Home | History | Annotate | Line # | Download | only in kern
sys_select.c revision 1.9
      1  1.9  rmind /*	$NetBSD: sys_select.c,v 1.9 2008/06/04 13:02:41 rmind Exp $	*/
      2  1.1     ad 
      3  1.1     ad /*-
      4  1.1     ad  * Copyright (c) 2007, 2008 The NetBSD Foundation, Inc.
      5  1.1     ad  * All rights reserved.
      6  1.1     ad  *
      7  1.1     ad  * This code is derived from software contributed to The NetBSD Foundation
      8  1.1     ad  * by Andrew Doran.
      9  1.1     ad  *
     10  1.1     ad  * Redistribution and use in source and binary forms, with or without
     11  1.1     ad  * modification, are permitted provided that the following conditions
     12  1.1     ad  * are met:
     13  1.1     ad  * 1. Redistributions of source code must retain the above copyright
     14  1.1     ad  *    notice, this list of conditions and the following disclaimer.
     15  1.1     ad  * 2. Redistributions in binary form must reproduce the above copyright
     16  1.1     ad  *    notice, this list of conditions and the following disclaimer in the
     17  1.1     ad  *    documentation and/or other materials provided with the distribution.
     18  1.1     ad  *
     19  1.1     ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  1.1     ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  1.1     ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  1.1     ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  1.1     ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  1.1     ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  1.1     ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  1.1     ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  1.1     ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  1.1     ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  1.1     ad  * POSSIBILITY OF SUCH DAMAGE.
     30  1.1     ad  */
     31  1.1     ad 
     32  1.1     ad /*
     33  1.1     ad  * Copyright (c) 1982, 1986, 1989, 1993
     34  1.1     ad  *	The Regents of the University of California.  All rights reserved.
     35  1.1     ad  * (c) UNIX System Laboratories, Inc.
     36  1.1     ad  * All or some portions of this file are derived from material licensed
     37  1.1     ad  * to the University of California by American Telephone and Telegraph
     38  1.1     ad  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     39  1.1     ad  * the permission of UNIX System Laboratories, Inc.
     40  1.1     ad  *
     41  1.1     ad  * Redistribution and use in source and binary forms, with or without
     42  1.1     ad  * modification, are permitted provided that the following conditions
     43  1.1     ad  * are met:
     44  1.1     ad  * 1. Redistributions of source code must retain the above copyright
     45  1.1     ad  *    notice, this list of conditions and the following disclaimer.
     46  1.1     ad  * 2. Redistributions in binary form must reproduce the above copyright
     47  1.1     ad  *    notice, this list of conditions and the following disclaimer in the
     48  1.1     ad  *    documentation and/or other materials provided with the distribution.
     49  1.1     ad  * 3. Neither the name of the University nor the names of its contributors
     50  1.1     ad  *    may be used to endorse or promote products derived from this software
     51  1.1     ad  *    without specific prior written permission.
     52  1.1     ad  *
     53  1.1     ad  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54  1.1     ad  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  1.1     ad  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  1.1     ad  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57  1.1     ad  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  1.1     ad  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  1.1     ad  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  1.1     ad  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  1.1     ad  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  1.1     ad  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  1.1     ad  * SUCH DAMAGE.
     64  1.1     ad  *
     65  1.1     ad  *	@(#)sys_generic.c	8.9 (Berkeley) 2/14/95
     66  1.1     ad  */
     67  1.1     ad 
     68  1.1     ad /*
     69  1.1     ad  * System calls relating to files.
     70  1.1     ad  */
     71  1.1     ad 
     72  1.1     ad #include <sys/cdefs.h>
     73  1.9  rmind __KERNEL_RCSID(0, "$NetBSD: sys_select.c,v 1.9 2008/06/04 13:02:41 rmind Exp $");
     74  1.1     ad 
     75  1.1     ad #include <sys/param.h>
     76  1.1     ad #include <sys/systm.h>
     77  1.1     ad #include <sys/filedesc.h>
     78  1.1     ad #include <sys/ioctl.h>
     79  1.1     ad #include <sys/file.h>
     80  1.1     ad #include <sys/proc.h>
     81  1.1     ad #include <sys/socketvar.h>
     82  1.1     ad #include <sys/signalvar.h>
     83  1.1     ad #include <sys/uio.h>
     84  1.1     ad #include <sys/kernel.h>
     85  1.1     ad #include <sys/stat.h>
     86  1.1     ad #include <sys/poll.h>
     87  1.1     ad #include <sys/vnode.h>
     88  1.1     ad #include <sys/mount.h>
     89  1.1     ad #include <sys/syscallargs.h>
     90  1.1     ad #include <sys/cpu.h>
     91  1.1     ad #include <sys/atomic.h>
     92  1.1     ad #include <sys/socketvar.h>
     93  1.1     ad #include <sys/sleepq.h>
     94  1.1     ad 
     95  1.1     ad /* Flags for lwp::l_selflag. */
     96  1.1     ad #define	SEL_RESET	0	/* awoken, interrupted, or not yet polling */
     97  1.1     ad #define	SEL_SCANNING	1	/* polling descriptors */
     98  1.1     ad #define	SEL_BLOCKING	2	/* about to block on select_cv */
     99  1.1     ad 
    100  1.1     ad /* Per-CPU state for select()/poll(). */
    101  1.1     ad #if MAXCPUS > 32
    102  1.1     ad #error adjust this code
    103  1.1     ad #endif
    104  1.1     ad typedef struct selcpu {
    105  1.1     ad 	kmutex_t	sc_lock;
    106  1.1     ad 	sleepq_t	sc_sleepq;
    107  1.1     ad 	int		sc_ncoll;
    108  1.1     ad 	uint32_t	sc_mask;
    109  1.1     ad } selcpu_t;
    110  1.1     ad 
    111  1.1     ad static int	selscan(lwp_t *, fd_mask *, fd_mask *, int, register_t *);
    112  1.1     ad static int	pollscan(lwp_t *, struct pollfd *, int, register_t *);
    113  1.1     ad static void	selclear(void);
    114  1.1     ad 
    115  1.1     ad static syncobj_t select_sobj = {
    116  1.1     ad 	SOBJ_SLEEPQ_FIFO,
    117  1.1     ad 	sleepq_unsleep,
    118  1.1     ad 	sleepq_changepri,
    119  1.1     ad 	sleepq_lendpri,
    120  1.1     ad 	syncobj_noowner,
    121  1.1     ad };
    122  1.1     ad 
    123  1.1     ad /*
    124  1.1     ad  * Select system call.
