sys_select.c revision 1.67 1 1.67 kre /* $NetBSD: sys_select.c,v 1.67 2024/10/18 13:12:34 kre Exp $ */
2 1.1 ad
3 1.1 ad /*-
4 1.62 ad * Copyright (c) 2007, 2008, 2009, 2010, 2019, 2020, 2023
5 1.62 ad * The NetBSD Foundation, Inc.
6 1.1 ad * All rights reserved.
7 1.1 ad *
8 1.1 ad * This code is derived from software contributed to The NetBSD Foundation
9 1.23 rmind * by Andrew Doran and Mindaugas Rasiukevicius.
10 1.1 ad *
11 1.1 ad * Redistribution and use in source and binary forms, with or without
12 1.1 ad * modification, are permitted provided that the following conditions
13 1.1 ad * are met:
14 1.1 ad * 1. Redistributions of source code must retain the above copyright
15 1.1 ad * notice, this list of conditions and the following disclaimer.
16 1.1 ad * 2. Redistributions in binary form must reproduce the above copyright
17 1.1 ad * notice, this list of conditions and the following disclaimer in the
18 1.1 ad * documentation and/or other materials provided with the distribution.
19 1.1 ad *
20 1.1 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 1.1 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 1.1 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 1.1 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 1.1 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.1 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.1 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 1.1 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 1.1 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 1.1 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 1.1 ad * POSSIBILITY OF SUCH DAMAGE.
31 1.1 ad */
32 1.1 ad
33 1.1 ad /*
34 1.1 ad * Copyright (c) 1982, 1986, 1989, 1993
35 1.1 ad * The Regents of the University of California. All rights reserved.
36 1.1 ad * (c) UNIX System Laboratories, Inc.
37 1.1 ad * All or some portions of this file are derived from material licensed
38 1.1 ad * to the University of California by American Telephone and Telegraph
39 1.1 ad * Co. or Unix System Laboratories, Inc. and are reproduced herein with
40 1.1 ad * the permission of UNIX System Laboratories, Inc.
41 1.1 ad *
42 1.1 ad * Redistribution and use in source and binary forms, with or without
43 1.1 ad * modification, are permitted provided that the following conditions
44 1.1 ad * are met:
45 1.1 ad * 1. Redistributions of source code must retain the above copyright
46 1.1 ad * notice, this list of conditions and the following disclaimer.
47 1.1 ad * 2. Redistributions in binary form must reproduce the above copyright
48 1.1 ad * notice, this list of conditions and the following disclaimer in the
49 1.1 ad * documentation and/or other materials provided with the distribution.
50 1.1 ad * 3. Neither the name of the University nor the names of its contributors
51 1.1 ad * may be used to endorse or promote products derived from this software
52 1.1 ad * without specific prior written permission.
53 1.1 ad *
54 1.1 ad * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 1.1 ad * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 1.1 ad * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 1.1 ad * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 1.1 ad * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 1.1 ad * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 1.1 ad * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 1.1 ad * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 1.1 ad * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 1.1 ad * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 1.1 ad * SUCH DAMAGE.
65 1.1 ad *
66 1.1 ad * @(#)sys_generic.c 8.9 (Berkeley) 2/14/95
67 1.1 ad */
68 1.1 ad
69 1.1 ad /*
70 1.21 rmind * System calls of synchronous I/O multiplexing subsystem.
71 1.21 rmind *
72 1.21 rmind * Locking
73 1.21 rmind *
74 1.22 ad * Two locks are used: <object-lock> and selcluster_t::sc_lock.
75 1.21 rmind *
76 1.21 rmind * The <object-lock> might be a device driver or another subsystem, e.g.
77 1.21 rmind * socket or pipe. This lock is not exported, and thus invisible to this
78 1.21 rmind * subsystem. Mainly, synchronisation between selrecord() and selnotify()
79 1.21 rmind * routines depends on this lock, as it will be described in the comments.
80 1.21 rmind *
81 1.21 rmind * Lock order
82 1.21 rmind *
83 1.21 rmind * <object-lock> ->
84 1.22 ad * selcluster_t::sc_lock
85 1.1 ad */
86 1.1 ad
87 1.1 ad #include <sys/cdefs.h>
88 1.67 kre __KERNEL_RCSID(0, "$NetBSD: sys_select.c,v 1.67 2024/10/18 13:12:34 kre Exp $");
89 1.1 ad
90 1.1 ad #include <sys/param.h>
91 1.66 riastrad
92 1.66 riastrad #include <sys/atomic.h>
93 1.66 riastrad #include <sys/bitops.h>
94 1.66 riastrad #include <sys/cpu.h>
95 1.66 riastrad #include <sys/file.h>
96 1.1 ad #include <sys/filedesc.h>
97 1.1 ad #include <sys/kernel.h>
98 1.29 rmind #include <sys/lwp.h>
99 1.66 riastrad #include <sys/mount.h>
100 1.1 ad #include <sys/poll.h>
101 1.66 riastrad #include <sys/proc.h>
102 1.66 riastrad #include <sys/signalvar.h>
103 1.66 riastrad #include <sys/sleepq.h>
104 1.66 riastrad #include <sys/socketvar.h>
105 1.66 riastrad #include <sys/socketvar.h>
106 1.66 riastrad #include <sys/syncobj.h>
107 1.1 ad #include <sys/syscallargs.h>
108 1.36 rmind #include <sys/sysctl.h>
109 1.66 riastrad #include <sys/systm.h>
110 1.66 riastrad #include <sys/uio.h>
111 1.1 ad
112 1.1 ad /* Flags for lwp::l_selflag. */
113 1.1 ad #define SEL_RESET 0 /* awoken, interrupted, or not yet polling */
114 1.1 ad #define SEL_SCANNING 1 /* polling descriptors */
115 1.23 rmind #define SEL_BLOCKING 2 /* blocking and waiting for event */
116 1.23 rmind #define SEL_EVENT 3 /* interrupted, events set directly */
117 1.23 rmind
118 1.22 ad /*
119 1.22 ad * Per-cluster state for select()/poll(). For a system with fewer
120 1.50 ad * than 64 CPUs, this gives us per-CPU clusters.
