sys_select.c revision 1.64 1 1.64 ad /* $NetBSD: sys_select.c,v 1.64 2023/10/08 13:23:05 ad Exp $ */
2 1.1 ad
3 1.1 ad /*-
4 1.62 ad * Copyright (c) 2007, 2008, 2009, 2010, 2019, 2020, 2023
5 1.62 ad * The NetBSD Foundation, Inc.
6 1.1 ad * All rights reserved.
7 1.1 ad *
8 1.1 ad * This code is derived from software contributed to The NetBSD Foundation
9 1.23 rmind * by Andrew Doran and Mindaugas Rasiukevicius.
10 1.1 ad *
11 1.1 ad * Redistribution and use in source and binary forms, with or without
12 1.1 ad * modification, are permitted provided that the following conditions
13 1.1 ad * are met:
14 1.1 ad * 1. Redistributions of source code must retain the above copyright
15 1.1 ad * notice, this list of conditions and the following disclaimer.
16 1.1 ad * 2. Redistributions in binary form must reproduce the above copyright
17 1.1 ad * notice, this list of conditions and the following disclaimer in the
18 1.1 ad * documentation and/or other materials provided with the distribution.
19 1.1 ad *
20 1.1 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 1.1 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 1.1 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 1.1 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 1.1 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.1 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.1 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 1.1 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 1.1 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 1.1 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 1.1 ad * POSSIBILITY OF SUCH DAMAGE.
31 1.1 ad */
32 1.1 ad
33 1.1 ad /*
34 1.1 ad * Copyright (c) 1982, 1986, 1989, 1993
35 1.1 ad * The Regents of the University of California. All rights reserved.
36 1.1 ad * (c) UNIX System Laboratories, Inc.
37 1.1 ad * All or some portions of this file are derived from material licensed
38 1.1 ad * to the University of California by American Telephone and Telegraph
39 1.1 ad * Co. or Unix System Laboratories, Inc. and are reproduced herein with
40 1.1 ad * the permission of UNIX System Laboratories, Inc.
41 1.1 ad *
42 1.1 ad * Redistribution and use in source and binary forms, with or without
43 1.1 ad * modification, are permitted provided that the following conditions
44 1.1 ad * are met:
45 1.1 ad * 1. Redistributions of source code must retain the above copyright
46 1.1 ad * notice, this list of conditions and the following disclaimer.
47 1.1 ad * 2. Redistributions in binary form must reproduce the above copyright
48 1.1 ad * notice, this list of conditions and the following disclaimer in the
49 1.1 ad * documentation and/or other materials provided with the distribution.
50 1.1 ad * 3. Neither the name of the University nor the names of its contributors
51 1.1 ad * may be used to endorse or promote products derived from this software
52 1.1 ad * without specific prior written permission.
53 1.1 ad *
54 1.1 ad * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 1.1 ad * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 1.1 ad * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 1.1 ad * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 1.1 ad * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 1.1 ad * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 1.1 ad * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 1.1 ad * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 1.1 ad * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 1.1 ad * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 1.1 ad * SUCH DAMAGE.
65 1.1 ad *
66 1.1 ad * @(#)sys_generic.c 8.9 (Berkeley) 2/14/95
67 1.1 ad */
68 1.1 ad
69 1.1 ad /*
70 1.21 rmind * System calls of synchronous I/O multiplexing subsystem.
71 1.21 rmind *
72 1.21 rmind * Locking
73 1.21 rmind *
74 1.22 ad * Two locks are used: <object-lock> and selcluster_t::sc_lock.
75 1.21 rmind *
76 1.21 rmind * The <object-lock> might be a device driver or another subsystem, e.g.
77 1.21 rmind * socket or pipe. This lock is not exported, and thus invisible to this
78 1.21 rmind * subsystem. Mainly, synchronisation between selrecord() and selnotify()
79 1.21 rmind * routines depends on this lock, as it will be described in the comments.
80 1.21 rmind *
81 1.21 rmind * Lock order
82 1.21 rmind *
83 1.21 rmind * <object-lock> ->
84 1.22 ad * selcluster_t::sc_lock
85 1.1 ad */
86 1.1 ad
87 1.1 ad #include <sys/cdefs.h>
88 1.64 ad __KERNEL_RCSID(0, "$NetBSD: sys_select.c,v 1.64 2023/10/08 13:23:05 ad Exp $");
89 1.1 ad
90 1.1 ad #include <sys/param.h>
91 1.1 ad #include <sys/systm.h>
92 1.1 ad #include <sys/filedesc.h>
93 1.1 ad #include <sys/file.h>
94 1.1 ad #include <sys/proc.h>
95 1.1 ad #include <sys/socketvar.h>
96 1.1 ad #include <sys/signalvar.h>
97 1.1 ad #include <sys/uio.h>
98 1.1 ad #include <sys/kernel.h>
99 1.29 rmind #include <sys/lwp.h>
100 1.1 ad #include <sys/poll.h>
101 1.1 ad #include <sys/mount.h>
102 1.1 ad #include <sys/syscallargs.h>
103 1.1 ad #include <sys/cpu.h>
104 1.1 ad #include <sys/atomic.h>
105 1.1 ad #include <sys/socketvar.h>
106 1.1 ad #include <sys/sleepq.h>
107 1.36 rmind #include <sys/sysctl.h>
108 1.49 ad #include <sys/bitops.h>
109 1.1 ad
110 1.1 ad /* Flags for lwp::l_selflag. */
111 1.1 ad #define SEL_RESET 0 /* awoken, interrupted, or not yet polling */
112 1.1 ad #define SEL_SCANNING 1 /* polling descriptors */
113 1.23 rmind #define SEL_BLOCKING 2 /* blocking and waiting for event */
114 1.23 rmind #define SEL_EVENT 3 /* interrupted, events set directly */
115 1.23 rmind
116 1.22 ad /*
117 1.22 ad * Per-cluster state for select()/poll(). For a system with fewer
118 1.50 ad * than 64 CPUs, this gives us per-CPU clusters.