    125  1.1     ad  */
    126  1.1     ad int
    127  1.1     ad sys_pselect(struct lwp *l, const struct sys_pselect_args *uap, register_t *retval)
    128  1.1     ad {
    129  1.1     ad 	/* {
    130  1.1     ad 		syscallarg(int)				nd;
    131  1.1     ad 		syscallarg(fd_set *)			in;
    132  1.1     ad 		syscallarg(fd_set *)			ou;
    133  1.1     ad 		syscallarg(fd_set *)			ex;
    134  1.1     ad 		syscallarg(const struct timespec *)	ts;
    135  1.1     ad 		syscallarg(sigset_t *)			mask;
    136  1.1     ad 	} */
    137  1.1     ad 	struct timespec	ats;
    138  1.1     ad 	struct timeval	atv, *tv = NULL;
    139  1.1     ad 	sigset_t	amask, *mask = NULL;
    140  1.1     ad 	int		error;
    141  1.1     ad 
    142  1.1     ad 	if (SCARG(uap, ts)) {
    143  1.1     ad 		error = copyin(SCARG(uap, ts), &ats, sizeof(ats));
    144  1.1     ad 		if (error)
    145  1.1     ad 			return error;
    146  1.1     ad 		atv.tv_sec = ats.tv_sec;
    147  1.1     ad 		atv.tv_usec = ats.tv_nsec / 1000;
    148  1.1     ad 		tv = &atv;
    149  1.1     ad 	}
    150  1.1     ad 	if (SCARG(uap, mask) != NULL) {
    151  1.1     ad 		error = copyin(SCARG(uap, mask), &amask, sizeof(amask));
    152  1.1     ad 		if (error)
    153  1.1     ad 			return error;
    154  1.1     ad 		mask = &amask;
    155  1.1     ad 	}
    156  1.1     ad 
    157  1.1     ad 	return selcommon(l, retval, SCARG(uap, nd), SCARG(uap, in),
    158  1.1     ad 	    SCARG(uap, ou), SCARG(uap, ex), tv, mask);
    159  1.1     ad }
    160  1.1     ad 
    161  1.1     ad int
    162  1.1     ad inittimeleft(struct timeval *tv, struct timeval *sleeptv)
    163  1.1     ad {
    164  1.1     ad 	if (itimerfix(tv))
    165  1.1     ad 		return -1;
    166  1.1     ad 	getmicrouptime(sleeptv);
    167  1.1     ad 	return 0;
    168  1.1     ad }
    169  1.1     ad 
    170  1.1     ad int
    171  1.1     ad gettimeleft(struct timeval *tv, struct timeval *sleeptv)
    172  1.1     ad {
    173  1.1     ad 	/*
    174  1.1     ad 	 * We have to recalculate the timeout on every retry.
    175  1.1     ad 	 */
    176  1.1     ad 	struct timeval slepttv;
    177  1.1     ad 	/*
    178  1.1     ad 	 * reduce tv by elapsed time
    179  1.1     ad 	 * based on monotonic time scale
    180  1.1     ad 	 */
    181  1.1     ad 	getmicrouptime(&slepttv);
    182  1.1     ad 	timeradd(tv, sleeptv, tv);
    183  1.1     ad 	timersub(tv, &slepttv, tv);
    184  1.1     ad 	*sleeptv = slepttv;
    185  1.1     ad 	return tvtohz(tv);
    186  1.1     ad }
    187  1.1     ad 
    188  1.1     ad int
    189  1.1     ad sys_select(struct lwp *l, const struct sys_select_args *uap, register_t *retval)
    190  1.1     ad {
    191  1.1     ad 	/* {
    192  1.1     ad 		syscallarg(int)			nd;
    193  1.1     ad 		syscallarg(fd_set *)		in;
    194  1.1     ad 		syscallarg(fd_set *)		ou;
    195  1.1     ad 		syscallarg(fd_set *)		ex;
    196  1.1     ad 		syscallarg(struct timeval *)	tv;
    197  1.1     ad 	} */
    198  1.1     ad 	struct timeval atv, *tv = NULL;
    199  1.1     ad 	int error;
    200  1.1     ad 
    201  1.1     ad 	if (SCARG(uap, tv)) {
    202  1.1     ad 		error = copyin(SCARG(uap, tv), (void *)&atv,
    203  1.1     ad 			sizeof(atv));
    204  1.1     ad 		if (error)
    205  1.1     ad 			return error;
    206  1.1     ad 		tv = &atv;
    207  1.1     ad 	}
    208  1.1     ad 
    209  1.1     ad 	return selcommon(l, retval, SCARG(uap, nd), SCARG(uap, in),
    210  1.1     ad 	    SCARG(uap, ou), SCARG(uap, ex), tv, NULL);
    211  1.1     ad }
    212  1.1     ad 
    213  1.1     ad int
    214  1.1     ad selcommon(lwp_t *l, register_t *retval, int nd, fd_set *u_in,
    215  1.1     ad 	  fd_set *u_ou, fd_set *u_ex, struct timeval *tv, sigset_t *mask)
    216  1.1     ad {
    217  1.1     ad 	char		smallbits[howmany(FD_SETSIZE, NFDBITS) *
    218  1.1     ad 			    sizeof(fd_mask) * 6];
    219  1.1     ad 	proc_t		* const p = l->l_proc;
    220  1.1     ad 	char 		*bits;
    221  1.1     ad 	int		ncoll, error, timo;
    222  1.1     ad 	size_t		ni;
    223  1.1     ad 	sigset_t	oldmask;
    224  1.1     ad 	struct timeval  sleeptv;
    225  1.1     ad 	selcpu_t	*sc;
    226  1.1     ad 
    227  1.1     ad 	error = 0;
    228  1.1     ad 	if (nd < 0)
    229  1.1     ad 		return (EINVAL);
    230  1.1     ad 	if (nd > p->p_fd->fd_nfiles) {
    231  1.1     ad 		/* forgiving; slightly wrong */
    232  1.1     ad 		nd = p->p_fd->fd_nfiles;
    233  1.1     ad 	}
    234  1.1     ad 	ni = howmany(nd, NFDBITS) * sizeof(fd_mask);
