sys_select.c revision 1.23 1 /* $NetBSD: sys_select.c,v 1.23 2010/07/08 12:23:31 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 2007, 2008, 2009, 2010 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran and Mindaugas Rasiukevicius.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1986, 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 * (c) UNIX System Laboratories, Inc.
36 * All or some portions of this file are derived from material licensed
37 * to the University of California by American Telephone and Telegraph
38 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39 * the permission of UNIX System Laboratories, Inc.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)sys_generic.c 8.9 (Berkeley) 2/14/95
66 */
67
68 /*
69 * System calls of synchronous I/O multiplexing subsystem.
70 *
71 * Locking
72 *
73 * Two locks are used: <object-lock> and selcluster_t::sc_lock.
74 *
75 * The <object-lock> might be a device driver or another subsystem, e.g.
76 * socket or pipe. This lock is not exported, and thus invisible to this
77 * subsystem. Mainly, synchronisation between selrecord() and selnotify()
78 * routines depends on this lock, as it will be described in the comments.
79 *
80 * Lock order
81 *
82 * <object-lock> ->
83 * selcluster_t::sc_lock
84 */
85
86 #include <sys/cdefs.h>
87 __KERNEL_RCSID(0, "$NetBSD: sys_select.c,v 1.23 2010/07/08 12:23:31 rmind Exp $");
88
89 #include <sys/param.h>
90 #include <sys/systm.h>
91 #include <sys/filedesc.h>
92 #include <sys/ioctl.h>
93 #include <sys/file.h>
94 #include <sys/proc.h>
95 #include <sys/socketvar.h>
96 #include <sys/signalvar.h>
97 #include <sys/uio.h>
98 #include <sys/kernel.h>
99 #include <sys/stat.h>
100 #include <sys/poll.h>
101 #include <sys/vnode.h>
102 #include <sys/mount.h>
103 #include <sys/syscallargs.h>
104 #include <sys/cpu.h>
105 #include <sys/atomic.h>
106 #include <sys/socketvar.h>
107 #include <sys/sleepq.h>
108
109 /* Flags for lwp::l_selflag. */
110 #define SEL_RESET 0 /* awoken, interrupted, or not yet polling */
111 #define SEL_SCANNING 1 /* polling descriptors */
112 #define SEL_BLOCKING 2 /* blocking and waiting for event */
113 #define SEL_EVENT 3 /* interrupted, events set directly */
114
115 /* Operations: either select() or poll(). */
116 #define SELOP_SELECT 1
117 #define SELOP_POLL 2
118
119 /*
120 * Per-cluster state for select()/poll(). For a system with fewer
121 * than 32 CPUs, this gives us per-CPU clusters.
122 */
123 #define SELCLUSTERS 32
124 #define SELCLUSTERMASK (SELCLUSTERS - 1)
125
126 typedef struct selcluster {
127 kmutex_t *sc_lock;
128 sleepq_t sc_sleepq;
129 int sc_ncoll;
130 uint32_t sc_mask;
131 } selcluster_t;
132
133 static inline int selscan(char *, const int, const size_t, register_t *);
134 static inline int pollscan(struct pollfd *, const int, register_t *);
135 static void selclear(void);
136
137 static const int sel_flag[] = {
138 POLLRDNORM | POLLHUP | POLLERR,
139 POLLWRNORM | POLLHUP | POLLERR,
140 POLLRDBAND
141 };
142
143 static syncobj_t select_sobj = {
144 SOBJ_SLEEPQ_FIFO,
145 sleepq_unsleep,
146 sleepq_changepri,
147 sleepq_lendpri,
148 syncobj_noowner,
149 };
150
151 static selcluster_t *selcluster[SELCLUSTERS] __read_mostly;
152
153 /*
154 * Select system call.
