ALL(NULL, &l->l_biglocks); /* XXX */
823 1.1 ad error = sleepq_block(timo, true);
824 1.1 ad if (error != 0)
825 1.1 ad break;
826 1.1 ad }
827 1.1 ad selclear();
828 1.1 ad /* poll is not restarted after signals... */
829 1.1 ad if (error == ERESTART)
830 1.1 ad error = EINTR;
831 1.1 ad if (error == EWOULDBLOCK)
832 1.1 ad error = 0;
833 1.1 ad return (error);
834 1.1 ad }
835