Home | History | Annotate | Line # | Download | only in kern
sys_select.c revision 1.26
      1 /*	$NetBSD: sys_select.c,v 1.26 2010/07/11 11:17:58 rmind Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2007, 2008, 2009, 2010 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran and Mindaugas Rasiukevicius.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1982, 1986, 1989, 1993
     34  *	The Regents of the University of California.  All rights reserved.
     35  * (c) UNIX System Laboratories, Inc.
     36  * All or some portions of this file are derived from material licensed
     37  * to the University of California by American Telephone and Telegraph
     38  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     39  * the permission of UNIX System Laboratories, Inc.
     40  *
     41  * Redistribution and use in source and binary forms, with or without
     42  * modification, are permitted provided that the following conditions
     43  * are met:
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. Neither the name of the University nor the names of its contributors
     50  *    may be used to endorse or promote products derived from this software
     51  *    without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  *	@(#)sys_generic.c	8.9 (Berkeley) 2/14/95
     66  */
     67 
     68 /*
     69  * System calls of synchronous I/O multiplexing subsystem.
     70  *
     71  * Locking
     72  *
     73  * Two locks are used: <object-lock> and selcluster_t::sc_lock.
     74  *
     75  * The <object-lock> might be a device driver or another subsystem, e.g.
     76  * socket or pipe.  This lock is not exported, and thus invisible to this
     77  * subsystem.  Mainly, synchronisation between selrecord() and selnotify()
     78  * routines depends on this lock, as it will be described in the comments.
     79  *
     80  * Lock order
     81  *
     82  *	<object-lock> ->
     83  *		selcluster_t::sc_lock
     84  */
     85 
     86 #include <sys/cdefs.h>
     87 __KERNEL_RCSID(0, "$NetBSD: sys_select.c,v 1.26 2010/07/11 11:17:58 rmind Exp $");
     88 
     89 #include <sys/param.h>
     90 #include <sys/systm.h>
     91 #include <sys/filedesc.h>
     92 #include <sys/ioctl.h>
     93 #include <sys/file.h>
     94 #include <sys/proc.h>
     95 #include <sys/socketvar.h>
     96 #include <sys/signalvar.h>
     97 #include <sys/uio.h>
     98 #include <sys/kernel.h>
     99 #include <sys/stat.h>
    100 #include <sys/poll.h>
    101 #include <sys/vnode.h>
    102 #include <sys/mount.h>
    103 #include <sys/syscallargs.h>
    104 #include <sys/cpu.h>
    105 #include <sys/atomic.h>
    106 #include <sys/socketvar.h>
    107 #include <sys/sleepq.h>
    108 
    109 /* Flags for lwp::l_selflag. */
    110 #define	SEL_RESET	0	/* awoken, interrupted, or not yet polling */
    111 #define	SEL_SCANNING	1	/* polling descriptors */
    112 #define	SEL_BLOCKING	2	/* blocking and waiting for event */
    113 #define	SEL_EVENT	3	/* interrupted, events set directly */
    114 
    115 /* Operations: either select() or poll(). */
    116 #define	SELOP_SELECT	1
    117 #define	SELOP_POLL	2
    118 
    119 /*
    120  * Per-cluster state for select()/poll().  For a system with fewer
    121  * than 32 CPUs, this gives us per-CPU clusters.
    122  */
    123 #define	SELCLUSTERS	32
    124 #define	SELCLUSTERMASK	(SELCLUSTERS - 1)
    125 
    126 typedef struct selcluster {
    127 	kmutex_t	*sc_lock;
    128 	sleepq_t	sc_sleepq;
    129 	int		sc_ncoll;
    130 	uint32_t	sc_mask;
    131 } selcluster_t;
    132 
    133 static inline int	selscan(char *, const int, const size_t, register_t *);
    134 static inline int	pollscan(struct pollfd *, const int, register_t *);
    135 static void		selclear(void);
    136 
    137 static const int sel_flag[] = {
    138 	POLLRDNORM | POLLHUP | POLLERR,
    139 	POLLWRNORM | POLLHUP | POLLERR,
    140 	POLLRDBAND
    141 };
    142 
    143 static syncobj_t select_sobj = {
    144 	SOBJ_SLEEPQ_FIFO,
    145 	sleepq_unsleep,
    146 	sleepq_changepri,
    147 	sleepq_lendpri,
    148 	syncobj_noowner,
    149 };
    150 
    151 static selcluster_t	*selcluster[SELCLUSTERS] __read_mostly;
    152 
    153 /*
    154  * Select system call.