121 1.22 ad */
122 1.50 ad #define SELCLUSTERS 64
123 1.22 ad #define SELCLUSTERMASK (SELCLUSTERS - 1)
124 1.22 ad
125 1.22 ad typedef struct selcluster {
126 1.13 ad kmutex_t *sc_lock;
127 1.1 ad sleepq_t sc_sleepq;
128 1.49 ad uint64_t sc_mask;
129 1.1 ad int sc_ncoll;
130 1.22 ad } selcluster_t;
131 1.1 ad
132 1.23 rmind static inline int selscan(char *, const int, const size_t, register_t *);
133 1.23 rmind static inline int pollscan(struct pollfd *, const int, register_t *);
134 1.19 rmind static void selclear(void);
135 1.1 ad
136 1.23 rmind static const int sel_flag[] = {
137 1.23 rmind POLLRDNORM | POLLHUP | POLLERR,
138 1.23 rmind POLLWRNORM | POLLHUP | POLLERR,
139 1.23 rmind POLLRDBAND
140 1.23 rmind };
141 1.23 rmind
142 1.53 ad /*
143 1.53 ad * LWPs are woken using the sleep queue only due to a collision, the case
144 1.53 ad * with the maximum Suck Factor. Save the cost of sorting for named waiters
145 1.53 ad * by inserting in LIFO order. In the future it would be preferable to not
146 1.53 ad * enqueue LWPs at all, unless subject to a collision.
147 1.53 ad */
148 1.52 ad syncobj_t select_sobj = {
149 1.61 riastrad .sobj_name = "select",
150 1.53 ad .sobj_flag = SOBJ_SLEEPQ_LIFO,
151 1.62 ad .sobj_boostpri = PRI_KERNEL,
152 1.41 ozaki .sobj_unsleep = sleepq_unsleep,
153 1.41 ozaki .sobj_changepri = sleepq_changepri,
154 1.41 ozaki .sobj_lendpri = sleepq_lendpri,
155 1.41 ozaki .sobj_owner = syncobj_noowner,
156 1.1 ad };
157 1.1 ad
158 1.23 rmind static selcluster_t *selcluster[SELCLUSTERS] __read_mostly;
159 1.36 rmind static int direct_select __read_mostly = 0;
160 1.22 ad
161 1.49 ad /* Operations: either select() or poll(). */
162 1.49 ad const char selop_select[] = "select";
163 1.49 ad const char selop_poll[] = "poll";
164 1.49 ad
165 1.1 ad /*
166 1.1 ad * Select system call.
167 1.1 ad */
168 1.1 ad int
169 1.12 christos sys___pselect50(struct lwp *l, const struct sys___pselect50_args *uap,
170 1.12 christos register_t *retval)
171 1.1 ad {
172 1.1 ad /* {
173 1.1 ad syscallarg(int) nd;
174 1.1 ad syscallarg(fd_set *) in;
175 1.1 ad syscallarg(fd_set *) ou;
176 1.1 ad syscallarg(fd_set *) ex;
177 1.1 ad syscallarg(const struct timespec *) ts;
178 1.1 ad syscallarg(sigset_t *) mask;
179 1.1 ad } */
180 1.14 christos struct timespec ats, *ts = NULL;
181 1.1 ad sigset_t amask, *mask = NULL;
182 1.1 ad int error;
183 1.1 ad
184 1.1 ad if (SCARG(uap, ts)) {
185 1.1 ad error = copyin(SCARG(uap, ts), &ats, sizeof(ats));
186 1.1 ad if (error)
187 1.1 ad return error;
188 1.14 christos ts = &ats;
189 1.1 ad }
190 1.1 ad if (SCARG(uap, mask) != NULL) {
191 1.1 ad error = copyin(SCARG(uap, mask), &amask, sizeof(amask));
192 1.1 ad if (error)
193 1.1 ad return error;
194 1.1 ad mask = &amask;
195 1.1 ad }
196 1.1 ad
197 1.19 rmind return selcommon(retval, SCARG(uap, nd), SCARG(uap, in),
198 1.14 christos SCARG(uap, ou), SCARG(uap, ex), ts, mask);
199 1.1 ad }
200 1.1 ad
201 1.1 ad int
202 1.12 christos sys___select50(struct lwp *l, const struct sys___select50_args *uap,
203 1.12 christos register_t *retval)
204 1.1 ad {
205 1.1 ad /* {
206 1.1 ad syscallarg(int) nd;
207 1.1 ad syscallarg(fd_set *) in;
208 1.1 ad syscallarg(fd_set *) ou;
209 1.1 ad syscallarg(fd_set *) ex;
210 1.1 ad syscallarg(struct timeval *) tv;
211 1.1 ad } */
212 1.14 christos struct timeval atv;
213 1.14 christos struct timespec ats, *ts = NULL;
214 1.1 ad int error;
215 1.1 ad
216 1.1 ad if (SCARG(uap, tv)) {
217 1.14 christos error = copyin(SCARG(uap, tv), (void *)&atv, sizeof(atv));
218 1.1 ad if (error)
219 1.1 ad return error;
220 1.48 kamil
221 1.48 kamil if (atv.tv_usec < 0 || atv.tv_usec >= 1000000)
222 1.48 kamil return EINVAL;
223 1.48 kamil
224 1.14 christos TIMEVAL_TO_TIMESPEC(&atv, &ats);
225 1.14 christos ts = &ats;
226 1.1 ad }
227 1.1 ad
228 1.19 rmind return selcommon(retval, SCARG(uap, nd), SCARG(uap, in),
229 1.14 christos SCARG(uap, ou), SCARG(uap, ex), ts, NULL);
230 1.1 ad }
231 1.1 ad
232 1.17 rmind /*
233 1.17 rmind * sel_do_scan: common code to perform the scan on descriptors.
234 1.17 rmind */
235 1.17 rmind static int
236 1.49 ad sel_do_scan(const char *opname, void *fds, const int nf, const size_t ni,
237 1.23 rmind struct timespec *ts, sigset_t *mask, register_t *retval)
238 1.1 ad {
239 1.17 rmind lwp_t * const l = curlwp;
240 1.22 ad selcluster_t *sc;
241 1.13 ad kmutex_t *lock;
242 1.17 rmind struct timespec sleepts;
243 1.17 rmind int error, timo;
244 1.1 ad
245 1.1 ad timo = 0;
246 1.14 christos if (ts && inittimeleft(ts, &sleepts) == -1) {
247 1.17 rmind return EINVAL;
248 1.1 ad }
249 1.1 ad
250 1.32 christos if (__predict_false(mask))
251 1.31 christos sigsuspendsetup(l, mask);
252 1.1 ad
253 1.49 ad /*
254 1.49 ad * We may context switch during or at any time after picking a CPU
255 1.49 ad * and cluster to associate with, but it doesn't matter. In the
256 1.49 ad * unlikely event we migrate elsewhere all we risk is a little lock
257 1.49 ad * contention; correctness is not sacrificed.
