Home | History | Annotate | Line # | Download | only in kern
sys_select.c revision 1.33
      1 /*	$NetBSD: sys_select.c,v 1.33 2011/05/28 15:33:41 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2007, 2008, 2009, 2010 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran and Mindaugas Rasiukevicius.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1982, 1986, 1989, 1993
     34  *	The Regents of the University of California.  All rights reserved.
     35  * (c) UNIX System Laboratories, Inc.
     36  * All or some portions of this file are derived from material licensed
     37  * to the University of California by American Telephone and Telegraph
     38  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     39  * the permission of UNIX System Laboratories, Inc.
     40  *
     41  * Redistribution and use in source and binary forms, with or without
     42  * modification, are permitted provided that the following conditions
     43  * are met:
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. Neither the name of the University nor the names of its contributors
     50  *    may be used to endorse or promote products derived from this software
     51  *    without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  *	@(#)sys_generic.c	8.9 (Berkeley) 2/14/95
     66  */
     67 
     68 /*
     69  * System calls of synchronous I/O multiplexing subsystem.
     70  *
     71  * Locking
     72  *
     73  * Two locks are used: <object-lock> and selcluster_t::sc_lock.
     74  *
     75  * The <object-lock> might be a device driver or another subsystem, e.g.
     76  * socket or pipe.  This lock is not exported, and thus invisible to this
     77  * subsystem.  Mainly, synchronisation between selrecord() and selnotify()
     78  * routines depends on this lock, as it will be described in the comments.
     79  *
     80  * Lock order
     81  *
     82  *	<object-lock> ->
     83  *		selcluster_t::sc_lock
     84  */
     85 
     86 #include <sys/cdefs.h>
     87 __KERNEL_RCSID(0, "$NetBSD: sys_select.c,v 1.33 2011/05/28 15:33:41 christos Exp $");
     88 
     89 #include <sys/param.h>
     90 #include <sys/systm.h>
     91 #include <sys/filedesc.h>
     92 #include <sys/file.h>
     93 #include <sys/proc.h>
     94 #include <sys/socketvar.h>
     95 #include <sys/signalvar.h>
     96 #include <sys/uio.h>
     97 #include <sys/kernel.h>
     98 #include <sys/lwp.h>
     99 #include <sys/poll.h>
    100 #include <sys/mount.h>
    101 #include <sys/syscallargs.h>
    102 #include <sys/cpu.h>
    103 #include <sys/atomic.h>
    104 #include <sys/socketvar.h>
    105 #include <sys/sleepq.h>
    106 
    107 /* Flags for lwp::l_selflag. */
    108 #define	SEL_RESET	0	/* awoken, interrupted, or not yet polling */
    109 #define	SEL_SCANNING	1	/* polling descriptors */
    110 #define	SEL_BLOCKING	2	/* blocking and waiting for event */
    111 #define	SEL_EVENT	3	/* interrupted, events set directly */
    112 
    113 /* Operations: either select() or poll(). */
    114 #define	SELOP_SELECT	1
    115 #define	SELOP_POLL	2
    116 
    117 /*
    118  * Per-cluster state for select()/poll().  For a system with fewer
    119  * than 32 CPUs, this gives us per-CPU clusters.
    120  */
    121 #define	SELCLUSTERS	32
    122 #define	SELCLUSTERMASK	(SELCLUSTERS - 1)
    123 
    124 typedef struct selcluster {
    125 	kmutex_t	*sc_lock;
    126 	sleepq_t	sc_sleepq;
    127 	int		sc_ncoll;
    128 	uint32_t	sc_mask;
    129 } selcluster_t;
    130 
    131 static inline int	selscan(char *, const int, const size_t, register_t *);
    132 static inline int	pollscan(struct pollfd *, const int, register_t *);
    133 static void		selclear(void);
    134 
    135 static const int sel_flag[] = {
    136 	POLLRDNORM | POLLHUP | POLLERR,
    137 	POLLWRNORM | POLLHUP | POLLERR,
    138 	POLLRDBAND
    139 };
    140 
    141 static syncobj_t select_sobj = {
    142 	SOBJ_SLEEPQ_FIFO,
    143 	sleepq_unsleep,
    144 	sleepq_changepri,
    145 	sleepq_lendpri,
    146 	syncobj_noowner,
    147 };
    148 
    149 static selcluster_t	*selcluster[SELCLUSTERS] __read_mostly;
    150 
    151 /*
    152  * Select system call.