    155  */
    156 int
    157 sys___pselect50(struct lwp *l, const struct sys___pselect50_args *uap,
    158     register_t *retval)
    159 {
    160 	/* {
    161 		syscallarg(int)				nd;
    162 		syscallarg(fd_set *)			in;
    163 		syscallarg(fd_set *)			ou;
    164 		syscallarg(fd_set *)			ex;
    165 		syscallarg(const struct timespec *)	ts;
    166 		syscallarg(sigset_t *)			mask;
    167 	} */
    168 	struct timespec	ats, *ts = NULL;
    169 	sigset_t	amask, *mask = NULL;
    170 	int		error;
    171 
    172 	if (SCARG(uap, ts)) {
    173 		error = copyin(SCARG(uap, ts), &ats, sizeof(ats));
    174 		if (error)
    175 			return error;
    176 		ts = &ats;
    177 	}
    178 	if (SCARG(uap, mask) != NULL) {
    179 		error = copyin(SCARG(uap, mask), &amask, sizeof(amask));
    180 		if (error)
    181 			return error;
    182 		mask = &amask;
    183 	}
    184 
    185 	return selcommon(retval, SCARG(uap, nd), SCARG(uap, in),
    186 	    SCARG(uap, ou), SCARG(uap, ex), ts, mask);
    187 }
    188 
    189 int
    190 sys___select50(struct lwp *l, const struct sys___select50_args *uap,
    191     register_t *retval)
    192 {
    193 	/* {
    194 		syscallarg(int)			nd;
    195 		syscallarg(fd_set *)		in;
    196 		syscallarg(fd_set *)		ou;
    197 		syscallarg(fd_set *)		ex;
    198 		syscallarg(struct timeval *)	tv;
    199 	} */
    200 	struct timeval atv;
    201 	struct timespec ats, *ts = NULL;
    202 	int error;
    203 
    204 	if (SCARG(uap, tv)) {
    205 		error = copyin(SCARG(uap, tv), (void *)&atv, sizeof(atv));
    206 		if (error)
    207 			return error;
    208 		TIMEVAL_TO_TIMESPEC(&atv, &ats);
    209 		ts = &ats;
    210 	}
    211 
    212 	return selcommon(retval, SCARG(uap, nd), SCARG(uap, in),
    213 	    SCARG(uap, ou), SCARG(uap, ex), ts, NULL);
    214 }
    215 
    216 /*
    217  * sel_do_scan: common code to perform the scan on descriptors.
    218  */
    219 static int
    220 sel_do_scan(const int op, void *fds, const int nf, const size_t ni,
    221     struct timespec *ts, sigset_t *mask, register_t *retval)
    222 {
    223 	lwp_t		* const l = curlwp;
    224 	proc_t		* const p = l->l_proc;
    225 	selcluster_t	*sc;
    226 	kmutex_t	*lock;
    227 	sigset_t	oldmask;
    228 	struct timespec	sleepts;
    229 	int		error, timo;
    230 
    231 	timo = 0;
    232 	if (ts && inittimeleft(ts, &sleepts) == -1) {
    233 		return EINVAL;
    234 	}
    235 
    236 	if (__predict_false(mask)) {
    237 		sigminusset(&sigcantmask, mask);
    238 		mutex_enter(p->p_lock);
    239 		oldmask = l->l_sigmask;
    240 		l->l_sigmask = *mask;
    241 		mutex_exit(p->p_lock);
    242 	} else {
    243 		/* XXXgcc */
    244 		oldmask = l->l_sigmask;
    245 	}
    246 
    247 	sc = curcpu()->ci_data.cpu_selcluster;
    248 	lock = sc->sc_lock;
    249 	l->l_selcluster = sc;
    250 	SLIST_INIT(&l->l_selwait);
    251 
    252 	l->l_selret = 0;
    253 	if (op == SELOP_SELECT) {
    254 		l->l_selbits = (char *)fds + ni * 3;
    255 		l->l_selni = ni;
    256 	} else {
    257 		l->l_selbits = NULL;
    258 	}
    259 	for (;;) {
    260 		int ncoll;
    261 
    262 		/*
    263 		 * No need to lock.  If this is overwritten by another value
    264 		 * while scanning, we will retry below.  We only need to see
    265 		 * exact state from the descriptors that we are about to poll,
    266 		 * and lock activity resulting from fo_poll is enough to
    267 		 * provide an up to date value for new polling activity.