258 1.49 ad */
259 1.22 ad sc = curcpu()->ci_data.cpu_selcluster;
260 1.13 ad lock = sc->sc_lock;
261 1.22 ad l->l_selcluster = sc;
262 1.49 ad
263 1.49 ad if (opname == selop_select) {
264 1.30 rmind l->l_selbits = fds;
265 1.23 rmind l->l_selni = ni;
266 1.23 rmind } else {
267 1.23 rmind l->l_selbits = NULL;
268 1.23 rmind }
269 1.34 hannken
270 1.1 ad for (;;) {
271 1.17 rmind int ncoll;
272 1.17 rmind
273 1.34 hannken SLIST_INIT(&l->l_selwait);
274 1.34 hannken l->l_selret = 0;
275 1.34 hannken
276 1.1 ad /*
277 1.17 rmind * No need to lock. If this is overwritten by another value
278 1.17 rmind * while scanning, we will retry below. We only need to see
279 1.17 rmind * exact state from the descriptors that we are about to poll,
280 1.17 rmind * and lock activity resulting from fo_poll is enough to
281 1.17 rmind * provide an up to date value for new polling activity.
282 1.1 ad */
283 1.49 ad if (ts && (ts->tv_sec | ts->tv_nsec | direct_select) == 0) {
284 1.49 ad /* Non-blocking: no need for selrecord()/selclear() */
285 1.49 ad l->l_selflag = SEL_RESET;
286 1.49 ad } else {
287 1.49 ad l->l_selflag = SEL_SCANNING;
288 1.49 ad }
289 1.1 ad ncoll = sc->sc_ncoll;
290 1.59 riastrad membar_release();
291 1.1 ad
292 1.49 ad if (opname == selop_select) {
293 1.23 rmind error = selscan((char *)fds, nf, ni, retval);
294 1.17 rmind } else {
295 1.23 rmind error = pollscan((struct pollfd *)fds, nf, retval);
296 1.17 rmind }
297 1.1 ad if (error || *retval)
298 1.1 ad break;
299 1.14 christos if (ts && (timo = gettimeleft(ts, &sleepts)) <= 0)
300 1.1 ad break;
301 1.23 rmind /*
302 1.23 rmind * Acquire the lock and perform the (re)checks. Note, if
303 1.57 andvar * collision has occurred, then our state does not matter,
304 1.23 rmind * as we must perform re-scan. Therefore, check it first.
305 1.23 rmind */
306 1.23 rmind state_check:
307 1.13 ad mutex_spin_enter(lock);
308 1.23 rmind if (__predict_false(sc->sc_ncoll != ncoll)) {
309 1.23 rmind /* Collision: perform re-scan. */
310 1.23 rmind mutex_spin_exit(lock);
311 1.34 hannken selclear();
312 1.23 rmind continue;
313 1.23 rmind }
314 1.23 rmind if (__predict_true(l->l_selflag == SEL_EVENT)) {
315 1.57 andvar /* Events occurred, they are set directly. */
316 1.23 rmind mutex_spin_exit(lock);
317 1.23 rmind break;
318 1.23 rmind }
319 1.23 rmind if (__predict_true(l->l_selflag == SEL_RESET)) {
320 1.57 andvar /* Events occurred, but re-scan is requested. */
321 1.13 ad mutex_spin_exit(lock);
322 1.34 hannken selclear();
323 1.1 ad continue;
324 1.1 ad }
325 1.23 rmind /* Nothing happen, therefore - sleep. */
326 1.1 ad l->l_selflag = SEL_BLOCKING;
327 1.63 ad KASSERT(l->l_blcnt == 0);
328 1.63 ad (void)sleepq_enter(&sc->sc_sleepq, l, lock);
329 1.54 ad sleepq_enqueue(&sc->sc_sleepq, sc, opname, &select_sobj, true);
330 1.63 ad error = sleepq_block(timo, true, &select_sobj, 0);
331 1.23 rmind if (error != 0) {
332 1.1 ad break;
333 1.23 rmind }
334 1.23 rmind /* Awoken: need to check the state. */
335 1.23 rmind goto state_check;
336 1.1 ad }
337 1.1 ad selclear();
338 1.1 ad
339 1.34 hannken /* Add direct events if any. */
340 1.34 hannken if (l->l_selflag == SEL_EVENT) {
341 1.34 hannken KASSERT(l->l_selret != 0);
342 1.34 hannken *retval += l->l_selret;
343 1.34 hannken }
344 1.34 hannken
345 1.33 christos if (__predict_false(mask))
346 1.33 christos sigsuspendteardown(l);
347 1.33 christos
348 1.20 dsl /* select and poll are not restarted after signals... */
349 1.20 dsl if (error == ERESTART)
350 1.20 dsl return EINTR;
351 1.20 dsl if (error == EWOULDBLOCK)
352 1.20 dsl return 0;
353 1.17 rmind return error;
354 1.17 rmind }
355 1.17 rmind
356 1.67 kre /* designed to be compatible with FD_SET() FD_ISSET() ... */
357 1.67 kre static int
358 1.67 kre anyset(void *p, size_t nbits)
359 1.67 kre {
360 1.67 kre size_t nwords;
361 1.67 kre __fd_mask mask;
362 1.67 kre __fd_mask *f = (__fd_mask *)p;
363 1.67 kre
364 1.67 kre nwords = nbits / __NFDBITS;
365 1.67 kre
366 1.67 kre while (nwords-- > 0)
367 1.67 kre if (*f++ != 0)
368 1.67 kre return 1;
369 1.67 kre
370 1.67 kre nbits &= __NFDMASK;
371 1.67 kre if (nbits != 0) {
372 1.67 kre mask = (1U << nbits) - 1;
373 1.67 kre if ((*f & mask) != 0)
374 1.67 kre return 1;
375 1.67 kre }
376 1.67 kre return 0;
377 1.67 kre }
378 1.67 kre
379 1.17 rmind int
380 1.19 rmind selcommon(register_t *retval, int nd, fd_set *u_in, fd_set *u_ou,
381 1.19 rmind fd_set *u_ex, struct timespec *ts, sigset_t *mask)
382 1.17 rmind {
383 1.17 rmind char smallbits[howmany(FD_SETSIZE, NFDBITS) *
384 1.17 rmind sizeof(fd_mask) * 6];
385 1.17 rmind char *bits;
386 1.67 kre int error, nf, fb, db;
387 1.17 rmind size_t ni;
388 1.17 rmind
389 1.17 rmind if (nd < 0)
390 1.67 kre return EINVAL;
391 1.67 kre
392 1.51 riastrad nf = atomic_load_consume(&curlwp->l_fd->fd_dt)->dt_nfiles;
393 1.67 kre
394 1.67 kre /*
395 1.67 kre * Don't allow absurdly large numbers of fds to be selected.
396 1.67 kre * (used to silently truncate, naughty naughty, no more ...)
397 1.67 kre *
398 1.67 kre * The additional FD_SETSISE allows for cases where the limit
399 1.67 kre * is not a round binary number, but the fd_set wants to
400 1.67 kre * include all the possible fds, as fd_sets are always
401 1.67 kre * multiples of 32 bits (__NFDBITS extra would be enough).