119 1.22 ad */
120 1.50 ad #define SELCLUSTERS 64
121 1.22 ad #define SELCLUSTERMASK (SELCLUSTERS - 1)
122 1.22 ad
123 1.22 ad typedef struct selcluster {
124 1.13 ad kmutex_t *sc_lock;
125 1.1 ad sleepq_t sc_sleepq;
126 1.49 ad uint64_t sc_mask;
127 1.1 ad int sc_ncoll;
128 1.22 ad } selcluster_t;
129 1.1 ad
130 1.23 rmind static inline int selscan(char *, const int, const size_t, register_t *);
131 1.23 rmind static inline int pollscan(struct pollfd *, const int, register_t *);
132 1.19 rmind static void selclear(void);
133 1.1 ad
134 1.23 rmind static const int sel_flag[] = {
135 1.23 rmind POLLRDNORM | POLLHUP | POLLERR,
136 1.23 rmind POLLWRNORM | POLLHUP | POLLERR,
137 1.23 rmind POLLRDBAND
138 1.23 rmind };
139 1.23 rmind
140 1.53 ad /*
141 1.53 ad * LWPs are woken using the sleep queue only due to a collision, the case
142 1.53 ad * with the maximum Suck Factor. Save the cost of sorting for named waiters
143 1.53 ad * by inserting in LIFO order. In the future it would be preferable to not
144 1.53 ad * enqueue LWPs at all, unless subject to a collision.
145 1.53 ad */
146 1.52 ad syncobj_t select_sobj = {
147 1.61 riastrad .sobj_name = "select",
148 1.53 ad .sobj_flag = SOBJ_SLEEPQ_LIFO,
149 1.62 ad .sobj_boostpri = PRI_KERNEL,
150 1.41 ozaki .sobj_unsleep = sleepq_unsleep,
151 1.41 ozaki .sobj_changepri = sleepq_changepri,
152 1.41 ozaki .sobj_lendpri = sleepq_lendpri,
153 1.41 ozaki .sobj_owner = syncobj_noowner,
154 1.1 ad };
155 1.1 ad
156 1.23 rmind static selcluster_t *selcluster[SELCLUSTERS] __read_mostly;
157 1.36 rmind static int direct_select __read_mostly = 0;
158 1.22 ad
159 1.49 ad /* Operations: either select() or poll(). */
160 1.49 ad const char selop_select[] = "select";
161 1.49 ad const char selop_poll[] = "poll";
162 1.49 ad
163 1.1 ad /*
164 1.1 ad * Select system call.
165 1.1 ad */
166 1.1 ad int
167 1.12 christos sys___pselect50(struct lwp *l, const struct sys___pselect50_args *uap,
168 1.12 christos register_t *retval)
169 1.1 ad {
170 1.1 ad /* {
171 1.1 ad syscallarg(int) nd;
172 1.1 ad syscallarg(fd_set *) in;
173 1.1 ad syscallarg(fd_set *) ou;
174 1.1 ad syscallarg(fd_set *) ex;
175 1.1 ad syscallarg(const struct timespec *) ts;
176 1.1 ad syscallarg(sigset_t *) mask;
177 1.1 ad } */
178 1.14 christos struct timespec ats, *ts = NULL;
179 1.1 ad sigset_t amask, *mask = NULL;
180 1.1 ad int error;
181 1.1 ad
182 1.1 ad if (SCARG(uap, ts)) {
183 1.1 ad error = copyin(SCARG(uap, ts), &ats, sizeof(ats));
184 1.1 ad if (error)
185 1.1 ad return error;
186 1.14 christos ts = &ats;
187 1.1 ad }
188 1.1 ad if (SCARG(uap, mask) != NULL) {
189 1.1 ad error = copyin(SCARG(uap, mask), &amask, sizeof(amask));
190 1.1 ad if (error)
191 1.1 ad return error;
192 1.1 ad mask = &amask;
193 1.1 ad }
194 1.1 ad
195 1.19 rmind return selcommon(retval, SCARG(uap, nd), SCARG(uap, in),
196 1.14 christos SCARG(uap, ou), SCARG(uap, ex), ts, mask);
197 1.1 ad }
198 1.1 ad
199 1.1 ad int
200 1.12 christos sys___select50(struct lwp *l, const struct sys___select50_args *uap,
201 1.12 christos register_t *retval)
202 1.1 ad {
203 1.1 ad /* {
204 1.1 ad syscallarg(int) nd;
205 1.1 ad syscallarg(fd_set *) in;
206 1.1 ad syscallarg(fd_set *) ou;
207 1.1 ad syscallarg(fd_set *) ex;
208 1.1 ad syscallarg(struct timeval *) tv;
209 1.1 ad } */
210 1.14 christos struct timeval atv;
211 1.14 christos struct timespec ats, *ts = NULL;
212 1.1 ad int error;
213 1.1 ad
214 1.1 ad if (SCARG(uap, tv)) {
215 1.14 christos error = copyin(SCARG(uap, tv), (void *)&atv, sizeof(atv));
216 1.1 ad if (error)
217 1.1 ad return error;
218 1.48 kamil
219 1.48 kamil if (atv.tv_usec < 0 || atv.tv_usec >= 1000000)
220 1.48 kamil return EINVAL;
221 1.48 kamil
222 1.14 christos TIMEVAL_TO_TIMESPEC(&atv, &ats);
223 1.14 christos ts = &ats;
224 1.1 ad }
225 1.1 ad
226 1.19 rmind return selcommon(retval, SCARG(uap, nd), SCARG(uap, in),
227 1.14 christos SCARG(uap, ou), SCARG(uap, ex), ts, NULL);
228 1.1 ad }
229 1.1 ad
230 1.17 rmind /*
231 1.17 rmind * sel_do_scan: common code to perform the scan on descriptors.