    235  1.9  rmind 	if (ni * 6 > sizeof(smallbits)) {
    236  1.1     ad 		bits = kmem_alloc(ni * 6, KM_SLEEP);
    237  1.9  rmind 		if (bits == NULL)
    238  1.9  rmind 			return ENOMEM;
    239  1.9  rmind 	} else
    240  1.1     ad 		bits = smallbits;
    241  1.1     ad 
    242  1.1     ad #define	getbits(name, x)						\
    243  1.1     ad 	if (u_ ## name) {						\
    244  1.1     ad 		error = copyin(u_ ## name, bits + ni * x, ni);		\
    245  1.1     ad 		if (error)						\
    246  1.1     ad 			goto done;					\
    247  1.1     ad 	} else								\
    248  1.1     ad 		memset(bits + ni * x, 0, ni);
    249  1.1     ad 	getbits(in, 0);
    250  1.1     ad 	getbits(ou, 1);
    251  1.1     ad 	getbits(ex, 2);
    252  1.1     ad #undef	getbits
    253  1.1     ad 
    254  1.1     ad 	timo = 0;
    255  1.1     ad 	if (tv && inittimeleft(tv, &sleeptv) == -1) {
    256  1.1     ad 		error = EINVAL;
    257  1.1     ad 		goto done;
    258  1.1     ad 	}
    259  1.1     ad 
    260  1.1     ad 	if (mask) {
    261  1.1     ad 		sigminusset(&sigcantmask, mask);
    262  1.5     ad 		mutex_enter(p->p_lock);
    263  1.1     ad 		oldmask = l->l_sigmask;
    264  1.1     ad 		l->l_sigmask = *mask;
    265  1.5     ad 		mutex_exit(p->p_lock);
    266  1.1     ad 	} else
    267  1.1     ad 		oldmask = l->l_sigmask;	/* XXXgcc */
    268  1.1     ad 
    269  1.1     ad 	sc = curcpu()->ci_data.cpu_selcpu;
    270  1.1     ad 	l->l_selcpu = sc;
    271  1.1     ad 	SLIST_INIT(&l->l_selwait);
    272  1.1     ad 	for (;;) {
    273  1.1     ad 		/*
    274  1.1     ad 		 * No need to lock.  If this is overwritten by another
    275  1.1     ad 		 * value while scanning, we will retry below.  We only
    276  1.1     ad 		 * need to see exact state from the descriptors that
    277  1.1     ad 		 * we are about to poll, and lock activity resulting
    278  1.1     ad 		 * from fo_poll is enough to provide an up to date value
    279  1.1     ad 		 * for new polling activity.
    280  1.1     ad 		 */
    281  1.1     ad 	 	l->l_selflag = SEL_SCANNING;
    282  1.1     ad 		ncoll = sc->sc_ncoll;
    283  1.1     ad 
    284  1.1     ad 		error = selscan(l, (fd_mask *)(bits + ni * 0),
    285  1.1     ad 		    (fd_mask *)(bits + ni * 3), nd, retval);
    286  1.1     ad 
    287  1.1     ad 		if (error || *retval)
    288  1.1     ad 			break;
    289  1.1     ad 		if (tv && (timo = gettimeleft(tv, &sleeptv)) <= 0)
    290  1.1     ad 			break;
    291  1.1     ad 		mutex_spin_enter(&sc->sc_lock);
    292  1.1     ad 		if (l->l_selflag != SEL_SCANNING || sc->sc_ncoll != ncoll) {
    293  1.1     ad 			mutex_spin_exit(&sc->sc_lock);
    294  1.1     ad 			continue;
    295  1.1     ad 		}
    296  1.1     ad 		l->l_selflag = SEL_BLOCKING;
    297  1.7     ad 		l->l_kpriority = true;
    298  1.8     ad 		sleepq_enter(&sc->sc_sleepq, l, &sc->sc_lock);
    299  1.1     ad 		sleepq_enqueue(&sc->sc_sleepq, sc, "select", &select_sobj);
    300  1.1     ad 		error = sleepq_block(timo, true);
    301  1.1     ad 		if (error != 0)
    302  1.1     ad 			break;
    303  1.1     ad 	}
    304  1.1     ad 	selclear();
    305  1.1     ad 
    306  1.1     ad 	if (mask) {
    307  1.5     ad 		mutex_enter(p->p_lock);
    308  1.1     ad 		l->l_sigmask = oldmask;
    309  1.5     ad 		mutex_exit(p->p_lock);
    310  1.1     ad 	}
    311  1.1     ad 
    312  1.1     ad  done:
    313  1.1     ad 	/* select is not restarted after signals... */
    314  1.1     ad 	if (error == ERESTART)
    315  1.1     ad 		error = EINTR;
    316  1.1     ad 	if (error == EWOULDBLOCK)
    317  1.1     ad 		error = 0;
    318  1.1     ad 	if (error == 0 && u_in != NULL)
    319  1.1     ad 		error = copyout(bits + ni * 3, u_in, ni);
    320  1.1     ad 	if (error == 0 && u_ou != NULL)
    321  1.1     ad 		error = copyout(bits + ni * 4, u_ou, ni);
    322  1.1     ad 	if (error == 0 && u_ex != NULL)
    323  1.1     ad 		error = copyout(bits + ni * 5, u_ex, ni);
    324  1.1     ad 	if (bits != smallbits)
    325  1.1     ad 		kmem_free(bits, ni * 6);
    326  1.1     ad 	return (error);
    327  1.1     ad }
    328  1.1     ad 
    329  1.1     ad int
    330  1.1     ad selscan(lwp_t *l, fd_mask *ibitp, fd_mask *obitp, int nfd,
    331  1.1     ad 	register_t *retval)
    332  1.1     ad {
    333  1.1     ad 	static const int flag[3] = { POLLRDNORM | POLLHUP | POLLERR,
    334  1.1     ad 			       POLLWRNORM | POLLHUP | POLLERR,
    335  1.1     ad 			       POLLRDBAND };
    336  1.1     ad 	int msk, i, j, fd, n;
    337  1.1     ad 	fd_mask ibits, obits;