402 1.67 kre *
403 1.67 kre * The first test handles the case where the res limit has been
404 1.67 kre * set lower after some fds were opened, we always allow selecting
405 1.67 kre * up to the highest currently open fd.
406 1.67 kre */
407 1.67 kre if (nd > nf + FD_SETSIZE &&
408 1.67 kre nd > curlwp->l_proc->p_rlimit[RLIMIT_NOFILE].rlim_max + FD_SETSIZE)
409 1.67 kre return EINVAL;
410 1.67 kre
411 1.67 kre fb = howmany(nf, __NFDBITS); /* how many fd_masks */
412 1.67 kre db = howmany(nd, __NFDBITS);
413 1.67 kre
414 1.67 kre if (db > fb) {
415 1.67 kre size_t off;
416 1.67 kre
417 1.67 kre /*
418 1.67 kre * the application wants to supply more fd masks than can
419 1.67 kre * possibly represent valid file descriptors.
420 1.67 kre *
421 1.67 kre * Check the excess fd_masks, if any bits are set in them
422 1.67 kre * that must be an error (cannot represent valid fd).
423 1.67 kre *
424 1.67 kre * Supplying lots of extra cleared fd_masks is dumb,
425 1.67 kre * but harmless, so allow that.
426 1.67 kre */
427 1.67 kre ni = (db - fb) * sizeof(fd_mask); /* excess bytes */
428 1.67 kre bits = smallbits;
429 1.67 kre
430 1.67 kre /* skip over the valid fd_masks, those will be checked below */
431 1.67 kre off = howmany(nf, __NFDBITS) * sizeof(__fd_mask);
432 1.67 kre
433 1.67 kre nd -= fb * NFDBITS; /* the number of excess fds */
434 1.67 kre
435 1.67 kre #define checkbits(name, o, sz, fds) \
436 1.67 kre do { \
437 1.67 kre if (u_ ## name != NULL) { \
438 1.67 kre error = copyin((char *)u_ ## name + o, \
439 1.67 kre bits, sz); \
440 1.67 kre if (error) \
441 1.67 kre goto fail; \
442 1.67 kre if (anyset(bits, (fds) ? \
443 1.67 kre (size_t)(fds) : CHAR_BIT * (sz))) { \
444 1.67 kre error = EBADF; \
445 1.67 kre goto fail; \
446 1.67 kre } \
447 1.67 kre } \
448 1.67 kre } while (0)
449 1.67 kre
450 1.67 kre while (ni > sizeof(smallbits)) {
451 1.67 kre checkbits(in, off, sizeof(smallbits), 0);
452 1.67 kre checkbits(ou, off, sizeof(smallbits), 0);
453 1.67 kre checkbits(ex, off, sizeof(smallbits), 0);
454 1.67 kre
455 1.67 kre off += sizeof(smallbits);
456 1.67 kre ni -= sizeof(smallbits);
457 1.67 kre nd -= sizeof(smallbits) * CHAR_BIT;
458 1.67 kre }
459 1.67 kre checkbits(in, off, ni, nd);
460 1.67 kre checkbits(ou, off, ni, nd);
461 1.67 kre checkbits(ex, off, ni, nd);
462 1.67 kre #undef checkbits
463 1.67 kre
464 1.67 kre db = fb; /* now just check the plausible fds */
465 1.67 kre nd = db * __NFDBITS;
466 1.17 rmind }
467 1.67 kre
468 1.67 kre ni = db * sizeof(fd_mask);
469 1.40 chs if (ni * 6 > sizeof(smallbits))
470 1.17 rmind bits = kmem_alloc(ni * 6, KM_SLEEP);
471 1.40 chs else
472 1.17 rmind bits = smallbits;
473 1.17 rmind
474 1.17 rmind #define getbits(name, x) \
475 1.67 kre do { \
476 1.67 kre if (u_ ## name) { \
477 1.67 kre error = copyin(u_ ## name, bits + ni * x, ni); \
478 1.67 kre if (error) \
479 1.67 kre goto fail; \
480 1.67 kre } else \
481 1.67 kre memset(bits + ni * x, 0, ni); \
482 1.67 kre } while (0)
483 1.67 kre
484 1.17 rmind getbits(in, 0);
485 1.17 rmind getbits(ou, 1);
486 1.17 rmind getbits(ex, 2);
487 1.17 rmind #undef getbits
488 1.1 ad
489 1.49 ad error = sel_do_scan(selop_select, bits, nd, ni, ts, mask, retval);
490 1.67 kre
491 1.67 kre #define copyback(name, x) \
492 1.67 kre do { \
493 1.67 kre if (error == 0 && u_ ## name != NULL) \
494 1.67 kre error = copyout(bits + ni * x, \
495 1.67 kre u_ ## name, ni); \
496 1.67 kre } while (0)
497 1.67 kre
498 1.67 kre copyback(in, 3);
499 1.67 kre copyback(ou, 4);
500 1.67 kre copyback(ex, 5);
501 1.67 kre #undef copyback
502 1.67 kre
503 1.20 dsl fail:
504 1.1 ad if (bits != smallbits)
505 1.1 ad kmem_free(bits, ni * 6);
506 1.1 ad return (error);
507 1.1 ad }
508 1.1 ad
509 1.19 rmind static inline int
510 1.23 rmind selscan(char *bits, const int nfd, const size_t ni, register_t *retval)
511 1.1 ad {
512 1.17 rmind fd_mask *ibitp, *obitp;
513 1.23 rmind int msk, i, j, fd, n;
514 1.1 ad file_t *fp;
515 1.49 ad lwp_t *l;
516 1.1 ad
517 1.17 rmind ibitp = (fd_mask *)(bits + ni * 0);
518 1.17 rmind obitp = (fd_mask *)(bits + ni * 3);
519 1.1 ad n = 0;
520 1.49 ad l = curlwp;
521 1.17 rmind
522 1.34 hannken memset(obitp, 0, ni * 3);
523 1.1 ad for (msk = 0; msk < 3; msk++) {
524 1.1 ad for (i = 0; i < nfd; i += NFDBITS) {
525 1.23 rmind fd_mask ibits, obits;
526 1.23 rmind
527 1.35 hannken ibits = *ibitp;
528 1.1 ad obits = 0;
529 1.1 ad while ((j = ffs(ibits)) && (fd = i + --j) < nfd) {
530 1.47 msaitoh ibits &= ~(1U << j);
531 1.1 ad if ((fp = fd_getfile(fd)) == NULL)
532 1.1 ad return (EBADF);
533 1.23 rmind /*
534 1.23 rmind * Setup an argument to selrecord(), which is
535 1.23 rmind * a file descriptor number.