232 1.17 rmind */
233 1.17 rmind static int
234 1.49 ad sel_do_scan(const char *opname, void *fds, const int nf, const size_t ni,
235 1.23 rmind struct timespec *ts, sigset_t *mask, register_t *retval)
236 1.1 ad {
237 1.17 rmind lwp_t * const l = curlwp;
238 1.22 ad selcluster_t *sc;
239 1.13 ad kmutex_t *lock;
240 1.17 rmind struct timespec sleepts;
241 1.17 rmind int error, timo;
242 1.1 ad
243 1.1 ad timo = 0;
244 1.14 christos if (ts && inittimeleft(ts, &sleepts) == -1) {
245 1.17 rmind return EINVAL;
246 1.1 ad }
247 1.1 ad
248 1.32 christos if (__predict_false(mask))
249 1.31 christos sigsuspendsetup(l, mask);
250 1.1 ad
251 1.49 ad /*
252 1.49 ad * We may context switch during or at any time after picking a CPU
253 1.49 ad * and cluster to associate with, but it doesn't matter. In the
254 1.49 ad * unlikely event we migrate elsewhere all we risk is a little lock
255 1.49 ad * contention; correctness is not sacrificed.
256 1.49 ad */
257 1.22 ad sc = curcpu()->ci_data.cpu_selcluster;
258 1.13 ad lock = sc->sc_lock;
259 1.22 ad l->l_selcluster = sc;
260 1.49 ad
261 1.49 ad if (opname == selop_select) {
262 1.30 rmind l->l_selbits = fds;
263 1.23 rmind l->l_selni = ni;
264 1.23 rmind } else {
265 1.23 rmind l->l_selbits = NULL;
266 1.23 rmind }
267 1.34 hannken
268 1.1 ad for (;;) {
269 1.17 rmind int ncoll;
270 1.17 rmind
271 1.34 hannken SLIST_INIT(&l->l_selwait);
272 1.34 hannken l->l_selret = 0;
273 1.34 hannken
274 1.1 ad /*
275 1.17 rmind * No need to lock. If this is overwritten by another value
276 1.17 rmind * while scanning, we will retry below. We only need to see
277 1.17 rmind * exact state from the descriptors that we are about to poll,
278 1.17 rmind * and lock activity resulting from fo_poll is enough to
279 1.17 rmind * provide an up to date value for new polling activity.
280 1.1 ad */
281 1.49 ad if (ts && (ts->tv_sec | ts->tv_nsec | direct_select) == 0) {
282 1.49 ad /* Non-blocking: no need for selrecord()/selclear() */
283 1.49 ad l->l_selflag = SEL_RESET;
284 1.49 ad } else {
285 1.49 ad l->l_selflag = SEL_SCANNING;
286 1.49 ad }
287 1.1 ad ncoll = sc->sc_ncoll;
288 1.59 riastrad membar_release();
289 1.1 ad
290 1.49 ad if (opname == selop_select) {
291 1.23 rmind error = selscan((char *)fds, nf, ni, retval);
292 1.17 rmind } else {
293 1.23 rmind error = pollscan((struct pollfd *)fds, nf, retval);
294 1.17 rmind }
295 1.1 ad if (error || *retval)
296 1.1 ad break;
297 1.14 christos if (ts && (timo = gettimeleft(ts, &sleepts)) <= 0)
298 1.1 ad break;
299 1.23 rmind /*
300 1.23 rmind * Acquire the lock and perform the (re)checks. Note, if
301 1.57 andvar * collision has occurred, then our state does not matter,
302 1.23 rmind * as we must perform re-scan. Therefore, check it first.
303 1.23 rmind */
304 1.23 rmind state_check:
305 1.13 ad mutex_spin_enter(lock);
306 1.23 rmind if (__predict_false(sc->sc_ncoll != ncoll)) {
307 1.23 rmind /* Collision: perform re-scan. */
308 1.23 rmind mutex_spin_exit(lock);
309 1.34 hannken selclear();
310 1.23 rmind continue;
311 1.23 rmind }
312 1.23 rmind if (__predict_true(l->l_selflag == SEL_EVENT)) {
313 1.57 andvar /* Events occurred, they are set directly. */
314 1.23 rmind mutex_spin_exit(lock);
315 1.23 rmind break;
316 1.23 rmind }
317 1.23 rmind if (__predict_true(l->l_selflag == SEL_RESET)) {
318 1.57 andvar /* Events occurred, but re-scan is requested. */
319 1.13 ad mutex_spin_exit(lock);
320 1.34 hannken selclear();
321 1.1 ad continue;
322 1.1 ad }
323 1.23 rmind /* Nothing happen, therefore - sleep. */
324 1.1 ad l->l_selflag = SEL_BLOCKING;
325 1.63 ad KASSERT(l->l_blcnt == 0);
326 1.63 ad (void)sleepq_enter(&sc->sc_sleepq, l, lock);
327 1.54 ad sleepq_enqueue(&sc->sc_sleepq, sc, opname, &select_sobj, true);
328 1.63 ad error = sleepq_block(timo, true, &select_sobj, 0);
329 1.23 rmind if (error != 0) {
330 1.1 ad break;
331 1.23 rmind }
332 1.23 rmind /* Awoken: need to check the state. */
333 1.23 rmind goto state_check;
334 1.1 ad }
335 1.1 ad selclear();
336 1.1 ad
337 1.34 hannken /* Add direct events if any. */
338 1.34 hannken if (l->l_selflag == SEL_EVENT) {
339 1.34 hannken KASSERT(l->l_selret != 0);
340 1.34 hannken *retval += l->l_selret;
341 1.34 hannken }
342 1.34 hannken
343 1.33 christos if (__predict_false(mask))
344 1.33 christos sigsuspendteardown(l);
345 1.33 christos
346 1.20 dsl /* select and poll are not restarted after signals... */
347 1.20 dsl if (error == ERESTART)
348 1.20 dsl return EINTR;