155 */
156 int
157 sys___pselect50(struct lwp *l, const struct sys___pselect50_args *uap,
158 register_t *retval)
159 {
160 /* {
161 syscallarg(int) nd;
162 syscallarg(fd_set *) in;
163 syscallarg(fd_set *) ou;
164 syscallarg(fd_set *) ex;
165 syscallarg(const struct timespec *) ts;
166 syscallarg(sigset_t *) mask;
167 } */
168 struct timespec ats, *ts = NULL;
169 sigset_t amask, *mask = NULL;
170 int error;
171
172 if (SCARG(uap, ts)) {
173 error = copyin(SCARG(uap, ts), &ats, sizeof(ats));
174 if (error)
175 return error;
176 ts = &ats;
177 }
178 if (SCARG(uap, mask) != NULL) {
179 error = copyin(SCARG(uap, mask), &amask, sizeof(amask));
180 if (error)
181 return error;
182 mask = &amask;
183 }
184
185 return selcommon(retval, SCARG(uap, nd), SCARG(uap, in),
186 SCARG(uap, ou), SCARG(uap, ex), ts, mask);
187 }
188
189 int
190 sys___select50(struct lwp *l, const struct sys___select50_args *uap,
191 register_t *retval)
192 {
193 /* {
194 syscallarg(int) nd;
195 syscallarg(fd_set *) in;
196 syscallarg(fd_set *) ou;
197 syscallarg(fd_set *) ex;
198 syscallarg(struct timeval *) tv;
199 } */
200 struct timeval atv;
201 struct timespec ats, *ts = NULL;
202 int error;
203
204 if (SCARG(uap, tv)) {
205 error = copyin(SCARG(uap, tv), (void *)&atv, sizeof(atv));
206 if (error)
207 return error;
208 TIMEVAL_TO_TIMESPEC(&atv, &ats);
209 ts = &ats;
210 }
211
212 return selcommon(retval, SCARG(uap, nd), SCARG(uap, in),
213 SCARG(uap, ou), SCARG(uap, ex), ts, NULL);
214 }
215
216 /*
217 * sel_do_scan: common code to perform the scan on descriptors.
218 */
219 static int
220 sel_do_scan(const int op, void *fds, const int nf, const size_t ni,
221 struct timespec *ts, sigset_t *mask, register_t *retval)
222 {
223 lwp_t * const l = curlwp;
224 proc_t * const p = l->l_proc;
225 selcluster_t *sc;
226 kmutex_t *lock;
227 sigset_t oldmask;
228 struct timespec sleepts;
229 int error, timo;
230
231 timo = 0;
232 if (ts && inittimeleft(ts, &sleepts) == -1) {
233 return EINVAL;
234 }
235
236 if (__predict_false(mask)) {
237 sigminusset(&sigcantmask, mask);
238 mutex_enter(p->p_lock);
239 oldmask = l->l_sigmask;
240 l->l_sigmask = *mask;
241 mutex_exit(p->p_lock);
242 } else {
243 /* XXXgcc */
244 oldmask = l->l_sigmask;
245 }
246
247 sc = curcpu()->ci_data.cpu_selcluster;
248 lock = sc->sc_lock;
249 l->l_selcluster = sc;
250 SLIST_INIT(&l->l_selwait);
251
252 l->l_selret = 0;
253 if (op == SELOP_SELECT) {
254 l->l_selbits = (char *)fds + ni * 3;
255 l->l_selni = ni;
256 } else {
257 l->l_selbits = NULL;
258 }
259 for (;;) {
260 int ncoll;
261
262 /*
263 * No need to lock. If this is overwritten by another value
264 * while scanning, we will retry below. We only need to see
265 * exact state from the descriptors that we are about to poll,
266 * and lock activity resulting from fo_poll is enough to
267 * provide an up to date value for new polling activity.
268 */
269 l->l_selflag = SEL_SCANNING;
270 ncoll = sc->sc_ncoll;
271
272 if (op == SELOP_SELECT) {
273 error = selscan((char *)fds, nf, ni, retval);
274 } else {
275 error = pollscan((struct pollfd *)fds, nf, retval);
276 }
277 if (error || *retval)
278 break;
279 if (ts && (timo = gettimeleft(ts, &sleepts)) <= 0)
280 break;
281 /*
282 * Acquire the lock and perform the (re)checks. Note, if
283 * collision has occured, then our state does not matter,
284 * as we must perform re-scan. Therefore, check it first.