    338  1.1     ad 	file_t *fp;
    339  1.1     ad 
    340  1.1     ad 	n = 0;
    341  1.1     ad 	for (msk = 0; msk < 3; msk++) {
    342  1.1     ad 		for (i = 0; i < nfd; i += NFDBITS) {
    343  1.1     ad 			ibits = *ibitp++;
    344  1.1     ad 			obits = 0;
    345  1.1     ad 			while ((j = ffs(ibits)) && (fd = i + --j) < nfd) {
    346  1.1     ad 				ibits &= ~(1 << j);
    347  1.1     ad 				if ((fp = fd_getfile(fd)) == NULL)
    348  1.1     ad 					return (EBADF);
    349  1.1     ad 				if ((*fp->f_ops->fo_poll)(fp, flag[msk])) {
    350  1.1     ad 					obits |= (1 << j);
    351  1.1     ad 					n++;
    352  1.1     ad 				}
    353  1.1     ad 				fd_putfile(fd);
    354  1.1     ad 			}
    355  1.1     ad 			*obitp++ = obits;
    356  1.1     ad 		}
    357  1.1     ad 	}
    358  1.1     ad 	*retval = n;
    359  1.1     ad 	return (0);
    360  1.1     ad }
    361  1.1     ad 
    362  1.1     ad /*
    363  1.1     ad  * Poll system call.
    364  1.1     ad  */
    365  1.1     ad int
    366  1.1     ad sys_poll(struct lwp *l, const struct sys_poll_args *uap, register_t *retval)
    367  1.1     ad {
    368  1.1     ad 	/* {
    369  1.1     ad 		syscallarg(struct pollfd *)	fds;
    370  1.1     ad 		syscallarg(u_int)		nfds;
    371  1.1     ad 		syscallarg(int)			timeout;
    372  1.1     ad 	} */
    373  1.1     ad 	struct timeval	atv, *tv = NULL;
    374  1.1     ad 
    375  1.1     ad 	if (SCARG(uap, timeout) != INFTIM) {
    376  1.1     ad 		atv.tv_sec = SCARG(uap, timeout) / 1000;
    377  1.1     ad 		atv.tv_usec = (SCARG(uap, timeout) % 1000) * 1000;
    378  1.1     ad 		tv = &atv;
    379  1.1     ad 	}
    380  1.1     ad 
    381  1.1     ad 	return pollcommon(l, retval, SCARG(uap, fds), SCARG(uap, nfds),
    382  1.1     ad 		tv, NULL);
    383  1.1     ad }
    384  1.1     ad 
    385  1.1     ad /*
    386  1.1     ad  * Poll system call.
    387  1.1     ad  */
    388  1.1     ad int
    389  1.1     ad sys_pollts(struct lwp *l, const struct sys_pollts_args *uap, register_t *retval)
    390  1.1     ad {
    391  1.1     ad 	/* {
    392  1.1     ad 		syscallarg(struct pollfd *)		fds;
    393  1.1     ad 		syscallarg(u_int)			nfds;
    394  1.1     ad 		syscallarg(const struct timespec *)	ts;
    395  1.1     ad 		syscallarg(const sigset_t *)		mask;
    396  1.1     ad 	} */
    397  1.1     ad 	struct timespec	ats;
    398  1.1     ad 	struct timeval	atv, *tv = NULL;
    399  1.1     ad 	sigset_t	amask, *mask = NULL;
    400  1.1     ad 	int		error;
    401  1.1     ad 
    402  1.1     ad 	if (SCARG(uap, ts)) {
    403  1.1     ad 		error = copyin(SCARG(uap, ts), &ats, sizeof(ats));
    404  1.1     ad 		if (error)
    405  1.1     ad 			return error;
    406  1.1     ad 		atv.tv_sec = ats.tv_sec;
    407  1.1     ad 		atv.tv_usec = ats.tv_nsec / 1000;
    408  1.1     ad 		tv = &atv;
    409  1.1     ad 	}
    410  1.1     ad 	if (SCARG(uap, mask)) {
    411  1.1     ad 		error = copyin(SCARG(uap, mask), &amask, sizeof(amask));
    412  1.1     ad 		if (error)
    413  1.1     ad 			return error;
    414  1.1     ad 		mask = &amask;
    415  1.1     ad 	}
    416  1.1     ad 
    417  1.1     ad 	return pollcommon(l, retval, SCARG(uap, fds), SCARG(uap, nfds),
    418  1.1     ad 		tv, mask);
    419  1.1     ad }
    420  1.1     ad 
    421  1.1     ad int
    422  1.1     ad pollcommon(lwp_t *l, register_t *retval,
    423  1.1     ad 	struct pollfd *u_fds, u_int nfds,
    424  1.1     ad 	struct timeval *tv, sigset_t *mask)
    425  1.1     ad {
    426  1.1     ad 	char		smallbits[32 * sizeof(struct pollfd)];
    427  1.1     ad 	proc_t		* const p = l->l_proc;
    428  1.1     ad 	void *		bits;
    429  1.1     ad 	sigset_t	oldmask;
    430  1.1     ad 	int		ncoll, error, timo;
    431  1.1     ad 	size_t		ni;
    432  1.1     ad 	struct timeval	sleeptv;
    433  1.1     ad 	selcpu_t	*sc;
    434  1.1     ad 
    435  1.1     ad 	if (nfds > p->p_fd->fd_nfiles) {
    436  1.1     ad 		/* forgiving; slightly wrong */
    437  1.1     ad 		nfds = p->p_fd->fd_nfiles;
    438  1.1     ad 	}
    439  1.1     ad 	ni = nfds * sizeof(struct pollfd);
    440  1.9  rmind 	if (ni > sizeof(smallbits)) {
    441  1.1     ad 		bits = kmem_alloc(ni, KM_SLEEP);
    442  1.9  rmind 		if (bits == NULL)
    443  1.9  rmind 			return ENOMEM;
    444  1.9  rmind 	} else
    445  1.1     ad 		bits = smallbits;
    446  1.1     ad 
    447  1.1     ad 	error = copyin(u_fds, bits, ni);
    448  1.1     ad 	if (error)
    449  1.1     ad 		goto done;
    450  1.1     ad 
    451  1.1     ad 	timo = 0;