349 1.20 dsl if (error == EWOULDBLOCK)
350 1.20 dsl return 0;
351 1.17 rmind return error;
352 1.17 rmind }
353 1.17 rmind
354 1.17 rmind int
355 1.19 rmind selcommon(register_t *retval, int nd, fd_set *u_in, fd_set *u_ou,
356 1.19 rmind fd_set *u_ex, struct timespec *ts, sigset_t *mask)
357 1.17 rmind {
358 1.17 rmind char smallbits[howmany(FD_SETSIZE, NFDBITS) *
359 1.17 rmind sizeof(fd_mask) * 6];
360 1.17 rmind char *bits;
361 1.17 rmind int error, nf;
362 1.17 rmind size_t ni;
363 1.17 rmind
364 1.17 rmind if (nd < 0)
365 1.17 rmind return (EINVAL);
366 1.51 riastrad nf = atomic_load_consume(&curlwp->l_fd->fd_dt)->dt_nfiles;
367 1.17 rmind if (nd > nf) {
368 1.17 rmind /* forgiving; slightly wrong */
369 1.17 rmind nd = nf;
370 1.17 rmind }
371 1.17 rmind ni = howmany(nd, NFDBITS) * sizeof(fd_mask);
372 1.40 chs if (ni * 6 > sizeof(smallbits))
373 1.17 rmind bits = kmem_alloc(ni * 6, KM_SLEEP);
374 1.40 chs else
375 1.17 rmind bits = smallbits;
376 1.17 rmind
377 1.17 rmind #define getbits(name, x) \
378 1.17 rmind if (u_ ## name) { \
379 1.17 rmind error = copyin(u_ ## name, bits + ni * x, ni); \
380 1.17 rmind if (error) \
381 1.20 dsl goto fail; \
382 1.17 rmind } else \
383 1.17 rmind memset(bits + ni * x, 0, ni);
384 1.17 rmind getbits(in, 0);
385 1.17 rmind getbits(ou, 1);
386 1.17 rmind getbits(ex, 2);
387 1.17 rmind #undef getbits
388 1.1 ad
389 1.49 ad error = sel_do_scan(selop_select, bits, nd, ni, ts, mask, retval);
390 1.1 ad if (error == 0 && u_in != NULL)
391 1.1 ad error = copyout(bits + ni * 3, u_in, ni);
392 1.1 ad if (error == 0 && u_ou != NULL)
393 1.1 ad error = copyout(bits + ni * 4, u_ou, ni);
394 1.1 ad if (error == 0 && u_ex != NULL)
395 1.1 ad error = copyout(bits + ni * 5, u_ex, ni);
396 1.20 dsl fail:
397 1.1 ad if (bits != smallbits)
398 1.1 ad kmem_free(bits, ni * 6);
399 1.1 ad return (error);
400 1.1 ad }
401 1.1 ad
402 1.19 rmind static inline int
403 1.23 rmind selscan(char *bits, const int nfd, const size_t ni, register_t *retval)
404 1.1 ad {
405 1.17 rmind fd_mask *ibitp, *obitp;
406 1.23 rmind int msk, i, j, fd, n;
407 1.1 ad file_t *fp;
408 1.49 ad lwp_t *l;
409 1.1 ad
410 1.17 rmind ibitp = (fd_mask *)(bits + ni * 0);
411 1.17 rmind obitp = (fd_mask *)(bits + ni * 3);
412 1.1 ad n = 0;
413 1.49 ad l = curlwp;
414 1.17 rmind
415 1.34 hannken memset(obitp, 0, ni * 3);
416 1.1 ad for (msk = 0; msk < 3; msk++) {
417 1.1 ad for (i = 0; i < nfd; i += NFDBITS) {
418 1.23 rmind fd_mask ibits, obits;
419 1.23 rmind
420 1.35 hannken ibits = *ibitp;
421 1.1 ad obits = 0;
422 1.1 ad while ((j = ffs(ibits)) && (fd = i + --j) < nfd) {
423 1.47 msaitoh ibits &= ~(1U << j);
424 1.1 ad if ((fp = fd_getfile(fd)) == NULL)
425 1.1 ad return (EBADF);
426 1.23 rmind /*
427 1.23 rmind * Setup an argument to selrecord(), which is
428 1.23 rmind * a file descriptor number.
429 1.23 rmind */
430 1.49 ad l->l_selrec = fd;
431 1.23 rmind if ((*fp->f_ops->fo_poll)(fp, sel_flag[msk])) {
432 1.49 ad if (!direct_select) {
433 1.49 ad /*
434 1.49 ad * Have events: do nothing in
435 1.49 ad * selrecord().
436 1.49 ad */
437 1.49 ad l->l_selflag = SEL_RESET;
438 1.49 ad }
439 1.47 msaitoh obits |= (1U << j);
440 1.1 ad n++;
441 1.1 ad }
442 1.1 ad fd_putfile(fd);
443 1.1 ad }
444 1.34 hannken if (obits != 0) {
445 1.36 rmind if (direct_select) {
446 1.36 rmind kmutex_t *lock;
447 1.49 ad lock = l->l_selcluster->sc_lock;
448 1.35 hannken mutex_spin_enter(lock);
449 1.36 rmind *obitp |= obits;
450 1.35 hannken mutex_spin_exit(lock);
451 1.36 rmind } else {
452 1.36 rmind *obitp |= obits;
453 1.36 rmind }
454 1.34 hannken }
455 1.35 hannken ibitp++;
456 1.34 hannken obitp++;
457 1.1 ad }
458 1.1 ad }
459 1.1 ad *retval = n;
460 1.1 ad return (0);
461 1.1 ad }
462 1.1 ad
463 1.1 ad /*
464 1.1 ad * Poll system call.
465 1.1 ad */
466 1.1 ad int
467 1.1 ad sys_poll(struct lwp *l, const struct sys_poll_args *uap, register_t *retval)
468 1.1 ad {
469 1.1 ad /* {
470 1.1 ad syscallarg(struct pollfd *) fds;
471 1.1 ad syscallarg(u_int) nfds;
472 1.1 ad syscallarg(int) timeout;
473 1.1 ad } */
474 1.14 christos struct timespec ats, *ts = NULL;
475 1.1 ad
476 1.1 ad if (SCARG(uap, timeout) != INFTIM) {
477 1.14 christos ats.tv_sec = SCARG(uap, timeout) / 1000;
478 1.14 christos ats.tv_nsec = (SCARG(uap, timeout) % 1000) * 1000000;
479 1.14 christos ts = &ats;
480 1.1 ad }
481 1.1 ad
482 1.19 rmind return pollcommon(retval, SCARG(uap, fds), SCARG(uap, nfds), ts, NULL);
483 1.1 ad }
484 1.1 ad
485 1.1 ad /*
486 1.1 ad * Poll system call.