    268 		 */
    269 		l->l_selflag = SEL_SCANNING;
    270 		ncoll = sc->sc_ncoll;
    271 
    272 		if (op == SELOP_SELECT) {
    273 			error = selscan((char *)fds, nf, ni, retval);
    274 		} else {
    275 			error = pollscan((struct pollfd *)fds, nf, retval);
    276 		}
    277 		if (error || *retval)
    278 			break;
    279 		if (ts && (timo = gettimeleft(ts, &sleepts)) <= 0)
    280 			break;
    281 		/*
    282 		 * Acquire the lock and perform the (re)checks.  Note, if
    283 		 * collision has occured, then our state does not matter,
    284 		 * as we must perform re-scan.  Therefore, check it first.
    285 		 */
    286 state_check:
    287 		mutex_spin_enter(lock);
    288 		if (__predict_false(sc->sc_ncoll != ncoll)) {
    289 			/* Collision: perform re-scan. */
    290 			mutex_spin_exit(lock);
    291 			continue;
    292 		}
    293 		if (__predict_true(l->l_selflag == SEL_EVENT)) {
    294 			/* Events occured, they are set directly. */
    295 			mutex_spin_exit(lock);
    296 			KASSERT(l->l_selret != 0);
    297 			*retval = l->l_selret;
    298 			break;
    299 		}
    300 		if (__predict_true(l->l_selflag == SEL_RESET)) {
    301 			/* Events occured, but re-scan is requested. */
    302 			mutex_spin_exit(lock);
    303 			continue;
    304 		}
    305 		/* Nothing happen, therefore - sleep. */
    306 		l->l_selflag = SEL_BLOCKING;
    307 		l->l_kpriority = true;
    308 		sleepq_enter(&sc->sc_sleepq, l, lock);
    309 		sleepq_enqueue(&sc->sc_sleepq, sc, "select", &select_sobj);
    310 		error = sleepq_block(timo, true);
    311 		if (error != 0) {
    312 			break;
    313 		}
    314 		/* Awoken: need to check the state. */
    315 		goto state_check;
    316 	}
    317 	selclear();
    318 
    319 	if (__predict_false(mask)) {
    320 		mutex_enter(p->p_lock);
    321 		l->l_sigmask = oldmask;
    322 		mutex_exit(p->p_lock);
    323 	}
    324 
    325 	/* select and poll are not restarted after signals... */
    326 	if (error == ERESTART)
    327 		return EINTR;
    328 	if (error == EWOULDBLOCK)
    329 		return 0;
    330 	return error;
    331 }
    332 
    333 int
    334 selcommon(register_t *retval, int nd, fd_set *u_in, fd_set *u_ou,
    335     fd_set *u_ex, struct timespec *ts, sigset_t *mask)
    336 {
    337 	char		smallbits[howmany(FD_SETSIZE, NFDBITS) *
    338 			    sizeof(fd_mask) * 6];
    339 	char 		*bits;
    340 	int		error, nf;
    341 	size_t		ni;
    342 
    343 	if (nd < 0)
    344 		return (EINVAL);
    345 	nf = curlwp->l_fd->fd_dt->dt_nfiles;
    346 	if (nd > nf) {
    347 		/* forgiving; slightly wrong */
    348 		nd = nf;
    349 	}
    350 	ni = howmany(nd, NFDBITS) * sizeof(fd_mask);
    351 	if (ni * 6 > sizeof(smallbits)) {
    352 		bits = kmem_alloc(ni * 6, KM_SLEEP);
    353 		if (bits == NULL)
    354 			return ENOMEM;
    355 	} else
    356 		bits = smallbits;
    357 
    358 #define	getbits(name, x)						\
    359 	if (u_ ## name) {						\
    360 		error = copyin(u_ ## name, bits + ni * x, ni);		\
    361 		if (error)						\
    362 			goto fail;					\
    363 	} else								\
    364 		memset(bits + ni * x, 0, ni);
    365 	getbits(in, 0);
    366 	getbits(ou, 1);
    367 	getbits(ex, 2);
    368 #undef	getbits
    369 
    370 	error = sel_do_scan(SELOP_SELECT, bits, nd, ni, ts, mask, retval);
    371 	if (error == 0 && u_in != NULL)
    372 		error = copyout(bits + ni * 3, u_in, ni);