536 1.23 rmind */
537 1.49 ad l->l_selrec = fd;
538 1.23 rmind if ((*fp->f_ops->fo_poll)(fp, sel_flag[msk])) {
539 1.49 ad if (!direct_select) {
540 1.49 ad /*
541 1.49 ad * Have events: do nothing in
542 1.49 ad * selrecord().
543 1.49 ad */
544 1.49 ad l->l_selflag = SEL_RESET;
545 1.49 ad }
546 1.47 msaitoh obits |= (1U << j);
547 1.1 ad n++;
548 1.1 ad }
549 1.1 ad fd_putfile(fd);
550 1.1 ad }
551 1.34 hannken if (obits != 0) {
552 1.36 rmind if (direct_select) {
553 1.36 rmind kmutex_t *lock;
554 1.49 ad lock = l->l_selcluster->sc_lock;
555 1.35 hannken mutex_spin_enter(lock);
556 1.36 rmind *obitp |= obits;
557 1.35 hannken mutex_spin_exit(lock);
558 1.36 rmind } else {
559 1.36 rmind *obitp |= obits;
560 1.36 rmind }
561 1.34 hannken }
562 1.35 hannken ibitp++;
563 1.34 hannken obitp++;
564 1.1 ad }
565 1.1 ad }
566 1.1 ad *retval = n;
567 1.1 ad return (0);
568 1.1 ad }
569 1.1 ad
570 1.1 ad /*
571 1.1 ad * Poll system call.
572 1.1 ad */
573 1.1 ad int
574 1.1 ad sys_poll(struct lwp *l, const struct sys_poll_args *uap, register_t *retval)
575 1.1 ad {
576 1.1 ad /* {
577 1.1 ad syscallarg(struct pollfd *) fds;
578 1.1 ad syscallarg(u_int) nfds;
579 1.1 ad syscallarg(int) timeout;
580 1.1 ad } */
581 1.14 christos struct timespec ats, *ts = NULL;
582 1.1 ad
583 1.1 ad if (SCARG(uap, timeout) != INFTIM) {
584 1.14 christos ats.tv_sec = SCARG(uap, timeout) / 1000;
585 1.14 christos ats.tv_nsec = (SCARG(uap, timeout) % 1000) * 1000000;
586 1.14 christos ts = &ats;
587 1.1 ad }
588 1.1 ad
589 1.19 rmind return pollcommon(retval, SCARG(uap, fds), SCARG(uap, nfds), ts, NULL);
590 1.1 ad }
591 1.1 ad
592 1.1 ad /*
593 1.1 ad * Poll system call.
594 1.1 ad */
595 1.1 ad int
596 1.12 christos sys___pollts50(struct lwp *l, const struct sys___pollts50_args *uap,
597 1.12 christos register_t *retval)
598 1.1 ad {
599 1.1 ad /* {
600 1.1 ad syscallarg(struct pollfd *) fds;
601 1.1 ad syscallarg(u_int) nfds;
602 1.1 ad syscallarg(const struct timespec *) ts;
603 1.1 ad syscallarg(const sigset_t *) mask;
604 1.1 ad } */
605 1.14 christos struct timespec ats, *ts = NULL;
606 1.1 ad sigset_t amask, *mask = NULL;
607 1.1 ad int error;
608 1.1 ad
609 1.1 ad if (SCARG(uap, ts)) {
610 1.1 ad error = copyin(SCARG(uap, ts), &ats, sizeof(ats));
611 1.1 ad if (error)
612 1.1 ad return error;
613 1.14 christos ts = &ats;
614 1.1 ad }
615 1.1 ad if (SCARG(uap, mask)) {
616 1.1 ad error = copyin(SCARG(uap, mask), &amask, sizeof(amask));
617 1.1 ad if (error)
618 1.1 ad return error;
619 1.1 ad mask = &amask;
620 1.1 ad }
621 1.1 ad
622 1.19 rmind return pollcommon(retval, SCARG(uap, fds), SCARG(uap, nfds), ts, mask);
623 1.1 ad }
624 1.1 ad
625 1.1 ad int
626 1.19 rmind pollcommon(register_t *retval, struct pollfd *u_fds, u_int nfds,
627 1.14 christos struct timespec *ts, sigset_t *mask)
628 1.1 ad {
629 1.11 yamt struct pollfd smallfds[32];
630 1.11 yamt struct pollfd *fds;
631 1.17 rmind int error;
632 1.20 dsl size_t ni;
633 1.1 ad
634 1.45 christos if (nfds > curlwp->l_proc->p_rlimit[RLIMIT_NOFILE].rlim_max + 1000) {
635 1.20 dsl /*
636 1.43 christos * Prevent userland from causing over-allocation.
637 1.43 christos * Raising the default limit too high can still cause
638 1.43 christos * a lot of memory to be allocated, but this also means
639 1.43 christos * that the file descriptor array will also be large.
640 1.43 christos *
641 1.43 christos * To reduce the memory requirements here, we could
642 1.43 christos * process the 'fds' array in chunks, but that
643 1.20 dsl * is a lot of code that isn't normally useful.
644 1.20 dsl * (Or just move the copyin/out into pollscan().)
645 1.43 christos *
646 1.20 dsl * Historically the code silently truncated 'fds' to
647 1.20 dsl * dt_nfiles entries - but that does cause issues.
648 1.44 christos *
649 1.44 christos * Using the max limit equivalent to sysctl
650 1.44 christos * kern.maxfiles is the moral equivalent of OPEN_MAX
651 1.45 christos * as specified by POSIX.
652 1.45 christos *
653 1.45 christos * We add a slop of 1000 in case the resource limit was
654 1.45 christos * changed after opening descriptors or the same descriptor
655 1.45 christos * was specified more than once.
656 1.20 dsl */
657 1.20 dsl return EINVAL;
658 1.1 ad }
659 1.1 ad ni = nfds * sizeof(struct pollfd);
660 1.40 chs if (ni > sizeof(smallfds))
661 1.11 yamt fds = kmem_alloc(ni, KM_SLEEP);
662 1.40 chs else
663 1.11 yamt fds = smallfds;
664 1.1 ad
665 1.11 yamt error = copyin(u_fds, fds, ni);
666 1.1 ad if (error)
667 1.20 dsl goto fail;
668 1.1 ad
669 1.49 ad error = sel_do_scan(selop_poll, fds, nfds, ni, ts, mask, retval);
670 1.1 ad if (error == 0)
671 1.11 yamt error = copyout(fds, u_fds, ni);
672 1.20 dsl fail:
673 1.11 yamt if (fds != smallfds)
674 1.11 yamt kmem_free(fds, ni);
675 1.1 ad return (error);
676 1.1 ad }
677 1.1 ad
678 1.19 rmind static inline int
679 1.23 rmind pollscan(struct pollfd *fds, const int nfd, register_t *retval)
680 1.1 ad {
681 1.1 ad file_t *fp;
682 1.34 hannken int i, n = 0, revents;
683 1.1 ad
684 1.1 ad for (i = 0; i < nfd; i++, fds++) {
685 1.34 hannken fds->revents = 0;
686 1.1 ad if (fds->fd < 0) {
687 1.34 hannken revents = 0;
688 1.1 ad } else if ((fp = fd_getfile(fds->fd)) == NULL) {
689 1.34 hannken revents = POLLNVAL;
690 1.1 ad } else {
691 1.23 rmind /*
692 1.23 rmind * Perform poll: registers select request or returns
693 1.23 rmind * the events which are set. Setup an argument for
694 1.23 rmind * selrecord(), which is a pointer to struct pollfd.