487 1.1 ad */
488 1.1 ad int
489 1.12 christos sys___pollts50(struct lwp *l, const struct sys___pollts50_args *uap,
490 1.12 christos register_t *retval)
491 1.1 ad {
492 1.1 ad /* {
493 1.1 ad syscallarg(struct pollfd *) fds;
494 1.1 ad syscallarg(u_int) nfds;
495 1.1 ad syscallarg(const struct timespec *) ts;
496 1.1 ad syscallarg(const sigset_t *) mask;
497 1.1 ad } */
498 1.14 christos struct timespec ats, *ts = NULL;
499 1.1 ad sigset_t amask, *mask = NULL;
500 1.1 ad int error;
501 1.1 ad
502 1.1 ad if (SCARG(uap, ts)) {
503 1.1 ad error = copyin(SCARG(uap, ts), &ats, sizeof(ats));
504 1.1 ad if (error)
505 1.1 ad return error;
506 1.14 christos ts = &ats;
507 1.1 ad }
508 1.1 ad if (SCARG(uap, mask)) {
509 1.1 ad error = copyin(SCARG(uap, mask), &amask, sizeof(amask));
510 1.1 ad if (error)
511 1.1 ad return error;
512 1.1 ad mask = &amask;
513 1.1 ad }
514 1.1 ad
515 1.19 rmind return pollcommon(retval, SCARG(uap, fds), SCARG(uap, nfds), ts, mask);
516 1.1 ad }
517 1.1 ad
518 1.1 ad int
519 1.19 rmind pollcommon(register_t *retval, struct pollfd *u_fds, u_int nfds,
520 1.14 christos struct timespec *ts, sigset_t *mask)
521 1.1 ad {
522 1.11 yamt struct pollfd smallfds[32];
523 1.11 yamt struct pollfd *fds;
524 1.17 rmind int error;
525 1.20 dsl size_t ni;
526 1.1 ad
527 1.45 christos if (nfds > curlwp->l_proc->p_rlimit[RLIMIT_NOFILE].rlim_max + 1000) {
528 1.20 dsl /*
529 1.43 christos * Prevent userland from causing over-allocation.
530 1.43 christos * Raising the default limit too high can still cause
531 1.43 christos * a lot of memory to be allocated, but this also means
532 1.43 christos * that the file descriptor array will also be large.
533 1.43 christos *
534 1.43 christos * To reduce the memory requirements here, we could
535 1.43 christos * process the 'fds' array in chunks, but that
536 1.20 dsl * is a lot of code that isn't normally useful.
537 1.20 dsl * (Or just move the copyin/out into pollscan().)
538 1.43 christos *
539 1.20 dsl * Historically the code silently truncated 'fds' to
540 1.20 dsl * dt_nfiles entries - but that does cause issues.
541 1.44 christos *
542 1.44 christos * Using the max limit equivalent to sysctl
543 1.44 christos * kern.maxfiles is the moral equivalent of OPEN_MAX
544 1.45 christos * as specified by POSIX.
545 1.45 christos *
546 1.45 christos * We add a slop of 1000 in case the resource limit was
547 1.45 christos * changed after opening descriptors or the same descriptor
548 1.45 christos * was specified more than once.
549 1.20 dsl */
550 1.20 dsl return EINVAL;
551 1.1 ad }
552 1.1 ad ni = nfds * sizeof(struct pollfd);
553 1.40 chs if (ni > sizeof(smallfds))
554 1.11 yamt fds = kmem_alloc(ni, KM_SLEEP);
555 1.40 chs else
556 1.11 yamt fds = smallfds;
557 1.1 ad
558 1.11 yamt error = copyin(u_fds, fds, ni);
559 1.1 ad if (error)
560 1.20 dsl goto fail;
561 1.1 ad
562 1.49 ad error = sel_do_scan(selop_poll, fds, nfds, ni, ts, mask, retval);
563 1.1 ad if (error == 0)
564 1.11 yamt error = copyout(fds, u_fds, ni);
565 1.20 dsl fail:
566 1.11 yamt if (fds != smallfds)
567 1.11 yamt kmem_free(fds, ni);
568 1.1 ad return (error);
569 1.1 ad }
570 1.1 ad
571 1.19 rmind static inline int
572 1.23 rmind pollscan(struct pollfd *fds, const int nfd, register_t *retval)
573 1.1 ad {
574 1.1 ad file_t *fp;
575 1.34 hannken int i, n = 0, revents;
576 1.1 ad
577 1.1 ad for (i = 0; i < nfd; i++, fds++) {
578 1.34 hannken fds->revents = 0;
579 1.1 ad if (fds->fd < 0) {
580 1.34 hannken revents = 0;
581 1.1 ad } else if ((fp = fd_getfile(fds->fd)) == NULL) {
582 1.34 hannken revents = POLLNVAL;
583 1.1 ad } else {
584 1.23 rmind /*
585 1.23 rmind * Perform poll: registers select request or returns
586 1.23 rmind * the events which are set. Setup an argument for
587 1.23 rmind * selrecord(), which is a pointer to struct pollfd.
588 1.23 rmind */
589 1.23 rmind curlwp->l_selrec = (uintptr_t)fds;
590 1.34 hannken revents = (*fp->f_ops->fo_poll)(fp,
591 1.1 ad fds->events | POLLERR | POLLHUP);
592 1.1 ad fd_putfile(fds->fd);
593 1.1 ad }
594 1.34 hannken if (revents) {
595 1.49 ad if (!direct_select) {
596 1.49 ad /* Have events: do nothing in selrecord(). */
597 1.49 ad curlwp->l_selflag = SEL_RESET;
598 1.49 ad }
599 1.34 hannken fds->revents = revents;
600 1.34 hannken n++;
601 1.34 hannken }
602 1.1 ad }
603 1.1 ad *retval = n;
604 1.1 ad return (0);
605 1.1 ad }
606 1.1 ad
607 1.1 ad int
608 1.1 ad seltrue(dev_t dev, int events, lwp_t *l)
609 1.1 ad {
610 1.1 ad
611 1.1 ad return (events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
612 1.1 ad }
613 1.1 ad
614 1.1 ad /*
615 1.1 ad * Record a select request. Concurrency issues:
616 1.1 ad *
617 1.1 ad * The caller holds the same lock across calls to selrecord() and
618 1.4 yamt * selnotify(), so we don't need to consider a concurrent wakeup
619 1.1 ad * while in this routine.