    373 	if (error == 0 && u_ou != NULL)
    374 		error = copyout(bits + ni * 4, u_ou, ni);
    375 	if (error == 0 && u_ex != NULL)
    376 		error = copyout(bits + ni * 5, u_ex, ni);
    377  fail:
    378 	if (bits != smallbits)
    379 		kmem_free(bits, ni * 6);
    380 	return (error);
    381 }
    382 
    383 static inline int
    384 selscan(char *bits, const int nfd, const size_t ni, register_t *retval)
    385 {
    386 	fd_mask *ibitp, *obitp;
    387 	int msk, i, j, fd, n;
    388 	file_t *fp;
    389 
    390 	ibitp = (fd_mask *)(bits + ni * 0);
    391 	obitp = (fd_mask *)(bits + ni * 3);
    392 	n = 0;
    393 
    394 	for (msk = 0; msk < 3; msk++) {
    395 		for (i = 0; i < nfd; i += NFDBITS) {
    396 			fd_mask ibits, obits;
    397 
    398 			ibits = *ibitp++;
    399 			obits = 0;
    400 			while ((j = ffs(ibits)) && (fd = i + --j) < nfd) {
    401 				ibits &= ~(1 << j);
    402 				if ((fp = fd_getfile(fd)) == NULL)
    403 					return (EBADF);
    404 				/*
    405 				 * Setup an argument to selrecord(), which is
    406 				 * a file descriptor number.
    407 				 */
    408 				curlwp->l_selrec = fd;
    409 				if ((*fp->f_ops->fo_poll)(fp, sel_flag[msk])) {
    410 					obits |= (1 << j);
    411 					n++;
    412 				}
    413 				fd_putfile(fd);
    414 			}
    415 			*obitp++ = obits;
    416 		}
    417 	}
    418 	*retval = n;
    419 	return (0);
    420 }
    421 
    422 /*
    423  * Poll system call.
    424  */
    425 int
    426 sys_poll(struct lwp *l, const struct sys_poll_args *uap, register_t *retval)
    427 {
    428 	/* {
    429 		syscallarg(struct pollfd *)	fds;
    430 		syscallarg(u_int)		nfds;
    431 		syscallarg(int)			timeout;
    432 	} */
    433 	struct timespec	ats, *ts = NULL;
    434 
    435 	if (SCARG(uap, timeout) != INFTIM) {
    436 		ats.tv_sec = SCARG(uap, timeout) / 1000;
    437 		ats.tv_nsec = (SCARG(uap, timeout) % 1000) * 1000000;
    438 		ts = &ats;
    439 	}
    440 
    441 	return pollcommon(retval, SCARG(uap, fds), SCARG(uap, nfds), ts, NULL);
    442 }
    443 
    444 /*
    445  * Poll system call.
    446  */
    447 int
    448 sys___pollts50(struct lwp *l, const struct sys___pollts50_args *uap,
    449     register_t *retval)
    450 {
    451 	/* {
    452 		syscallarg(struct pollfd *)		fds;
    453 		syscallarg(u_int)			nfds;
    454 		syscallarg(const struct timespec *)	ts;
    455 		syscallarg(const sigset_t *)		mask;
    456 	} */
    457 	struct timespec	ats, *ts = NULL;
    458 	sigset_t	amask, *mask = NULL;
    459 	int		error;
    460 
    461 	if (SCARG(uap, ts)) {
    462 		error = copyin(SCARG(uap, ts), &ats, sizeof(ats));
    463 		if (error)
    464 			return error;
    465 		ts = &ats;
    466 	}
    467 	if (SCARG(uap, mask)) {
    468 		error = copyin(SCARG(uap, mask), &amask, sizeof(amask));
    469 		if (error)
    470 			return error;
    471 		mask = &amask;
    472 	}
    473 
    474 	return pollcommon(retval, SCARG(uap, fds), SCARG(uap, nfds), ts, mask);
    475 }
    476 
    477 int
    478 pollcommon(register_t *retval, struct pollfd *u_fds, u_int nfds,
    479     struct timespec *ts, sigset_t *mask)
    480 {
    481 	struct pollfd	smallfds[32];
    482 	struct pollfd	*fds;
    483 	int		error;
    484 	size_t		ni;
    485 
    486 	if (nfds > 1000 + curlwp->l_fd->fd_dt->dt_nfiles) {
    487 		/*
    488 		 * Either the user passed in a very sparse 'fds' or junk!