695 1.23 rmind */
696 1.23 rmind curlwp->l_selrec = (uintptr_t)fds;
697 1.34 hannken revents = (*fp->f_ops->fo_poll)(fp,
698 1.1 ad fds->events | POLLERR | POLLHUP);
699 1.1 ad fd_putfile(fds->fd);
700 1.1 ad }
701 1.34 hannken if (revents) {
702 1.49 ad if (!direct_select) {
703 1.49 ad /* Have events: do nothing in selrecord(). */
704 1.49 ad curlwp->l_selflag = SEL_RESET;
705 1.49 ad }
706 1.34 hannken fds->revents = revents;
707 1.34 hannken n++;
708 1.34 hannken }
709 1.1 ad }
710 1.1 ad *retval = n;
711 1.1 ad return (0);
712 1.1 ad }
713 1.1 ad
714 1.1 ad int
715 1.1 ad seltrue(dev_t dev, int events, lwp_t *l)
716 1.1 ad {
717 1.1 ad
718 1.1 ad return (events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
719 1.1 ad }
720 1.1 ad
721 1.1 ad /*
722 1.1 ad * Record a select request. Concurrency issues:
723 1.1 ad *
724 1.1 ad * The caller holds the same lock across calls to selrecord() and
725 1.4 yamt * selnotify(), so we don't need to consider a concurrent wakeup
726 1.1 ad * while in this routine.
727 1.1 ad *
728 1.1 ad * The only activity we need to guard against is selclear(), called by
729 1.17 rmind * another thread that is exiting sel_do_scan().
730 1.1 ad * `sel_lwp' can only become non-NULL while the caller's lock is held,
731 1.1 ad * so it cannot become non-NULL due to a change made by another thread
732 1.1 ad * while we are in this routine. It can only become _NULL_ due to a
733 1.1 ad * call to selclear().
734 1.1 ad *
735 1.1 ad * If it is non-NULL and != selector there is the potential for
736 1.1 ad * selclear() to be called by another thread. If either of those
737 1.1 ad * conditions are true, we're not interested in touching the `named
738 1.1 ad * waiter' part of the selinfo record because we need to record a
739 1.1 ad * collision. Hence there is no need for additional locking in this
740 1.1 ad * routine.
741 1.1 ad */
742 1.1 ad void
743 1.1 ad selrecord(lwp_t *selector, struct selinfo *sip)
744 1.1 ad {
745 1.22 ad selcluster_t *sc;
746 1.1 ad lwp_t *other;
747 1.1 ad
748 1.1 ad KASSERT(selector == curlwp);
749 1.1 ad
750 1.22 ad sc = selector->l_selcluster;
751 1.1 ad other = sip->sel_lwp;
752 1.1 ad
753 1.49 ad if (selector->l_selflag == SEL_RESET) {
754 1.49 ad /* 0. We're not going to block - will poll again if needed. */
755 1.49 ad } else if (other == selector) {
756 1.23 rmind /* 1. We (selector) already claimed to be the first LWP. */
757 1.37 riastrad KASSERT(sip->sel_cluster == sc);
758 1.1 ad } else if (other == NULL) {
759 1.1 ad /*
760 1.23 rmind * 2. No first LWP, therefore we (selector) are the first.
761 1.23 rmind *
762 1.23 rmind * There may be unnamed waiters (collisions). Issue a memory
763 1.23 rmind * barrier to ensure that we access sel_lwp (above) before
764 1.23 rmind * other fields - this guards against a call to selclear().
765 1.1 ad */
766 1.59 riastrad membar_acquire();
767 1.1 ad sip->sel_lwp = selector;
768 1.1 ad SLIST_INSERT_HEAD(&selector->l_selwait, sip, sel_chain);
769 1.23 rmind /* Copy the argument, which is for selnotify(). */
770 1.23 rmind sip->sel_fdinfo = selector->l_selrec;
771 1.22 ad /* Replace selinfo's lock with the chosen cluster's lock. */
772 1.22 ad sip->sel_cluster = sc;
773 1.1 ad } else {
774 1.23 rmind /* 3. Multiple waiters: record a collision. */
775 1.1 ad sip->sel_collision |= sc->sc_mask;
776 1.22 ad KASSERT(sip->sel_cluster != NULL);
777 1.1 ad }
778 1.1 ad }
779 1.1 ad
780 1.1 ad /*
781 1.55 thorpej * Record a knote.
782 1.55 thorpej *
783 1.55 thorpej * The caller holds the same lock as for selrecord().
784 1.55 thorpej */
785 1.55 thorpej void
786 1.55 thorpej selrecord_knote(struct selinfo *sip, struct knote *kn)
787 1.55 thorpej {
788 1.58 thorpej klist_insert(&sip->sel_klist, kn);
789 1.55 thorpej }
790 1.55 thorpej
791 1.55 thorpej /*
792 1.55 thorpej * Remove a knote.
793 1.55 thorpej *
794 1.55 thorpej * The caller holds the same lock as for selrecord().
795 1.56 thorpej *
796 1.56 thorpej * Returns true if the last knote was removed and the list
797 1.56 thorpej * is now empty.
798 1.55 thorpej */
799 1.56 thorpej bool
800 1.55 thorpej selremove_knote(struct selinfo *sip, struct knote *kn)
801 1.55 thorpej {
802 1.58 thorpej return klist_remove(&sip->sel_klist, kn);
803 1.55 thorpej }
804 1.55 thorpej
805 1.55 thorpej /*
806 1.23 rmind * sel_setevents: a helper function for selnotify(), to set the events
807 1.23 rmind * for LWP sleeping in selcommon() or pollcommon().
808 1.23 rmind */
809 1.30 rmind static inline bool
810 1.23 rmind sel_setevents(lwp_t *l, struct selinfo *sip, const int events)
811 1.23 rmind {
812 1.23 rmind const int oflag = l->l_selflag;
813 1.30 rmind int ret = 0;
814 1.23 rmind
815 1.23 rmind /*
816 1.23 rmind * If we require re-scan or it was required by somebody else,
817 1.23 rmind * then just (re)set SEL_RESET and return.