620 1.1 ad *
621 1.1 ad * The only activity we need to guard against is selclear(), called by
622 1.17 rmind * another thread that is exiting sel_do_scan().
623 1.1 ad * `sel_lwp' can only become non-NULL while the caller's lock is held,
624 1.1 ad * so it cannot become non-NULL due to a change made by another thread
625 1.1 ad * while we are in this routine. It can only become _NULL_ due to a
626 1.1 ad * call to selclear().
627 1.1 ad *
628 1.1 ad * If it is non-NULL and != selector there is the potential for
629 1.1 ad * selclear() to be called by another thread. If either of those
630 1.1 ad * conditions are true, we're not interested in touching the `named
631 1.1 ad * waiter' part of the selinfo record because we need to record a
632 1.1 ad * collision. Hence there is no need for additional locking in this
633 1.1 ad * routine.
634 1.1 ad */
635 1.1 ad void
636 1.1 ad selrecord(lwp_t *selector, struct selinfo *sip)
637 1.1 ad {
638 1.22 ad selcluster_t *sc;
639 1.1 ad lwp_t *other;
640 1.1 ad
641 1.1 ad KASSERT(selector == curlwp);
642 1.1 ad
643 1.22 ad sc = selector->l_selcluster;
644 1.1 ad other = sip->sel_lwp;
645 1.1 ad
646 1.49 ad if (selector->l_selflag == SEL_RESET) {
647 1.49 ad /* 0. We're not going to block - will poll again if needed. */
648 1.49 ad } else if (other == selector) {
649 1.23 rmind /* 1. We (selector) already claimed to be the first LWP. */
650 1.37 riastrad KASSERT(sip->sel_cluster == sc);
651 1.1 ad } else if (other == NULL) {
652 1.1 ad /*
653 1.23 rmind * 2. No first LWP, therefore we (selector) are the first.
654 1.23 rmind *
655 1.23 rmind * There may be unnamed waiters (collisions). Issue a memory
656 1.23 rmind * barrier to ensure that we access sel_lwp (above) before
657 1.23 rmind * other fields - this guards against a call to selclear().
658 1.1 ad */
659 1.59 riastrad membar_acquire();
660 1.1 ad sip->sel_lwp = selector;
661 1.1 ad SLIST_INSERT_HEAD(&selector->l_selwait, sip, sel_chain);
662 1.23 rmind /* Copy the argument, which is for selnotify(). */
663 1.23 rmind sip->sel_fdinfo = selector->l_selrec;
664 1.22 ad /* Replace selinfo's lock with the chosen cluster's lock. */
665 1.22 ad sip->sel_cluster = sc;
666 1.1 ad } else {
667 1.23 rmind /* 3. Multiple waiters: record a collision. */
668 1.1 ad sip->sel_collision |= sc->sc_mask;
669 1.22 ad KASSERT(sip->sel_cluster != NULL);
670 1.1 ad }
671 1.1 ad }
672 1.1 ad
673 1.1 ad /*
674 1.55 thorpej * Record a knote.
675 1.55 thorpej *
676 1.55 thorpej * The caller holds the same lock as for selrecord().
677 1.55 thorpej */
678 1.55 thorpej void
679 1.55 thorpej selrecord_knote(struct selinfo *sip, struct knote *kn)
680 1.55 thorpej {
681 1.58 thorpej klist_insert(&sip->sel_klist, kn);
682 1.55 thorpej }
683 1.55 thorpej
684 1.55 thorpej /*
685 1.55 thorpej * Remove a knote.
686 1.55 thorpej *
687 1.55 thorpej * The caller holds the same lock as for selrecord().
688 1.56 thorpej *
689 1.56 thorpej * Returns true if the last knote was removed and the list
690 1.56 thorpej * is now empty.
691 1.55 thorpej */
692 1.56 thorpej bool
693 1.55 thorpej selremove_knote(struct selinfo *sip, struct knote *kn)
694 1.55 thorpej {
695 1.58 thorpej return klist_remove(&sip->sel_klist, kn);
696 1.55 thorpej }
697 1.55 thorpej
698 1.55 thorpej /*
699 1.23 rmind * sel_setevents: a helper function for selnotify(), to set the events
700 1.23 rmind * for LWP sleeping in selcommon() or pollcommon().
701 1.23 rmind */
702 1.30 rmind static inline bool
703 1.23 rmind sel_setevents(lwp_t *l, struct selinfo *sip, const int events)
704 1.23 rmind {
705 1.23 rmind const int oflag = l->l_selflag;
706 1.30 rmind int ret = 0;
707 1.23 rmind
708 1.23 rmind /*
709 1.23 rmind * If we require re-scan or it was required by somebody else,
710 1.23 rmind * then just (re)set SEL_RESET and return.
711 1.23 rmind */
712 1.23 rmind if (__predict_false(events == 0 || oflag == SEL_RESET)) {
713 1.23 rmind l->l_selflag = SEL_RESET;
714 1.30 rmind return true;
715 1.23 rmind }
716 1.23 rmind /*
717 1.23 rmind * Direct set. Note: select state of LWP is locked. First,
718 1.23 rmind * determine whether it is selcommon() or pollcommon().