    489 		 * The kmem_alloc() call below would be bad news.
    490 		 * We could process the 'fds' array in chunks, but that
    491 		 * is a lot of code that isn't normally useful.
    492 		 * (Or just move the copyin/out into pollscan().)
    493 		 * Historically the code silently truncated 'fds' to
    494 		 * dt_nfiles entries - but that does cause issues.
    495 		 */
    496 		return EINVAL;
    497 	}
    498 	ni = nfds * sizeof(struct pollfd);
    499 	if (ni > sizeof(smallfds)) {
    500 		fds = kmem_alloc(ni, KM_SLEEP);
    501 		if (fds == NULL)
    502 			return ENOMEM;
    503 	} else
    504 		fds = smallfds;
    505 
    506 	error = copyin(u_fds, fds, ni);
    507 	if (error)
    508 		goto fail;
    509 
    510 	error = sel_do_scan(SELOP_POLL, fds, nfds, ni, ts, mask, retval);
    511 	if (error == 0)
    512 		error = copyout(fds, u_fds, ni);
    513  fail:
    514 	if (fds != smallfds)
    515 		kmem_free(fds, ni);
    516 	return (error);
    517 }
    518 
    519 static inline int
    520 pollscan(struct pollfd *fds, const int nfd, register_t *retval)
    521 {
    522 	file_t *fp;
    523 	int i, n = 0;
    524 
    525 	for (i = 0; i < nfd; i++, fds++) {
    526 		if (fds->fd < 0) {
    527 			fds->revents = 0;
    528 		} else if ((fp = fd_getfile(fds->fd)) == NULL) {
    529 			fds->revents = POLLNVAL;
    530 			n++;
    531 		} else {
    532 			/*
    533 			 * Perform poll: registers select request or returns
    534 			 * the events which are set.  Setup an argument for
    535 			 * selrecord(), which is a pointer to struct pollfd.
    536 			 */
    537 			curlwp->l_selrec = (uintptr_t)fds;
    538 			fds->revents = (*fp->f_ops->fo_poll)(fp,
    539 			    fds->events | POLLERR | POLLHUP);
    540 			if (fds->revents != 0)
    541 				n++;
    542 			fd_putfile(fds->fd);
    543 		}
    544 	}
    545 	*retval = n;
    546 	return (0);
    547 }
    548 
    549 int
    550 seltrue(dev_t dev, int events, lwp_t *l)
    551 {
    552 
    553 	return (events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
    554 }
    555 
    556 /*
    557  * Record a select request.  Concurrency issues:
    558  *
    559  * The caller holds the same lock across calls to selrecord() and
    560  * selnotify(), so we don't need to consider a concurrent wakeup
    561  * while in this routine.
    562  *
    563  * The only activity we need to guard against is selclear(), called by
    564  * another thread that is exiting sel_do_scan().
    565  * `sel_lwp' can only become non-NULL while the caller's lock is held,
    566  * so it cannot become non-NULL due to a change made by another thread
    567  * while we are in this routine.  It can only become _NULL_ due to a
    568  * call to selclear().
    569  *
    570  * If it is non-NULL and != selector there is the potential for
    571  * selclear() to be called by another thread.  If either of those
    572  * conditions are true, we're not interested in touching the `named
    573  * waiter' part of the selinfo record because we need to record a
    574  * collision.  Hence there is no need for additional locking in this
    575  * routine.