818 1.23 rmind */
819 1.23 rmind if (__predict_false(events == 0 || oflag == SEL_RESET)) {
820 1.23 rmind l->l_selflag = SEL_RESET;
821 1.30 rmind return true;
822 1.23 rmind }
823 1.23 rmind /*
824 1.23 rmind * Direct set. Note: select state of LWP is locked. First,
825 1.23 rmind * determine whether it is selcommon() or pollcommon().
826 1.23 rmind */
827 1.23 rmind if (l->l_selbits != NULL) {
828 1.30 rmind const size_t ni = l->l_selni;
829 1.23 rmind fd_mask *fds = (fd_mask *)l->l_selbits;
830 1.30 rmind fd_mask *ofds = (fd_mask *)((char *)fds + ni * 3);
831 1.30 rmind const int fd = sip->sel_fdinfo, fbit = 1 << (fd & __NFDMASK);
832 1.25 rmind const int idx = fd >> __NFDSHIFT;
833 1.23 rmind int n;
834 1.23 rmind
835 1.23 rmind for (n = 0; n < 3; n++) {
836 1.34 hannken if ((fds[idx] & fbit) != 0 &&
837 1.34 hannken (ofds[idx] & fbit) == 0 &&
838 1.34 hannken (sel_flag[n] & events)) {
839 1.30 rmind ofds[idx] |= fbit;
840 1.30 rmind ret++;
841 1.23 rmind }
842 1.23 rmind fds = (fd_mask *)((char *)fds + ni);
843 1.30 rmind ofds = (fd_mask *)((char *)ofds + ni);
844 1.23 rmind }
845 1.23 rmind } else {
846 1.23 rmind struct pollfd *pfd = (void *)sip->sel_fdinfo;
847 1.30 rmind int revents = events & (pfd->events | POLLERR | POLLHUP);
848 1.30 rmind
849 1.30 rmind if (revents) {
850 1.34 hannken if (pfd->revents == 0)
851 1.34 hannken ret = 1;
852 1.30 rmind pfd->revents |= revents;
853 1.30 rmind }
854 1.30 rmind }
855 1.30 rmind /* Check whether there are any events to return. */
856 1.30 rmind if (!ret) {
857 1.30 rmind return false;
858 1.23 rmind }
859 1.23 rmind /* Indicate direct set and note the event (cluster lock is held). */
860 1.23 rmind l->l_selflag = SEL_EVENT;
861 1.30 rmind l->l_selret += ret;
862 1.30 rmind return true;
863 1.23 rmind }
864 1.23 rmind
865 1.23 rmind /*
866 1.1 ad * Do a wakeup when a selectable event occurs. Concurrency issues:
867 1.1 ad *
868 1.1 ad * As per selrecord(), the caller's object lock is held. If there
869 1.22 ad * is a named waiter, we must acquire the associated selcluster's lock
870 1.1 ad * in order to synchronize with selclear() and pollers going to sleep
871 1.17 rmind * in sel_do_scan().
872 1.1 ad *
873 1.22 ad * sip->sel_cluser cannot change at this point, as it is only changed
874 1.1 ad * in selrecord(), and concurrent calls to selrecord() are locked
875 1.1 ad * out by the caller.
876 1.1 ad */
877 1.1 ad void
878 1.1 ad selnotify(struct selinfo *sip, int events, long knhint)
879 1.1 ad {
880 1.22 ad selcluster_t *sc;
881 1.49 ad uint64_t mask;
882 1.16 rmind int index, oflag;
883 1.1 ad lwp_t *l;
884 1.13 ad kmutex_t *lock;
885 1.1 ad
886 1.1 ad KNOTE(&sip->sel_klist, knhint);
887 1.1 ad
888 1.1 ad if (sip->sel_lwp != NULL) {
889 1.1 ad /* One named LWP is waiting. */
890 1.22 ad sc = sip->sel_cluster;
891 1.13 ad lock = sc->sc_lock;
892 1.13 ad mutex_spin_enter(lock);
893 1.1 ad /* Still there? */
894 1.1 ad if (sip->sel_lwp != NULL) {
895 1.23 rmind /*
896 1.23 rmind * Set the events for our LWP and indicate that.
897 1.23 rmind * Otherwise, request for a full re-scan.
898 1.23 rmind */
899 1.1 ad l = sip->sel_lwp;
900 1.23 rmind oflag = l->l_selflag;
901 1.36 rmind
902 1.36 rmind if (!direct_select) {
903 1.36 rmind l->l_selflag = SEL_RESET;
904 1.36 rmind } else if (!sel_setevents(l, sip, events)) {
905 1.30 rmind /* No events to return. */
906 1.30 rmind mutex_spin_exit(lock);
907 1.30 rmind return;
908 1.30 rmind }
909 1.36 rmind
910 1.1 ad /*
911 1.1 ad * If thread is sleeping, wake it up. If it's not
912 1.1 ad * yet asleep, it will notice the change in state
913 1.1 ad * and will re-poll the descriptors.
914 1.1 ad */
915 1.13 ad if (oflag == SEL_BLOCKING && l->l_mutex == lock) {
916 1.1 ad KASSERT(l->l_wchan == sc);
917 1.64 ad sleepq_remove(l->l_sleepq, l, true);
918 1.1 ad }
919 1.1 ad }
920 1.13 ad mutex_spin_exit(lock);
921 1.1 ad }
922 1.1 ad
923 1.1 ad if ((mask = sip->sel_collision) != 0) {
924 1.1 ad /*
925 1.1 ad * There was a collision (multiple waiters): we must
926 1.1 ad * inform all potentially interested waiters.
927 1.1 ad */
928 1.1 ad sip->sel_collision = 0;
929 1.3 ad do {
930 1.49 ad index = ffs64(mask) - 1;
931 1.49 ad mask ^= __BIT(index);
932 1.22 ad sc = selcluster[index];
933 1.13 ad lock = sc->sc_lock;
934 1.13 ad mutex_spin_enter(lock);
935 1.1 ad sc->sc_ncoll++;
936 1.13 ad sleepq_wake(&sc->sc_sleepq, sc, (u_int)-1, lock);
937 1.3 ad } while (__predict_false(mask != 0));
938 1.1 ad }
939 1.1 ad }
940 1.1 ad
941 1.1 ad /*
942 1.1 ad * Remove an LWP from all objects that it is waiting for. Concurrency
943 1.1 ad * issues:
944 1.1 ad *
945 1.1 ad * The object owner's (e.g. device driver) lock is not held here. Calls
946 1.1 ad * can be made to selrecord() and we do not synchronize against those
947 1.1 ad * directly using locks. However, we use `sel_lwp' to lock out changes.
948 1.1 ad * Before clearing it we must use memory barriers to ensure that we can
949 1.1 ad * safely traverse the list of selinfo records.