285 */
286 state_check:
287 mutex_spin_enter(lock);
288 if (__predict_false(sc->sc_ncoll != ncoll)) {
289 /* Collision: perform re-scan. */
290 mutex_spin_exit(lock);
291 continue;
292 }
293 if (__predict_true(l->l_selflag == SEL_EVENT)) {
294 /* Events occured, they are set directly. */
295 mutex_spin_exit(lock);
296 KASSERT(l->l_selret != 0);
297 *retval = l->l_selret;
298 break;
299 }
300 if (__predict_true(l->l_selflag == SEL_RESET)) {
301 /* Events occured, but re-scan is requested. */
302 mutex_spin_exit(lock);
303 continue;
304 }
305 KASSERT(l->l_selflag == SEL_SCANNING);
306 /* Nothing happen, therefore - sleep. */
307 l->l_selflag = SEL_BLOCKING;
308 l->l_kpriority = true;
309 sleepq_enter(&sc->sc_sleepq, l, lock);
310 sleepq_enqueue(&sc->sc_sleepq, sc, "select", &select_sobj);
311 error = sleepq_block(timo, true);
312 if (error != 0) {
313 break;
314 }
315 /* Awoken: need to check the state. */
316 goto state_check;
317 }
318 selclear();
319
320 if (__predict_false(mask)) {
321 mutex_enter(p->p_lock);
322 l->l_sigmask = oldmask;
323 mutex_exit(p->p_lock);
324 }
325
326 /* select and poll are not restarted after signals... */
327 if (error == ERESTART)
328 return EINTR;
329 if (error == EWOULDBLOCK)
330 return 0;
331 return error;
332 }
333
334 int
335 selcommon(register_t *retval, int nd, fd_set *u_in, fd_set *u_ou,
336 fd_set *u_ex, struct timespec *ts, sigset_t *mask)
337 {
338 char smallbits[howmany(FD_SETSIZE, NFDBITS) *
339 sizeof(fd_mask) * 6];
340 char *bits;
341 int error, nf;
342 size_t ni;
343
344 if (nd < 0)
345 return (EINVAL);
346 nf = curlwp->l_fd->fd_dt->dt_nfiles;
347 if (nd > nf) {
348 /* forgiving; slightly wrong */
349 nd = nf;
350 }
351 ni = howmany(nd, NFDBITS) * sizeof(fd_mask);
352 if (ni * 6 > sizeof(smallbits)) {
353 bits = kmem_alloc(ni * 6, KM_SLEEP);
354 if (bits == NULL)
355 return ENOMEM;
356 } else
357 bits = smallbits;
358
359 #define getbits(name, x) \
360 if (u_ ## name) { \
361 error = copyin(u_ ## name, bits + ni * x, ni); \
362 if (error) \
363 goto fail; \
364 } else \
365 memset(bits + ni * x, 0, ni);
366 getbits(in, 0);
367 getbits(ou, 1);
368 getbits(ex, 2);
369 #undef getbits
370
371 error = sel_do_scan(SELOP_SELECT, bits, nd, ni, ts, mask, retval);
372 if (error == 0 && u_in != NULL)
373 error = copyout(bits + ni * 3, u_in, ni);
374 if (error == 0 && u_ou != NULL)
375 error = copyout(bits + ni * 4, u_ou, ni);
376 if (error == 0 && u_ex != NULL)
377 error = copyout(bits + ni * 5, u_ex, ni);
378 fail:
379 if (bits != smallbits)
380 kmem_free(bits, ni * 6);
381 return (error);
382 }
383
384 static inline int
385 selscan(char *bits, const int nfd, const size_t ni, register_t *retval)
386 {
387 fd_mask *ibitp, *obitp;
388 int msk, i, j, fd, n;
389 file_t *fp;
390
391 ibitp = (fd_mask *)(bits + ni * 0);
392 obitp = (fd_mask *)(bits + ni * 3);
393 n = 0;
394
395 for (msk = 0; msk < 3; msk++) {
396 for (i = 0; i < nfd; i += NFDBITS) {
397 fd_mask ibits, obits;
398
399 ibits = *ibitp++;
400 obits = 0;
401 while ((j = ffs(ibits)) && (fd = i + --j) < nfd) {
402 ibits &= ~(1 << j);
403 if ((fp = fd_getfile(fd)) == NULL)
404 return (EBADF);
405 /*
406 * Setup an argument to selrecord(), which is
407 * a file descriptor number.