    452  1.1     ad 	if (tv && inittimeleft(tv, &sleeptv) == -1) {
    453  1.1     ad 		error = EINVAL;
    454  1.1     ad 		goto done;
    455  1.1     ad 	}
    456  1.1     ad 
    457  1.1     ad 	if (mask) {
    458  1.1     ad 		sigminusset(&sigcantmask, mask);
    459  1.5     ad 		mutex_enter(p->p_lock);
    460  1.1     ad 		oldmask = l->l_sigmask;
    461  1.1     ad 		l->l_sigmask = *mask;
    462  1.5     ad 		mutex_exit(p->p_lock);
    463  1.1     ad 	} else
    464  1.1     ad 		oldmask = l->l_sigmask;	/* XXXgcc */
    465  1.1     ad 
    466  1.1     ad 	sc = curcpu()->ci_data.cpu_selcpu;
    467  1.1     ad 	l->l_selcpu = sc;
    468  1.1     ad 	SLIST_INIT(&l->l_selwait);
    469  1.1     ad 	for (;;) {
    470  1.1     ad 		/*
    471  1.1     ad 		 * No need to lock.  If this is overwritten by another
    472  1.1     ad 		 * value while scanning, we will retry below.  We only
    473  1.1     ad 		 * need to see exact state from the descriptors that
    474  1.1     ad 		 * we are about to poll, and lock activity resulting
    475  1.1     ad 		 * from fo_poll is enough to provide an up to date value
    476  1.1     ad 		 * for new polling activity.
    477  1.1     ad 		 */
    478  1.1     ad 		ncoll = sc->sc_ncoll;
    479  1.1     ad 		l->l_selflag = SEL_SCANNING;
    480  1.1     ad 
    481  1.1     ad 		error = pollscan(l, (struct pollfd *)bits, nfds, retval);
    482  1.1     ad 
    483  1.1     ad 		if (error || *retval)
    484  1.1     ad 			break;
    485  1.1     ad 		if (tv && (timo = gettimeleft(tv, &sleeptv)) <= 0)
    486  1.1     ad 			break;
    487  1.1     ad 		mutex_spin_enter(&sc->sc_lock);
    488  1.1     ad 		if (l->l_selflag != SEL_SCANNING || sc->sc_ncoll != ncoll) {
    489  1.1     ad 			mutex_spin_exit(&sc->sc_lock);
    490  1.1     ad 			continue;
    491  1.1     ad 		}
    492  1.1     ad 		l->l_selflag = SEL_BLOCKING;
    493  1.7     ad 		l->l_kpriority = true;
    494  1.8     ad 		sleepq_enter(&sc->sc_sleepq, l, &sc->sc_lock);
    495  1.1     ad 		sleepq_enqueue(&sc->sc_sleepq, sc, "select", &select_sobj);
    496  1.1     ad 		error = sleepq_block(timo, true);
    497  1.1     ad 		if (error != 0)
    498  1.1     ad 			break;
    499  1.1     ad 	}
    500  1.1     ad 	selclear();
    501  1.1     ad 
    502  1.1     ad 	if (mask) {
    503  1.5     ad 		mutex_enter(p->p_lock);
    504  1.1     ad 		l->l_sigmask = oldmask;
    505  1.5     ad 		mutex_exit(p->p_lock);
    506  1.1     ad 	}
    507  1.1     ad  done:
    508  1.1     ad 	/* poll is not restarted after signals... */
    509  1.1     ad 	if (error == ERESTART)
    510  1.1     ad 		error = EINTR;
    511  1.1     ad 	if (error == EWOULDBLOCK)
    512  1.1     ad 		error = 0;
    513  1.1     ad 	if (error == 0)
    514  1.1     ad 		error = copyout(bits, u_fds, ni);
    515  1.1     ad 	if (bits != smallbits)
    516  1.1     ad 		kmem_free(bits, ni);
    517  1.1     ad 	return (error);
    518  1.1     ad }
    519  1.1     ad 
    520  1.1     ad int
    521  1.1     ad pollscan(lwp_t *l, struct pollfd *fds, int nfd, register_t *retval)
    522  1.1     ad {
    523  1.1     ad 	int i, n;
    524  1.1     ad 	file_t *fp;
    525  1.1     ad 
    526  1.1     ad 	n = 0;
    527  1.1     ad 	for (i = 0; i < nfd; i++, fds++) {
    528  1.1     ad 		if (fds->fd < 0) {
    529  1.1     ad 			fds->revents = 0;
    530  1.1     ad 		} else if ((fp = fd_getfile(fds->fd)) == NULL) {
    531  1.1     ad 			fds->revents = POLLNVAL;
    532  1.1     ad 			n++;
    533  1.1     ad 		} else {
    534  1.1     ad 			fds->revents = (*fp->f_ops->fo_poll)(fp,
    535  1.1     ad 			    fds->events | POLLERR | POLLHUP);
    536  1.1     ad 			if (fds->revents != 0)
    537  1.1     ad 				n++;
    538  1.1     ad 			fd_putfile(fds->fd);
    539  1.1     ad 		}
    540  1.1     ad 	}
    541  1.1     ad 	*retval = n;
    542  1.1     ad 	return (0);
    543  1.1     ad }
    544  1.1     ad 
    545  1.1     ad /*ARGSUSED*/
    546  1.1     ad int
    547  1.1     ad seltrue(dev_t dev, int events, lwp_t *l)
    548  1.1     ad {
    549  1.1     ad 
    550  1.1     ad 	return (events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
    551  1.1     ad }
    552  1.1     ad 
    553  1.1     ad /*
    554  1.1     ad  * Record a select request.  Concurrency issues:
    555  1.1     ad  *
    556  1.1     ad  * The caller holds the same lock across calls to selrecord() and
    557  1.4   yamt  * selnotify(), so we don't need to consider a concurrent wakeup
    558  1.1     ad  * while in this routine.