950 1.1 ad */
951 1.1 ad static void
952 1.1 ad selclear(void)
953 1.1 ad {
954 1.1 ad struct selinfo *sip, *next;
955 1.22 ad selcluster_t *sc;
956 1.1 ad lwp_t *l;
957 1.13 ad kmutex_t *lock;
958 1.1 ad
959 1.1 ad l = curlwp;
960 1.22 ad sc = l->l_selcluster;
961 1.13 ad lock = sc->sc_lock;
962 1.1 ad
963 1.49 ad /*
964 1.49 ad * If the request was non-blocking, or we found events on the first
965 1.49 ad * descriptor, there will be no need to clear anything - avoid
966 1.49 ad * taking the lock.
967 1.49 ad */
968 1.49 ad if (SLIST_EMPTY(&l->l_selwait)) {
969 1.49 ad return;
970 1.49 ad }
971 1.49 ad
972 1.13 ad mutex_spin_enter(lock);
973 1.1 ad for (sip = SLIST_FIRST(&l->l_selwait); sip != NULL; sip = next) {
974 1.1 ad KASSERT(sip->sel_lwp == l);
975 1.22 ad KASSERT(sip->sel_cluster == l->l_selcluster);
976 1.22 ad
977 1.1 ad /*
978 1.1 ad * Read link to next selinfo record, if any.
979 1.1 ad * It's no longer safe to touch `sip' after clearing
980 1.1 ad * `sel_lwp', so ensure that the read of `sel_chain'
981 1.1 ad * completes before the clearing of sel_lwp becomes
982 1.1 ad * globally visible.
983 1.1 ad */
984 1.1 ad next = SLIST_NEXT(sip, sel_chain);
985 1.1 ad /* Release the record for another named waiter to use. */
986 1.59 riastrad atomic_store_release(&sip->sel_lwp, NULL);
987 1.1 ad }
988 1.13 ad mutex_spin_exit(lock);
989 1.1 ad }
990 1.1 ad
991 1.1 ad /*
992 1.1 ad * Initialize the select/poll system calls. Called once for each
993 1.1 ad * CPU in the system, as they are attached.
994 1.1 ad */
995 1.1 ad void
996 1.1 ad selsysinit(struct cpu_info *ci)
997 1.1 ad {
998 1.22 ad selcluster_t *sc;
999 1.22 ad u_int index;
1000 1.1 ad
1001 1.22 ad /* If already a cluster in place for this bit, re-use. */
1002 1.22 ad index = cpu_index(ci) & SELCLUSTERMASK;
1003 1.22 ad sc = selcluster[index];
1004 1.22 ad if (sc == NULL) {
1005 1.22 ad sc = kmem_alloc(roundup2(sizeof(selcluster_t),
1006 1.22 ad coherency_unit) + coherency_unit, KM_SLEEP);
1007 1.22 ad sc = (void *)roundup2((uintptr_t)sc, coherency_unit);
1008 1.22 ad sc->sc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
1009 1.22 ad sleepq_init(&sc->sc_sleepq);
1010 1.22 ad sc->sc_ncoll = 0;
1011 1.46 msaitoh sc->sc_mask = __BIT(index);
1012 1.22 ad selcluster[index] = sc;
1013 1.22 ad }
1014 1.22 ad ci->ci_data.cpu_selcluster = sc;
1015 1.1 ad }
1016 1.1 ad
1017 1.1 ad /*
1018 1.1 ad * Initialize a selinfo record.
1019 1.1 ad */
1020 1.1 ad void
1021 1.1 ad selinit(struct selinfo *sip)
1022 1.1 ad {
1023 1.1 ad
1024 1.1 ad memset(sip, 0, sizeof(*sip));
1025 1.58 thorpej klist_init(&sip->sel_klist);
1026 1.1 ad }
1027 1.1 ad
1028 1.1 ad /*
1029 1.1 ad * Destroy a selinfo record. The owning object must not gain new
1030 1.1 ad * references while this is in progress: all activity on the record
1031 1.1 ad * must be stopped.
1032 1.1 ad *
1033 1.1 ad * Concurrency issues: we only need guard against a call to selclear()
1034 1.17 rmind * by a thread exiting sel_do_scan(). The caller has prevented further
1035 1.17 rmind * references being made to the selinfo record via selrecord(), and it
1036 1.23 rmind * will not call selnotify() again.
1037 1.1 ad */
1038 1.1 ad void
1039 1.1 ad seldestroy(struct selinfo *sip)
1040 1.1 ad {
1041 1.22 ad selcluster_t *sc;
1042 1.13 ad kmutex_t *lock;
1043 1.1 ad lwp_t *l;
1044 1.1 ad
1045 1.58 thorpej klist_fini(&sip->sel_klist);
1046 1.58 thorpej
1047 1.1 ad if (sip->sel_lwp == NULL)
1048 1.1 ad return;
1049 1.1 ad
1050 1.1 ad /*
1051 1.22 ad * Lock out selclear(). The selcluster pointer can't change while
1052 1.1 ad * we are here since it is only ever changed in selrecord(),
1053 1.1 ad * and that will not be entered again for this record because
1054 1.1 ad * it is dying.
1055 1.1 ad */
1056 1.22 ad KASSERT(sip->sel_cluster != NULL);
1057 1.22 ad sc = sip->sel_cluster;
1058 1.13 ad lock = sc->sc_lock;
1059 1.13 ad mutex_spin_enter(lock);
1060 1.1 ad if ((l = sip->sel_lwp) != NULL) {
1061 1.1 ad /*
1062 1.1 ad * This should rarely happen, so although SLIST_REMOVE()
1063 1.1 ad * is slow, using it here is not a problem.
1064 1.1 ad */
1065 1.22 ad KASSERT(l->l_selcluster == sc);
1066 1.1 ad SLIST_REMOVE(&l->l_selwait, sip, selinfo, sel_chain);
1067 1.1 ad sip->sel_lwp = NULL;
1068 1.1 ad }
1069 1.13 ad mutex_spin_exit(lock);
1070 1.1 ad }
1071 1.1 ad
1072 1.36 rmind /*
1073 1.36 rmind * System control nodes.
1074 1.36 rmind */
1075 1.36 rmind SYSCTL_SETUP(sysctl_select_setup, "sysctl select setup")
1076 1.36 rmind {
1077 1.36 rmind
1078 1.38 pooka sysctl_createv(clog, 0, NULL, NULL,
1079 1.36 rmind CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1080 1.36 rmind CTLTYPE_INT, "direct_select",
1081 1.36 rmind SYSCTL_DESCR("Enable/disable direct select (for testing)"),
1082 1.36 rmind NULL, 0, &direct_select, 0,
1083 1.38 pooka CTL_KERN, CTL_CREATE, CTL_EOL);
1084 1.36 rmind }
1085