    576  */
    577 void
    578 selrecord(lwp_t *selector, struct selinfo *sip)
    579 {
    580 	selcluster_t *sc;
    581 	lwp_t *other;
    582 
    583 	KASSERT(selector == curlwp);
    584 
    585 	sc = selector->l_selcluster;
    586 	other = sip->sel_lwp;
    587 
    588 	if (other == selector) {
    589 		/* 1. We (selector) already claimed to be the first LWP. */
    590 		KASSERT(sip->sel_cluster = sc);
    591 	} else if (other == NULL) {
    592 		/*
    593 		 * 2. No first LWP, therefore we (selector) are the first.
    594 		 *
    595 		 * There may be unnamed waiters (collisions).  Issue a memory
    596 		 * barrier to ensure that we access sel_lwp (above) before
    597 		 * other fields - this guards against a call to selclear().
    598 		 */
    599 		membar_enter();
    600 		sip->sel_lwp = selector;
    601 		SLIST_INSERT_HEAD(&selector->l_selwait, sip, sel_chain);
    602 		/* Copy the argument, which is for selnotify(). */
    603 		sip->sel_fdinfo = selector->l_selrec;
    604 		/* Replace selinfo's lock with the chosen cluster's lock. */
    605 		sip->sel_cluster = sc;
    606 	} else {
    607 		/* 3. Multiple waiters: record a collision. */
    608 		sip->sel_collision |= sc->sc_mask;
    609 		KASSERT(sip->sel_cluster != NULL);
    610 	}
    611 }
    612 
    613 /*
    614  * sel_setevents: a helper function for selnotify(), to set the events
    615  * for LWP sleeping in selcommon() or pollcommon().
    616  */
    617 static inline void
    618 sel_setevents(lwp_t *l, struct selinfo *sip, const int events)
    619 {
    620 	const int oflag = l->l_selflag;
    621 
    622 	/*
    623 	 * If we require re-scan or it was required by somebody else,
    624 	 * then just (re)set SEL_RESET and return.
    625 	 */
    626 	if (__predict_false(events == 0 || oflag == SEL_RESET)) {
    627 		l->l_selflag = SEL_RESET;
    628 		return;
    629 	}
    630 	/*
    631 	 * Direct set.  Note: select state of LWP is locked.  First,
    632 	 * determine whether it is selcommon() or pollcommon().
    633 	 */
    634 	if (l->l_selbits != NULL) {
    635 		fd_mask *fds = (fd_mask *)l->l_selbits;
    636 		const size_t ni = l->l_selni;
    637 		const int fd = sip->sel_fdinfo;
    638 		const int idx = fd >> __NFDSHIFT;
    639 		int n;
    640 
    641 		for (n = 0; n < 3; n++) {
    642 			if (sel_flag[n] | events) {
    643 				fds[idx] |= 1 << (fd & __NFDMASK);
    644 			}
    645 			fds = (fd_mask *)((char *)fds + ni);
    646 		}
    647 	} else {
    648 		struct pollfd *pfd = (void *)sip->sel_fdinfo;
    649 		pfd->revents |= events;
    650 	}
    651 	/* Indicate direct set and note the event (cluster lock is held). */
    652 	l->l_selflag = SEL_EVENT;
    653 	l->l_selret++;
    654 }
    655 
    656 /*
    657  * Do a wakeup when a selectable event occurs.  Concurrency issues:
    658  *
    659  * As per selrecord(), the caller's object lock is held.  If there
    660  * is a named waiter, we must acquire the associated selcluster's lock
    661  * in order to synchronize with selclear() and pollers going to sleep
    662  * in sel_do_scan().
    663  *
    664  * sip->sel_cluser cannot change at this point, as it is only changed
    665  * in selrecord(), and concurrent calls to selrecord() are locked
    666  * out by the caller.
    667  */
    668 void
    669 selnotify(struct selinfo *sip, int events, long knhint)
    670 {
    671 	selcluster_t *sc;
    672 	uint32_t mask;
    673 	int index, oflag;
    674 	lwp_t *l;
    675 	kmutex_t *lock;
    676 
    677 	KNOTE(&sip->sel_klist, knhint);
    678 
    679 	if (sip->sel_lwp != NULL) {
    680 		/* One named LWP is waiting. */
    681 		sc = sip->sel_cluster;
    682 		lock = sc->sc_lock;
    683 		mutex_spin_enter(lock);
    684 		/* Still there? */
    685 		if (sip->sel_lwp != NULL) {
    686 			/*
    687 			 * Set the events for our LWP and indicate that.