    559  1.1     ad  *
    560  1.1     ad  * The only activity we need to guard against is selclear(), called by
    561  1.1     ad  * another thread that is exiting selcommon() or pollcommon().
    562  1.1     ad  * `sel_lwp' can only become non-NULL while the caller's lock is held,
    563  1.1     ad  * so it cannot become non-NULL due to a change made by another thread
    564  1.1     ad  * while we are in this routine.  It can only become _NULL_ due to a
    565  1.1     ad  * call to selclear().
    566  1.1     ad  *
    567  1.1     ad  * If it is non-NULL and != selector there is the potential for
    568  1.1     ad  * selclear() to be called by another thread.  If either of those
    569  1.1     ad  * conditions are true, we're not interested in touching the `named
    570  1.1     ad  * waiter' part of the selinfo record because we need to record a
    571  1.1     ad  * collision.  Hence there is no need for additional locking in this
    572  1.1     ad  * routine.
    573  1.1     ad  */
    574  1.1     ad void
    575  1.1     ad selrecord(lwp_t *selector, struct selinfo *sip)
    576  1.1     ad {
    577  1.1     ad 	selcpu_t *sc;
    578  1.1     ad 	lwp_t *other;
    579  1.1     ad 
    580  1.1     ad 	KASSERT(selector == curlwp);
    581  1.1     ad 
    582  1.1     ad 	sc = selector->l_selcpu;
    583  1.1     ad 	other = sip->sel_lwp;
    584  1.1     ad 
    585  1.1     ad 	if (other == selector) {
    586  1.1     ad 		/* `selector' has already claimed it. */
    587  1.1     ad 		KASSERT(sip->sel_cpu = sc);
    588  1.1     ad 	} else if (other == NULL) {
    589  1.1     ad 		/*
    590  1.1     ad 		 * First named waiter, although there may be unnamed
    591  1.1     ad 		 * waiters (collisions).  Issue a memory barrier to
    592  1.1     ad 		 * ensure that we access sel_lwp (above) before other
    593  1.1     ad 		 * fields - this guards against a call to selclear().
    594  1.1     ad 		 */
    595  1.1     ad 		membar_enter();
    596  1.1     ad 		sip->sel_lwp = selector;
    597  1.1     ad 		SLIST_INSERT_HEAD(&selector->l_selwait, sip, sel_chain);
    598  1.1     ad 		/* Replace selinfo's lock with our chosen CPU's lock. */
    599  1.1     ad 		sip->sel_cpu = sc;
    600  1.1     ad 	} else {
    601  1.1     ad 		/* Multiple waiters: record a collision. */
    602  1.1     ad 		sip->sel_collision |= sc->sc_mask;
    603  1.1     ad 		KASSERT(sip->sel_cpu != NULL);
    604  1.1     ad 	}
    605  1.1     ad }
    606  1.1     ad 
    607  1.1     ad /*
    608  1.1     ad  * Do a wakeup when a selectable event occurs.  Concurrency issues:
    609  1.1     ad  *
    610  1.1     ad  * As per selrecord(), the caller's object lock is held.  If there
    611  1.1     ad  * is a named waiter, we must acquire the associated selcpu's lock
    612  1.1     ad  * in order to synchronize with selclear() and pollers going to sleep
    613  1.1     ad  * in selcommon() and/or pollcommon().
    614  1.1     ad  *
    615  1.1     ad  * sip->sel_cpu cannot change at this point, as it is only changed
    616  1.1     ad  * in selrecord(), and concurrent calls to selrecord() are locked
    617  1.1     ad  * out by the caller.
    618  1.1     ad  */
    619  1.1     ad void
    620  1.1     ad selnotify(struct selinfo *sip, int events, long knhint)
    621  1.1     ad {
    622  1.1     ad 	selcpu_t *sc;
    623  1.1     ad 	uint32_t mask;
    624  1.1     ad 	int index, oflag, swapin;
    625  1.1     ad 	lwp_t *l;
    626  1.1     ad 
    627  1.1     ad 	KNOTE(&sip->sel_klist, knhint);
    628  1.1     ad 
    629  1.1     ad 	if (sip->sel_lwp != NULL) {
    630  1.1     ad 		/* One named LWP is waiting. */
    631  1.1     ad 		swapin = 0;
    632  1.1     ad 		sc = sip->sel_cpu;
    633  1.1     ad 		mutex_spin_enter(&sc->sc_lock);
    634  1.1     ad 		/* Still there? */
    635  1.1     ad 		if (sip->sel_lwp != NULL) {
    636  1.1     ad 			l = sip->sel_lwp;
    637  1.1     ad 			/*
    638  1.1     ad 			 * If thread is sleeping, wake it up.  If it's not
    639  1.1     ad 			 * yet asleep, it will notice the change in state
    640  1.1     ad 			 * and will re-poll the descriptors.