408 */
409 curlwp->l_selrec = fd;
410 if ((*fp->f_ops->fo_poll)(fp, sel_flag[msk])) {
411 obits |= (1 << j);
412 n++;
413 }
414 fd_putfile(fd);
415 }
416 *obitp++ = obits;
417 }
418 }
419 *retval = n;
420 return (0);
421 }
422
423 /*
424 * Poll system call.
425 */
426 int
427 sys_poll(struct lwp *l, const struct sys_poll_args *uap, register_t *retval)
428 {
429 /* {
430 syscallarg(struct pollfd *) fds;
431 syscallarg(u_int) nfds;
432 syscallarg(int) timeout;
433 } */
434 struct timespec ats, *ts = NULL;
435
436 if (SCARG(uap, timeout) != INFTIM) {
437 ats.tv_sec = SCARG(uap, timeout) / 1000;
438 ats.tv_nsec = (SCARG(uap, timeout) % 1000) * 1000000;
439 ts = &ats;
440 }
441
442 return pollcommon(retval, SCARG(uap, fds), SCARG(uap, nfds), ts, NULL);
443 }
444
445 /*
446 * Poll system call.
447 */
448 int
449 sys___pollts50(struct lwp *l, const struct sys___pollts50_args *uap,
450 register_t *retval)
451 {
452 /* {
453 syscallarg(struct pollfd *) fds;
454 syscallarg(u_int) nfds;
455 syscallarg(const struct timespec *) ts;
456 syscallarg(const sigset_t *) mask;
457 } */
458 struct timespec ats, *ts = NULL;
459 sigset_t amask, *mask = NULL;
460 int error;
461
462 if (SCARG(uap, ts)) {
463 error = copyin(SCARG(uap, ts), &ats, sizeof(ats));
464 if (error)
465 return error;
466 ts = &ats;
467 }
468 if (SCARG(uap, mask)) {
469 error = copyin(SCARG(uap, mask), &amask, sizeof(amask));
470 if (error)
471 return error;
472 mask = &amask;
473 }
474
475 return pollcommon(retval, SCARG(uap, fds), SCARG(uap, nfds), ts, mask);
476 }
477
478 int
479 pollcommon(register_t *retval, struct pollfd *u_fds, u_int nfds,
480 struct timespec *ts, sigset_t *mask)
481 {
482 struct pollfd smallfds[32];
483 struct pollfd *fds;
484 int error;
485 size_t ni;
486
487 if (nfds > 1000 + curlwp->l_fd->fd_dt->dt_nfiles) {
488 /*
489 * Either the user passed in a very sparse 'fds' or junk!
490 * The kmem_alloc() call below would be bad news.
491 * We could process the 'fds' array in chunks, but that
492 * is a lot of code that isn't normally useful.
493 * (Or just move the copyin/out into pollscan().)
494 * Historically the code silently truncated 'fds' to
495 * dt_nfiles entries - but that does cause issues.
496 */
497 return EINVAL;
498 }
499 ni = nfds * sizeof(struct pollfd);
500 if (ni > sizeof(smallfds)) {
501 fds = kmem_alloc(ni, KM_SLEEP);
502 if (fds == NULL)
503 return ENOMEM;
504 } else
505 fds = smallfds;
506
507 error = copyin(u_fds, fds, ni);
508 if (error)
509 goto fail;
510
511 error = sel_do_scan(SELOP_POLL, fds, nfds, ni, ts, mask, retval);
512 if (error == 0)
513 error = copyout(fds, u_fds, ni);
514 fail:
515 if (fds != smallfds)
516 kmem_free(fds, ni);
517 return (error);
518 }
519
520 static inline int
521 pollscan(struct pollfd *fds, const int nfd, register_t *retval)
522 {
523 file_t *fp;
524 int i, n = 0;
525
526 for (i = 0; i < nfd; i++, fds++) {
527 if (fds->fd < 0) {
528 fds->revents = 0;
529 } else if ((fp = fd_getfile(fds->fd)) == NULL) {
530 fds->revents = POLLNVAL;
531 n++;
532 } else {
533 /*
534 * Perform poll: registers select request or returns
535 * the events which are set. Setup an argument for
536 * selrecord(), which is a pointer to struct pollfd.