    688 			 * Otherwise, request for a full re-scan.
    689 			 */
    690 			l = sip->sel_lwp;
    691 			oflag = l->l_selflag;
    692 #ifdef DIRECT_SELECT
    693 			sel_setevents(l, sip, events);
    694 #else
    695 			l->l_selflag = SEL_RESET;
    696 #endif
    697 			/*
    698 			 * If thread is sleeping, wake it up.  If it's not
    699 			 * yet asleep, it will notice the change in state
    700 			 * and will re-poll the descriptors.
    701 			 */
    702 			if (oflag == SEL_BLOCKING && l->l_mutex == lock) {
    703 				KASSERT(l->l_wchan == sc);
    704 				sleepq_unsleep(l, false);
    705 			}
    706 		}
    707 		mutex_spin_exit(lock);
    708 	}
    709 
    710 	if ((mask = sip->sel_collision) != 0) {
    711 		/*
    712 		 * There was a collision (multiple waiters): we must
    713 		 * inform all potentially interested waiters.
    714 		 */
    715 		sip->sel_collision = 0;
    716 		do {
    717 			index = ffs(mask) - 1;
    718 			mask &= ~(1 << index);
    719 			sc = selcluster[index];
    720 			lock = sc->sc_lock;
    721 			mutex_spin_enter(lock);
    722 			sc->sc_ncoll++;
    723 			sleepq_wake(&sc->sc_sleepq, sc, (u_int)-1, lock);
    724 		} while (__predict_false(mask != 0));
    725 	}
    726 }
    727 
    728 /*
    729  * Remove an LWP from all objects that it is waiting for.  Concurrency
    730  * issues:
    731  *
    732  * The object owner's (e.g. device driver) lock is not held here.  Calls
    733  * can be made to selrecord() and we do not synchronize against those
    734  * directly using locks.  However, we use `sel_lwp' to lock out changes.
    735  * Before clearing it we must use memory barriers to ensure that we can
    736  * safely traverse the list of selinfo records.
    737  */
    738 static void
    739 selclear(void)
    740 {
    741 	struct selinfo *sip, *next;
    742 	selcluster_t *sc;
    743 	lwp_t *l;
    744 	kmutex_t *lock;
    745 
    746 	l = curlwp;
    747 	sc = l->l_selcluster;
    748 	lock = sc->sc_lock;
    749 
    750 	mutex_spin_enter(lock);
    751 	for (sip = SLIST_FIRST(&l->l_selwait); sip != NULL; sip = next) {
    752 		KASSERT(sip->sel_lwp == l);
    753 		KASSERT(sip->sel_cluster == l->l_selcluster);
    754 
    755 		/*
    756 		 * Read link to next selinfo record, if any.
    757 		 * It's no longer safe to touch `sip' after clearing
    758 		 * `sel_lwp', so ensure that the read of `sel_chain'
    759 		 * completes before the clearing of sel_lwp becomes
    760 		 * globally visible.
    761 		 */
    762 		next = SLIST_NEXT(sip, sel_chain);
    763 		membar_exit();
    764 		/* Release the record for another named waiter to use. */
    765 		sip->sel_lwp = NULL;
    766 	}
    767 	mutex_spin_exit(lock);
    768 }
    769 
    770 /*
    771  * Initialize the select/poll system calls.  Called once for each
    772  * CPU in the system, as they are attached.
    773  */
    774 void
    775 selsysinit(struct cpu_info *ci)
    776 {
    777 	selcluster_t *sc;
    778 	u_int index;
    779 
    780 	/* If already a cluster in place for this bit, re-use. */
    781 	index = cpu_index(ci) & SELCLUSTERMASK;
    782 	sc = selcluster[index];
    783 	if (sc == NULL) {
    784 		sc = kmem_alloc(roundup2(sizeof(selcluster_t),
    785 		    coherency_unit) + coherency_unit, KM_SLEEP);
    786 		sc = (void *)roundup2((uintptr_t)sc, coherency_unit);
    787 		sc->sc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
    788 		sleepq_init(&sc->sc_sleepq);
    789 		sc->sc_ncoll = 0;
    790 		sc->sc_mask = (1 << index);
    791 		selcluster[index] = sc;
    792 	}
    793 	ci->ci_data.cpu_selcluster = sc;
    794 }
    795 
    796 /*
    797  * Initialize a selinfo record.