719 1.23 rmind */
720 1.23 rmind if (l->l_selbits != NULL) {
721 1.30 rmind const size_t ni = l->l_selni;
722 1.23 rmind fd_mask *fds = (fd_mask *)l->l_selbits;
723 1.30 rmind fd_mask *ofds = (fd_mask *)((char *)fds + ni * 3);
724 1.30 rmind const int fd = sip->sel_fdinfo, fbit = 1 << (fd & __NFDMASK);
725 1.25 rmind const int idx = fd >> __NFDSHIFT;
726 1.23 rmind int n;
727 1.23 rmind
728 1.23 rmind for (n = 0; n < 3; n++) {
729 1.34 hannken if ((fds[idx] & fbit) != 0 &&
730 1.34 hannken (ofds[idx] & fbit) == 0 &&
731 1.34 hannken (sel_flag[n] & events)) {
732 1.30 rmind ofds[idx] |= fbit;
733 1.30 rmind ret++;
734 1.23 rmind }
735 1.23 rmind fds = (fd_mask *)((char *)fds + ni);
736 1.30 rmind ofds = (fd_mask *)((char *)ofds + ni);
737 1.23 rmind }
738 1.23 rmind } else {
739 1.23 rmind struct pollfd *pfd = (void *)sip->sel_fdinfo;
740 1.30 rmind int revents = events & (pfd->events | POLLERR | POLLHUP);
741 1.30 rmind
742 1.30 rmind if (revents) {
743 1.34 hannken if (pfd->revents == 0)
744 1.34 hannken ret = 1;
745 1.30 rmind pfd->revents |= revents;
746 1.30 rmind }
747 1.30 rmind }
748 1.30 rmind /* Check whether there are any events to return. */
749 1.30 rmind if (!ret) {
750 1.30 rmind return false;
751 1.23 rmind }
752 1.23 rmind /* Indicate direct set and note the event (cluster lock is held). */
753 1.23 rmind l->l_selflag = SEL_EVENT;
754 1.30 rmind l->l_selret += ret;
755 1.30 rmind return true;
756 1.23 rmind }
757 1.23 rmind
758 1.23 rmind /*
759 1.1 ad * Do a wakeup when a selectable event occurs. Concurrency issues:
760 1.1 ad *
761 1.1 ad * As per selrecord(), the caller's object lock is held. If there
762 1.22 ad * is a named waiter, we must acquire the associated selcluster's lock
763 1.1 ad * in order to synchronize with selclear() and pollers going to sleep
764 1.17 rmind * in sel_do_scan().
765 1.1 ad *
766 1.22 ad * sip->sel_cluser cannot change at this point, as it is only changed
767 1.1 ad * in selrecord(), and concurrent calls to selrecord() are locked
768 1.1 ad * out by the caller.
769 1.1 ad */
770 1.1 ad void
771 1.1 ad selnotify(struct selinfo *sip, int events, long knhint)
772 1.1 ad {
773 1.22 ad selcluster_t *sc;
774 1.49 ad uint64_t mask;
775 1.16 rmind int index, oflag;
776 1.1 ad lwp_t *l;
777 1.13 ad kmutex_t *lock;
778 1.1 ad
779 1.1 ad KNOTE(&sip->sel_klist, knhint);
780 1.1 ad
781 1.1 ad if (sip->sel_lwp != NULL) {
782 1.1 ad /* One named LWP is waiting. */
783 1.22 ad sc = sip->sel_cluster;
784 1.13 ad lock = sc->sc_lock;
785 1.13 ad mutex_spin_enter(lock);
786 1.1 ad /* Still there? */
787 1.1 ad if (sip->sel_lwp != NULL) {
788 1.23 rmind /*
789 1.23 rmind * Set the events for our LWP and indicate that.
790 1.23 rmind * Otherwise, request for a full re-scan.
791 1.23 rmind */
792 1.1 ad l = sip->sel_lwp;
793 1.23 rmind oflag = l->l_selflag;
794 1.36 rmind
795 1.36 rmind if (!direct_select) {
796 1.36 rmind l->l_selflag = SEL_RESET;
797 1.36 rmind } else if (!sel_setevents(l, sip, events)) {
798 1.30 rmind /* No events to return. */
799 1.30 rmind mutex_spin_exit(lock);
800 1.30 rmind return;
801 1.30 rmind }
802 1.36 rmind
803 1.1 ad /*
804 1.1 ad * If thread is sleeping, wake it up. If it's not
805 1.1 ad * yet asleep, it will notice the change in state
806 1.1 ad * and will re-poll the descriptors.
807 1.1 ad */
808 1.13 ad if (oflag == SEL_BLOCKING && l->l_mutex == lock) {
809 1.1 ad KASSERT(l->l_wchan == sc);
810 1.64 ad sleepq_remove(l->l_sleepq, l, true);
811 1.1 ad }
812 1.1 ad }
813 1.13 ad mutex_spin_exit(lock);
814 1.1 ad }
815 1.1 ad
816 1.1 ad if ((mask = sip->sel_collision) != 0) {
817 1.1 ad /*
818 1.1 ad * There was a collision (multiple waiters): we must
819 1.1 ad * inform all potentially interested waiters.
820 1.1 ad */
821 1.1 ad sip->sel_collision = 0;
822 1.3 ad do {
823 1.49 ad index = ffs64(mask) - 1;
824 1.49 ad mask ^= __BIT(index);
825 1.22 ad sc = selcluster[index];
826 1.13 ad lock = sc->sc_lock;
827 1.13 ad mutex_spin_enter(lock);
828 1.1 ad sc->sc_ncoll++;
829 1.13 ad sleepq_wake(&sc->sc_sleepq, sc, (u_int)-1, lock);
830 1.3 ad } while (__predict_false(mask != 0));
831 1.1 ad }
832 1.1 ad }
833 1.1 ad
834 1.1 ad /*
835 1.1 ad * Remove an LWP from all objects that it is waiting for. Concurrency
836 1.1 ad * issues:
837 1.1 ad *
838 1.1 ad * The object owner's (e.g. device driver) lock is not held here. Calls
839 1.1 ad * can be made to selrecord() and we do not synchronize against those
840 1.1 ad * directly using locks. However, we use `sel_lwp' to lock out changes.
841 1.1 ad * Before clearing it we must use memory barriers to ensure that we can
842 1.1 ad * safely traverse the list of selinfo records.
843 1.1 ad */
844 1.1 ad static void
845 1.1 ad selclear(void)
846 1.1 ad {
847 1.1 ad struct selinfo *sip, *next;
848 1.22 ad selcluster_t *sc;
849 1.1 ad lwp_t *l;
850 1.13 ad kmutex_t *lock;
851 1.1 ad
852 1.1 ad l = curlwp;
853 1.22 ad sc = l->l_selcluster;
854 1.13 ad lock = sc->sc_lock;
855 1.1 ad
856 1.49 ad /*
857 1.49 ad * If the request was non-blocking, or we found events on the first
858 1.49 ad * descriptor, there will be no need to clear anything - avoid
859 1.49 ad * taking the lock.