537 */
538 curlwp->l_selrec = (uintptr_t)fds;
539 fds->revents = (*fp->f_ops->fo_poll)(fp,
540 fds->events | POLLERR | POLLHUP);
541 if (fds->revents != 0)
542 n++;
543 fd_putfile(fds->fd);
544 }
545 }
546 *retval = n;
547 return (0);
548 }
549
550 int
551 seltrue(dev_t dev, int events, lwp_t *l)
552 {
553
554 return (events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
555 }
556
557 /*
558 * Record a select request. Concurrency issues:
559 *
560 * The caller holds the same lock across calls to selrecord() and
561 * selnotify(), so we don't need to consider a concurrent wakeup
562 * while in this routine.
563 *
564 * The only activity we need to guard against is selclear(), called by
565 * another thread that is exiting sel_do_scan().
566 * `sel_lwp' can only become non-NULL while the caller's lock is held,
567 * so it cannot become non-NULL due to a change made by another thread
568 * while we are in this routine. It can only become _NULL_ due to a
569 * call to selclear().
570 *
571 * If it is non-NULL and != selector there is the potential for
572 * selclear() to be called by another thread. If either of those
573 * conditions are true, we're not interested in touching the `named
574 * waiter' part of the selinfo record because we need to record a
575 * collision. Hence there is no need for additional locking in this
576 * routine.
577 */
578 void
579 selrecord(lwp_t *selector, struct selinfo *sip)
580 {
581 selcluster_t *sc;
582 lwp_t *other;
583
584 KASSERT(selector == curlwp);
585
586 sc = selector->l_selcluster;
587 other = sip->sel_lwp;
588
589 if (other == selector) {
590 /* 1. We (selector) already claimed to be the first LWP. */
591 KASSERT(sip->sel_cluster = sc);
592 } else if (other == NULL) {
593 /*
594 * 2. No first LWP, therefore we (selector) are the first.
595 *
596 * There may be unnamed waiters (collisions). Issue a memory
597 * barrier to ensure that we access sel_lwp (above) before
598 * other fields - this guards against a call to selclear().
599 */
600 membar_enter();
601 sip->sel_lwp = selector;
602 SLIST_INSERT_HEAD(&selector->l_selwait, sip, sel_chain);
603 /* Copy the argument, which is for selnotify(). */
604 sip->sel_fdinfo = selector->l_selrec;
605 /* Replace selinfo's lock with the chosen cluster's lock. */
606 sip->sel_cluster = sc;
607 } else {
608 /* 3. Multiple waiters: record a collision. */
609 sip->sel_collision |= sc->sc_mask;
610 KASSERT(sip->sel_cluster != NULL);
611 }
612 }
613
614 /*
615 * sel_setevents: a helper function for selnotify(), to set the events
616 * for LWP sleeping in selcommon() or pollcommon().
617 */
618 static inline void
619 sel_setevents(lwp_t *l, struct selinfo *sip, const int events)
620 {
621 const int oflag = l->l_selflag;
622
623 /*
624 * If we require re-scan or it was required by somebody else,
625 * then just (re)set SEL_RESET and return.
626 */
627 if (__predict_false(events == 0 || oflag == SEL_RESET)) {
628 l->l_selflag = SEL_RESET;
629 return;
630 }
631 /*
632 * Direct set. Note: select state of LWP is locked. First,
633 * determine whether it is selcommon() or pollcommon().
634 */
635 if (l->l_selbits != NULL) {
636 fd_mask *fds = (fd_mask *)l->l_selbits;
637 const int ni = l->l_selni;
638 const int fd = sip->sel_fdinfo;
639 int n;
640
641 for (n = 0; n < 3; n++) {
642 if (sel_flag[n] | events) {
643 fds[fd >> __NFDSHIFT] |= (fd & __NFDMASK);
644 }
645 fds = (fd_mask *)((char *)fds + ni);
646 }
647 } else {
648 struct pollfd *pfd = (void *)sip->sel_fdinfo;
649 pfd->revents |= events;
650 }
651 /* Indicate direct set and note the event (cluster lock is held). */
652 l->l_selflag = SEL_EVENT;
653 l->l_selret++;
654 }
655
656 /*
657 * Do a wakeup when a selectable event occurs. Concurrency issues:
658 *
659 * As per selrecord(), the caller's object lock is held. If there
660 * is a named waiter, we must acquire the associated selcluster's lock
661 * in order to synchronize with selclear() and pollers going to sleep
662 * in sel_do_scan().