    641  1.1     ad 			 */
    642  1.1     ad 			oflag = l->l_selflag;
    643  1.1     ad 			l->l_selflag = SEL_RESET;
    644  1.1     ad 			if (oflag == SEL_BLOCKING &&
    645  1.1     ad 			    l->l_mutex == &sc->sc_lock) {
    646  1.1     ad 				KASSERT(l->l_wchan == sc);
    647  1.1     ad 				swapin = sleepq_unsleep(l, false);
    648  1.1     ad 			}
    649  1.1     ad 		}
    650  1.1     ad 		mutex_spin_exit(&sc->sc_lock);
    651  1.1     ad 		if (swapin)
    652  1.1     ad 			uvm_kick_scheduler();
    653  1.1     ad 	}
    654  1.1     ad 
    655  1.1     ad 	if ((mask = sip->sel_collision) != 0) {
    656  1.1     ad 		/*
    657  1.1     ad 		 * There was a collision (multiple waiters): we must
    658  1.1     ad 		 * inform all potentially interested waiters.
    659  1.1     ad 		 */
    660  1.1     ad 		sip->sel_collision = 0;
    661  1.3     ad 		do {
    662  1.1     ad 			index = ffs(mask) - 1;
    663  1.1     ad 			mask &= ~(1 << index);
    664  1.1     ad 			sc = cpu_lookup_byindex(index)->ci_data.cpu_selcpu;
    665  1.1     ad 			mutex_spin_enter(&sc->sc_lock);
    666  1.1     ad 			sc->sc_ncoll++;
    667  1.8     ad 			sleepq_wake(&sc->sc_sleepq, sc, (u_int)-1,
    668  1.8     ad 			    &sc->sc_lock);
    669  1.3     ad 		} while (__predict_false(mask != 0));
    670  1.1     ad 	}
    671  1.1     ad }
    672  1.1     ad 
    673  1.1     ad /*
    674  1.1     ad  * Remove an LWP from all objects that it is waiting for.  Concurrency
    675  1.1     ad  * issues:
    676  1.1     ad  *
    677  1.1     ad  * The object owner's (e.g. device driver) lock is not held here.  Calls
    678  1.1     ad  * can be made to selrecord() and we do not synchronize against those
    679  1.1     ad  * directly using locks.  However, we use `sel_lwp' to lock out changes.
    680  1.1     ad  * Before clearing it we must use memory barriers to ensure that we can
    681  1.1     ad  * safely traverse the list of selinfo records.
    682  1.1     ad  */
    683  1.1     ad static void
    684  1.1     ad selclear(void)
    685  1.1     ad {
    686  1.1     ad 	struct selinfo *sip, *next;
    687  1.1     ad 	selcpu_t *sc;
    688  1.1     ad 	lwp_t *l;
    689  1.1     ad 
    690  1.1     ad 	l = curlwp;
    691  1.1     ad 	sc = l->l_selcpu;
    692  1.1     ad 
    693  1.1     ad 	mutex_spin_enter(&sc->sc_lock);
    694  1.1     ad 	for (sip = SLIST_FIRST(&l->l_selwait); sip != NULL; sip = next) {
    695  1.1     ad 		KASSERT(sip->sel_lwp == l);
    696  1.1     ad 		KASSERT(sip->sel_cpu == l->l_selcpu);
    697  1.1     ad 		/*
    698  1.1     ad 		 * Read link to next selinfo record, if any.
    699  1.1     ad 		 * It's no longer safe to touch `sip' after clearing
    700  1.1     ad 		 * `sel_lwp', so ensure that the read of `sel_chain'
    701  1.1     ad 		 * completes before the clearing of sel_lwp becomes
    702  1.1     ad 		 * globally visible.
    703  1.1     ad 		 */
    704  1.1     ad 		next = SLIST_NEXT(sip, sel_chain);
    705  1.1     ad 		membar_exit();
    706  1.1     ad 		/* Release the record for another named waiter to use. */
    707  1.1     ad 		sip->sel_lwp = NULL;
    708  1.1     ad 	}
    709  1.1     ad 	mutex_spin_exit(&sc->sc_lock);
    710  1.1     ad }
    711  1.1     ad 
    712  1.1     ad /*
    713  1.1     ad  * Initialize the select/poll system calls.  Called once for each
    714  1.1     ad  * CPU in the system, as they are attached.
    715  1.1     ad  */
    716  1.1     ad void
    717  1.1     ad selsysinit(struct cpu_info *ci)
    718  1.1     ad {
    719  1.1     ad 	selcpu_t *sc;
    720  1.1     ad 
    721  1.2     ad 	sc = kmem_alloc(roundup2(sizeof(selcpu_t), coherency_unit) +
    722  1.2     ad 	    coherency_unit, KM_SLEEP);
    723  1.2     ad 	sc = (void *)roundup2((uintptr_t)sc, coherency_unit);
    724  1.1     ad 	mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SCHED);
    725  1.8     ad 	sleepq_init(&sc->sc_sleepq);
    726  1.1     ad 	sc->sc_ncoll = 0;
    727  1.1     ad 	sc->sc_mask = (1 << cpu_index(ci));
    728  1.1     ad 	ci->ci_data.cpu_selcpu = sc;
    729  1.1     ad }
    730  1.1     ad 
    731  1.1     ad /*
    732  1.1     ad  * Initialize a selinfo record.