860 1.49 ad */
861 1.49 ad if (SLIST_EMPTY(&l->l_selwait)) {
862 1.49 ad return;
863 1.49 ad }
864 1.49 ad
865 1.13 ad mutex_spin_enter(lock);
866 1.1 ad for (sip = SLIST_FIRST(&l->l_selwait); sip != NULL; sip = next) {
867 1.1 ad KASSERT(sip->sel_lwp == l);
868 1.22 ad KASSERT(sip->sel_cluster == l->l_selcluster);
869 1.22 ad
870 1.1 ad /*
871 1.1 ad * Read link to next selinfo record, if any.
872 1.1 ad * It's no longer safe to touch `sip' after clearing
873 1.1 ad * `sel_lwp', so ensure that the read of `sel_chain'
874 1.1 ad * completes before the clearing of sel_lwp becomes
875 1.1 ad * globally visible.
876 1.1 ad */
877 1.1 ad next = SLIST_NEXT(sip, sel_chain);
878 1.1 ad /* Release the record for another named waiter to use. */
879 1.59 riastrad atomic_store_release(&sip->sel_lwp, NULL);
880 1.1 ad }
881 1.13 ad mutex_spin_exit(lock);
882 1.1 ad }
883 1.1 ad
884 1.1 ad /*
885 1.1 ad * Initialize the select/poll system calls. Called once for each
886 1.1 ad * CPU in the system, as they are attached.
887 1.1 ad */
888 1.1 ad void
889 1.1 ad selsysinit(struct cpu_info *ci)
890 1.1 ad {
891 1.22 ad selcluster_t *sc;
892 1.22 ad u_int index;
893 1.1 ad
894 1.22 ad /* If already a cluster in place for this bit, re-use. */
895 1.22 ad index = cpu_index(ci) & SELCLUSTERMASK;
896 1.22 ad sc = selcluster[index];
897 1.22 ad if (sc == NULL) {
898 1.22 ad sc = kmem_alloc(roundup2(sizeof(selcluster_t),
899 1.22 ad coherency_unit) + coherency_unit, KM_SLEEP);
900 1.22 ad sc = (void *)roundup2((uintptr_t)sc, coherency_unit);
901 1.22 ad sc->sc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
902 1.22 ad sleepq_init(&sc->sc_sleepq);
903 1.22 ad sc->sc_ncoll = 0;
904 1.46 msaitoh sc->sc_mask = __BIT(index);
905 1.22 ad selcluster[index] = sc;
906 1.22 ad }
907 1.22 ad ci->ci_data.cpu_selcluster = sc;
908 1.1 ad }
909 1.1 ad
910 1.1 ad /*
911 1.1 ad * Initialize a selinfo record.
912 1.1 ad */
913 1.1 ad void
914 1.1 ad selinit(struct selinfo *sip)
915 1.1 ad {
916 1.1 ad
917 1.1 ad memset(sip, 0, sizeof(*sip));
918 1.58 thorpej klist_init(&sip->sel_klist);
919 1.1 ad }
920 1.1 ad
921 1.1 ad /*
922 1.1 ad * Destroy a selinfo record. The owning object must not gain new
923 1.1 ad * references while this is in progress: all activity on the record
924 1.1 ad * must be stopped.
925 1.1 ad *
926 1.1 ad * Concurrency issues: we only need guard against a call to selclear()
927 1.17 rmind * by a thread exiting sel_do_scan(). The caller has prevented further
928 1.17 rmind * references being made to the selinfo record via selrecord(), and it
929 1.23 rmind * will not call selnotify() again.
930 1.1 ad */
931 1.1 ad void
932 1.1 ad seldestroy(struct selinfo *sip)
933 1.1 ad {
934 1.22 ad selcluster_t *sc;
935 1.13 ad kmutex_t *lock;
936 1.1 ad lwp_t *l;
937 1.1 ad
938 1.58 thorpej klist_fini(&sip->sel_klist);
939 1.58 thorpej
940 1.1 ad if (sip->sel_lwp == NULL)
941 1.1 ad return;
942 1.1 ad
943 1.1 ad /*
944 1.22 ad * Lock out selclear(). The selcluster pointer can't change while
945 1.1 ad * we are here since it is only ever changed in selrecord(),
946 1.1 ad * and that will not be entered again for this record because
947 1.1 ad * it is dying.
948 1.1 ad */
949 1.22 ad KASSERT(sip->sel_cluster != NULL);
950 1.22 ad sc = sip->sel_cluster;
951 1.13 ad lock = sc->sc_lock;
952 1.13 ad mutex_spin_enter(lock);
953 1.1 ad if ((l = sip->sel_lwp) != NULL) {
954 1.1 ad /*
955 1.1 ad * This should rarely happen, so although SLIST_REMOVE()
956 1.1 ad * is slow, using it here is not a problem.
957 1.1 ad */
958 1.22 ad KASSERT(l->l_selcluster == sc);
959 1.1 ad SLIST_REMOVE(&l->l_selwait, sip, selinfo, sel_chain);
960 1.1 ad sip->sel_lwp = NULL;
961 1.1 ad }
962 1.13 ad mutex_spin_exit(lock);
963 1.1 ad }
964 1.1 ad
965 1.36 rmind /*
966 1.36 rmind * System control nodes.
967 1.36 rmind */
968 1.36 rmind SYSCTL_SETUP(sysctl_select_setup, "sysctl select setup")
969 1.36 rmind {
970 1.36 rmind
971 1.38 pooka sysctl_createv(clog, 0, NULL, NULL,
972 1.36 rmind CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
973 1.36 rmind CTLTYPE_INT, "direct_select",
974 1.36 rmind SYSCTL_DESCR("Enable/disable direct select (for testing)"),
975 1.36 rmind NULL, 0, &direct_select, 0,
976 1.38 pooka CTL_KERN, CTL_CREATE, CTL_EOL);
977 1.36 rmind }
978