663 *
664 * sip->sel_cluser cannot change at this point, as it is only changed
665 * in selrecord(), and concurrent calls to selrecord() are locked
666 * out by the caller.
667 */
668 void
669 selnotify(struct selinfo *sip, int events, long knhint)
670 {
671 selcluster_t *sc;
672 uint32_t mask;
673 int index, oflag;
674 lwp_t *l;
675 kmutex_t *lock;
676
677 KNOTE(&sip->sel_klist, knhint);
678
679 if (sip->sel_lwp != NULL) {
680 /* One named LWP is waiting. */
681 sc = sip->sel_cluster;
682 lock = sc->sc_lock;
683 mutex_spin_enter(lock);
684 /* Still there? */
685 if (sip->sel_lwp != NULL) {
686 /*
687 * Set the events for our LWP and indicate that.
688 * Otherwise, request for a full re-scan.
689 */
690 l = sip->sel_lwp;
691 oflag = l->l_selflag;
692 sel_setevents(l, sip, events);
693 /*
694 * If thread is sleeping, wake it up. If it's not
695 * yet asleep, it will notice the change in state
696 * and will re-poll the descriptors.
697 */
698 if (oflag == SEL_BLOCKING && l->l_mutex == lock) {
699 KASSERT(l->l_wchan == sc);
700 sleepq_unsleep(l, false);
701 }
702 }
703 mutex_spin_exit(lock);
704 }
705
706 if ((mask = sip->sel_collision) != 0) {
707 /*
708 * There was a collision (multiple waiters): we must
709 * inform all potentially interested waiters.
710 */
711 sip->sel_collision = 0;
712 do {
713 index = ffs(mask) - 1;
714 mask &= ~(1 << index);
715 sc = selcluster[index];
716 lock = sc->sc_lock;
717 mutex_spin_enter(lock);
718 sc->sc_ncoll++;
719 sleepq_wake(&sc->sc_sleepq, sc, (u_int)-1, lock);
720 } while (__predict_false(mask != 0));
721 }
722 }
723
724 /*
725 * Remove an LWP from all objects that it is waiting for. Concurrency
726 * issues:
727 *
728 * The object owner's (e.g. device driver) lock is not held here. Calls
729 * can be made to selrecord() and we do not synchronize against those
730 * directly using locks. However, we use `sel_lwp' to lock out changes.
731 * Before clearing it we must use memory barriers to ensure that we can
732 * safely traverse the list of selinfo records.
733 */
734 static void
735 selclear(void)
736 {
737 struct selinfo *sip, *next;
738 selcluster_t *sc;
739 lwp_t *l;
740 kmutex_t *lock;
741
742 l = curlwp;
743 sc = l->l_selcluster;
744 lock = sc->sc_lock;
745
746 mutex_spin_enter(lock);
747 for (sip = SLIST_FIRST(&l->l_selwait); sip != NULL; sip = next) {
748 KASSERT(sip->sel_lwp == l);
749 KASSERT(sip->sel_cluster == l->l_selcluster);
750
751 /*
752 * Read link to next selinfo record, if any.
753 * It's no longer safe to touch `sip' after clearing
754 * `sel_lwp', so ensure that the read of `sel_chain'
755 * completes before the clearing of sel_lwp becomes
756 * globally visible.
757 */
758 next = SLIST_NEXT(sip, sel_chain);
759 membar_exit();
760 /* Release the record for another named waiter to use. */
761 sip->sel_lwp = NULL;
762 }
763 mutex_spin_exit(lock);
764 }
765
766 /*
767 * Initialize the select/poll system calls. Called once for each
768 * CPU in the system, as they are attached.