    733  1.1     ad  */
    734  1.1     ad void
    735  1.1     ad selinit(struct selinfo *sip)
    736  1.1     ad {
    737  1.1     ad 
    738  1.1     ad 	memset(sip, 0, sizeof(*sip));
    739  1.1     ad }
    740  1.1     ad 
    741  1.1     ad /*
    742  1.1     ad  * Destroy a selinfo record.  The owning object must not gain new
    743  1.1     ad  * references while this is in progress: all activity on the record
    744  1.1     ad  * must be stopped.
    745  1.1     ad  *
    746  1.1     ad  * Concurrency issues: we only need guard against a call to selclear()
    747  1.1     ad  * by a thread exiting selcommon() and/or pollcommon().  The caller has
    748  1.1     ad  * prevented further references being made to the selinfo record via
    749  1.1     ad  * selrecord(), and it won't call selwakeup() again.
    750  1.1     ad  */
    751  1.1     ad void
    752  1.1     ad seldestroy(struct selinfo *sip)
    753  1.1     ad {
    754  1.1     ad 	selcpu_t *sc;
    755  1.1     ad 	lwp_t *l;
    756  1.1     ad 
    757  1.1     ad 	if (sip->sel_lwp == NULL)
    758  1.1     ad 		return;
    759  1.1     ad 
    760  1.1     ad 	/*
    761  1.1     ad 	 * Lock out selclear().  The selcpu pointer can't change while
    762  1.1     ad 	 * we are here since it is only ever changed in selrecord(),
    763  1.1     ad 	 * and that will not be entered again for this record because
    764  1.1     ad 	 * it is dying.
    765  1.1     ad 	 */
    766  1.1     ad 	KASSERT(sip->sel_cpu != NULL);
    767  1.1     ad 	sc = sip->sel_cpu;
    768  1.1     ad 	mutex_spin_enter(&sc->sc_lock);
    769  1.1     ad 	if ((l = sip->sel_lwp) != NULL) {
    770  1.1     ad 		/*
    771  1.1     ad 		 * This should rarely happen, so although SLIST_REMOVE()
    772  1.1     ad 		 * is slow, using it here is not a problem.
    773  1.1     ad 		 */
    774  1.1     ad 		KASSERT(l->l_selcpu == sc);
    775  1.1     ad 		SLIST_REMOVE(&l->l_selwait, sip, selinfo, sel_chain);
    776  1.1     ad 		sip->sel_lwp = NULL;
    777  1.1     ad 	}
    778  1.1     ad 	mutex_spin_exit(&sc->sc_lock);
    779  1.1     ad }
    780  1.1     ad 
    781  1.1     ad int
    782  1.1     ad pollsock(struct socket *so, const struct timeval *tvp, int events)
    783  1.1     ad {
    784  1.1     ad 	int		ncoll, error, timo;
    785  1.1     ad 	struct timeval	sleeptv, tv;
    786  1.1     ad 	selcpu_t	*sc;
    787  1.1     ad 	lwp_t		*l;
    788  1.1     ad 
    789  1.1     ad 	timo = 0;
    790  1.1     ad 	if (tvp != NULL) {
    791  1.1     ad 		tv = *tvp;
    792  1.1     ad 		if (inittimeleft(&tv, &sleeptv) == -1)
    793  1.1     ad 			return EINVAL;
    794  1.1     ad 	}
    795  1.1     ad 
    796  1.1     ad 	l = curlwp;
    797  1.1     ad 	sc = l->l_cpu->ci_data.cpu_selcpu;
    798  1.1     ad 	l->l_selcpu = sc;
    799  1.1     ad 	SLIST_INIT(&l->l_selwait);
    800  1.1     ad 	error = 0;
    801  1.1     ad 	for (;;) {
    802  1.1     ad 		/*
    803  1.1     ad 		 * No need to lock.  If this is overwritten by another
    804  1.1     ad 		 * value while scanning, we will retry below.  We only
    805  1.1     ad 		 * need to see exact state from the descriptors that
    806  1.1     ad 		 * we are about to poll, and lock activity resulting
    807  1.1     ad 		 * from fo_poll is enough to provide an up to date value
    808  1.1     ad 		 * for new polling activity.
    809  1.1     ad 		 */
    810  1.1     ad 		ncoll = sc->sc_ncoll;
    811  1.1     ad 		l->l_selflag = SEL_SCANNING;
    812  1.1     ad 		if (sopoll(so, events) != 0)
    813  1.1     ad 			break;
    814  1.1     ad 		if (tvp && (timo = gettimeleft(&tv, &sleeptv)) <= 0)
    815  1.1     ad 			break;
    816  1.1     ad 		mutex_spin_enter(&sc->sc_lock);
    817  1.1     ad 		if (l->l_selflag != SEL_SCANNING || sc->sc_ncoll != ncoll) {
    818  1.1     ad 			mutex_spin_exit(&sc->sc_lock);
    819  1.1     ad 			continue;
    820  1.1     ad 		}
    821  1.1     ad 		l->l_selflag = SEL_BLOCKING;
    822  1.8     ad 		sleepq_enter(&sc->sc_sleepq, l, &sc->sc_lock);
    823  1.1     ad 		sleepq_enqueue(&sc->sc_sleepq, sc, "pollsock", &select_sobj);
    824  1.1     ad 		error = sleepq_block(timo, true);
    825  1.1     ad 		if (error != 0)
    826  1.1     ad 			break;
    827  1.1     ad 	}
    828  1.1     ad 	selclear();
    829  1.1     ad 	/* poll is not restarted after signals... */
    830  1.1     ad 	if (error == ERESTART)
    831  1.1     ad 		error = EINTR;
    832  1.1     ad 	if (error == EWOULDBLOCK)
    833  1.1     ad 		error = 0;
    834  1.1     ad 	return (error);
    835  1.1     ad }
    836