    798  */
    799 void
    800 selinit(struct selinfo *sip)
    801 {
    802 
    803 	memset(sip, 0, sizeof(*sip));
    804 }
    805 
    806 /*
    807  * Destroy a selinfo record.  The owning object must not gain new
    808  * references while this is in progress: all activity on the record
    809  * must be stopped.
    810  *
    811  * Concurrency issues: we only need guard against a call to selclear()
    812  * by a thread exiting sel_do_scan().  The caller has prevented further
    813  * references being made to the selinfo record via selrecord(), and it
    814  * will not call selnotify() again.
    815  */
    816 void
    817 seldestroy(struct selinfo *sip)
    818 {
    819 	selcluster_t *sc;
    820 	kmutex_t *lock;
    821 	lwp_t *l;
    822 
    823 	if (sip->sel_lwp == NULL)
    824 		return;
    825 
    826 	/*
    827 	 * Lock out selclear().  The selcluster pointer can't change while
    828 	 * we are here since it is only ever changed in selrecord(),
    829 	 * and that will not be entered again for this record because
    830 	 * it is dying.
    831 	 */
    832 	KASSERT(sip->sel_cluster != NULL);
    833 	sc = sip->sel_cluster;
    834 	lock = sc->sc_lock;
    835 	mutex_spin_enter(lock);
    836 	if ((l = sip->sel_lwp) != NULL) {
    837 		/*
    838 		 * This should rarely happen, so although SLIST_REMOVE()
    839 		 * is slow, using it here is not a problem.
    840 		 */
    841 		KASSERT(l->l_selcluster == sc);
    842 		SLIST_REMOVE(&l->l_selwait, sip, selinfo, sel_chain);
    843 		sip->sel_lwp = NULL;
    844 	}
    845 	mutex_spin_exit(lock);
    846 }
    847 
    848 int
    849 pollsock(struct socket *so, const struct timespec *tsp, int events)
    850 {
    851 	int		ncoll, error, timo;
    852 	struct timespec	sleepts, ts;
    853 	selcluster_t	*sc;
    854 	lwp_t		*l;
    855 	kmutex_t	*lock;
    856 
    857 	timo = 0;
    858 	if (tsp != NULL) {
    859 		ts = *tsp;
    860 		if (inittimeleft(&ts, &sleepts) == -1)
    861 			return EINVAL;
    862 	}
    863 
    864 	l = curlwp;
    865 	sc = curcpu()->ci_data.cpu_selcluster;
    866 	lock = sc->sc_lock;
    867 	l->l_selcluster = sc;
    868 	SLIST_INIT(&l->l_selwait);
    869 	error = 0;
    870 	for (;;) {
    871 		/*
    872 		 * No need to lock.  If this is overwritten by another
    873 		 * value while scanning, we will retry below.  We only
    874 		 * need to see exact state from the descriptors that
    875 		 * we are about to poll, and lock activity resulting
    876 		 * from fo_poll is enough to provide an up to date value
    877 		 * for new polling activity.
    878 		 */
    879 		ncoll = sc->sc_ncoll;
    880 		l->l_selflag = SEL_SCANNING;
    881 		if (sopoll(so, events) != 0)
    882 			break;
    883 		if (tsp && (timo = gettimeleft(&ts, &sleepts)) <= 0)
    884 			break;
    885 		mutex_spin_enter(lock);
    886 		if (l->l_selflag != SEL_SCANNING || sc->sc_ncoll != ncoll) {
    887 			mutex_spin_exit(lock);
    888 			continue;
    889 		}
    890 		l->l_selflag = SEL_BLOCKING;
    891 		sleepq_enter(&sc->sc_sleepq, l, lock);
    892 		sleepq_enqueue(&sc->sc_sleepq, sc, "pollsock", &select_sobj);
    893 		error = sleepq_block(timo, true);
    894 		if (error != 0)
    895 			break;
    896 	}
    897 	selclear();
    898 	/* poll is not restarted after signals... */
    899 	if (error == ERESTART)
    900 		error = EINTR;
    901 	if (error == EWOULDBLOCK)
    902 		error = 0;
    903 	return (error);
    904 }
    905