769 */
770 void
771 selsysinit(struct cpu_info *ci)
772 {
773 selcluster_t *sc;
774 u_int index;
775
776 /* If already a cluster in place for this bit, re-use. */
777 index = cpu_index(ci) & SELCLUSTERMASK;
778 sc = selcluster[index];
779 if (sc == NULL) {
780 sc = kmem_alloc(roundup2(sizeof(selcluster_t),
781 coherency_unit) + coherency_unit, KM_SLEEP);
782 sc = (void *)roundup2((uintptr_t)sc, coherency_unit);
783 sc->sc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
784 sleepq_init(&sc->sc_sleepq);
785 sc->sc_ncoll = 0;
786 sc->sc_mask = (1 << index);
787 selcluster[index] = sc;
788 }
789 ci->ci_data.cpu_selcluster = sc;
790 }
791
792 /*
793 * Initialize a selinfo record.
794 */
795 void
796 selinit(struct selinfo *sip)
797 {
798
799 memset(sip, 0, sizeof(*sip));
800 }
801
802 /*
803 * Destroy a selinfo record. The owning object must not gain new
804 * references while this is in progress: all activity on the record
805 * must be stopped.
806 *
807 * Concurrency issues: we only need guard against a call to selclear()
808 * by a thread exiting sel_do_scan(). The caller has prevented further
809 * references being made to the selinfo record via selrecord(), and it
810 * will not call selnotify() again.
811 */
812 void
813 seldestroy(struct selinfo *sip)
814 {
815 selcluster_t *sc;
816 kmutex_t *lock;
817 lwp_t *l;
818
819 if (sip->sel_lwp == NULL)
820 return;
821
822 /*
823 * Lock out selclear(). The selcluster pointer can't change while
824 * we are here since it is only ever changed in selrecord(),
825 * and that will not be entered again for this record because
826 * it is dying.
827 */
828 KASSERT(sip->sel_cluster != NULL);
829 sc = sip->sel_cluster;
830 lock = sc->sc_lock;
831 mutex_spin_enter(lock);
832 if ((l = sip->sel_lwp) != NULL) {
833 /*
834 * This should rarely happen, so although SLIST_REMOVE()
835 * is slow, using it here is not a problem.
836 */
837 KASSERT(l->l_selcluster == sc);
838 SLIST_REMOVE(&l->l_selwait, sip, selinfo, sel_chain);
839 sip->sel_lwp = NULL;
840 }
841 mutex_spin_exit(lock);
842 }
843
844 int
845 pollsock(struct socket *so, const struct timespec *tsp, int events)
846 {
847 int ncoll, error, timo;
848 struct timespec sleepts, ts;
849 selcluster_t *sc;
850 lwp_t *l;
851 kmutex_t *lock;
852
853 timo = 0;
854 if (tsp != NULL) {
855 ts = *tsp;
856 if (inittimeleft(&ts, &sleepts) == -1)
857 return EINVAL;
858 }
859
860 l = curlwp;
861 sc = curcpu()->ci_data.cpu_selcluster;
862 lock = sc->sc_lock;
863 l->l_selcluster = sc;
864 SLIST_INIT(&l->l_selwait);
865 error = 0;
866 for (;;) {
867 /*
868 * No need to lock. If this is overwritten by another
869 * value while scanning, we will retry below. We only
870 * need to see exact state from the descriptors that
871 * we are about to poll, and lock activity resulting
872 * from fo_poll is enough to provide an up to date value
873 * for new polling activity.
874 */
875 ncoll = sc->sc_ncoll;
876 l->l_selflag = SEL_SCANNING;
877 if (sopoll(so, events) != 0)
878 break;
879 if (tsp && (timo = gettimeleft(&ts, &sleepts)) <= 0)
880 break;
881 mutex_spin_enter(lock);
882 if (l->l_selflag != SEL_SCANNING || sc->sc_ncoll != ncoll) {
883 mutex_spin_exit(lock);
884 continue;
885 }
886 l->l_selflag = SEL_BLOCKING;
887 sleepq_enter(&sc->sc_sleepq, l, lock);
888 sleepq_enqueue(&sc->sc_sleepq, sc, "pollsock", &select_sobj);
889 error = sleepq_block(timo, true);
890 if (error != 0)
891 break;
892 }
893 selclear();
894 /* poll is not restarted after signals... */
895 if (error == ERESTART)
896 error = EINTR;
897 if (error == EWOULDBLOCK)
898 error = 0;
899 return (error);
900 }
901