    153  */
    154 int
    155 sys___pselect50(struct lwp *l, const struct sys___pselect50_args *uap,
    156     register_t *retval)
    157 {
    158 	/* {
    159 		syscallarg(int)				nd;
    160 		syscallarg(fd_set *)			in;
    161 		syscallarg(fd_set *)			ou;
    162 		syscallarg(fd_set *)			ex;
    163 		syscallarg(const struct timespec *)	ts;
    164 		syscallarg(sigset_t *)			mask;
    165 	} */
    166 	struct timespec	ats, *ts = NULL;
    167 	sigset_t	amask, *mask = NULL;
    168 	int		error;
    169 
    170 	if (SCARG(uap, ts)) {
    171 		error = copyin(SCARG(uap, ts), &ats, sizeof(ats));
    172 		if (error)
    173 			return error;
    174 		ts = &ats;
    175 	}
    176 	if (SCARG(uap, mask) != NULL) {
    177 		error = copyin(SCARG(uap, mask), &amask, sizeof(amask));
    178 		if (error)
    179 			return error;
    180 		mask = &amask;
    181 	}
    182 
    183 	return selcommon(retval, SCARG(uap, nd), SCARG(uap, in),
    184 	    SCARG(uap, ou), SCARG(uap, ex), ts, mask);
    185 }
    186 
    187 int
    188 sys___select50(struct lwp *l, const struct sys___select50_args *uap,
    189     register_t *retval)
    190 {
    191 	/* {
    192 		syscallarg(int)			nd;
    193 		syscallarg(fd_set *)		in;
    194 		syscallarg(fd_set *)		ou;
    195 		syscallarg(fd_set *)		ex;
    196 		syscallarg(struct timeval *)	tv;
    197 	} */
    198 	struct timeval atv;
    199 	struct timespec ats, *ts = NULL;
    200 	int error;
    201 
    202 	if (SCARG(uap, tv)) {
    203 		error = copyin(SCARG(uap, tv), (void *)&atv, sizeof(atv));
    204 		if (error)
    205 			return error;
    206 		TIMEVAL_TO_TIMESPEC(&atv, &ats);
    207 		ts = &ats;
    208 	}
    209 
    210 	return selcommon(retval, SCARG(uap, nd), SCARG(uap, in),
    211 	    SCARG(uap, ou), SCARG(uap, ex), ts, NULL);
    212 }
    213 
    214 /*
    215  * sel_do_scan: common code to perform the scan on descriptors.
    216  */
    217 static int
    218 sel_do_scan(const int op, void *fds, const int nf, const size_t ni,
    219     struct timespec *ts, sigset_t *mask, register_t *retval)
    220 {
    221 	lwp_t		* const l = curlwp;
    222 	selcluster_t	*sc;
    223 	kmutex_t	*lock;
    224 	struct timespec	sleepts;
    225 	int		error, timo;
    226 
    227 	timo = 0;
    228 	if (ts && inittimeleft(ts, &sleepts) == -1) {
    229 		return EINVAL;
    230 	}
    231 
    232 	if (__predict_false(mask))
    233 		sigsuspendsetup(l, mask);
    234 
    235 	sc = curcpu()->ci_data.cpu_selcluster;
    236 	lock = sc->sc_lock;
    237 	l->l_selcluster = sc;
    238 	SLIST_INIT(&l->l_selwait);
    239 
    240 	l->l_selret = 0;
    241 	if (op == SELOP_SELECT) {
    242 		l->l_selbits = fds;
    243 		l->l_selni = ni;
    244 	} else {
    245 		l->l_selbits = NULL;
    246 	}
    247 	for (;;) {
    248 		int ncoll;
    249 
    250 		/*
    251 		 * No need to lock.  If this is overwritten by another value
    252 		 * while scanning, we will retry below.  We only need to see
    253 		 * exact state from the descriptors that we are about to poll,
    254 		 * and lock activity resulting from fo_poll is enough to
    255 		 * provide an up to date value for new polling activity.
    256 		 */
    257 		l->l_selflag = SEL_SCANNING;
    258 		ncoll = sc->sc_ncoll;
    259 
    260 		if (op == SELOP_SELECT) {
    261 			error = selscan((char *)fds, nf, ni, retval);
    262 		} else {
    263 			error = pollscan((struct pollfd *)fds, nf, retval);
    264 		}
    265 		if (error || *retval)
    266 			break;
    267 		if (ts && (timo = gettimeleft(ts, &sleepts)) <= 0)
    268 			break;
    269 		/*
    270 		 * Acquire the lock and perform the (re)checks.  Note, if
    271 		 * collision has occured, then our state does not matter,
    272 		 * as we must perform re-scan.  Therefore, check it first.
    273 		 */
    274 state_check:
    275 		mutex_spin_enter(lock);
    276 		if (__predict_false(sc->sc_ncoll != ncoll)) {
    277 			/* Collision: perform re-scan. */
    278 			mutex_spin_exit(lock);
    279 			continue;
    280 		}
    281 		if (__predict_true(l->l_selflag == SEL_EVENT)) {
    282 			/* Events occured, they are set directly. */
    283 			mutex_spin_exit(lock);
    284 			KASSERT(l->l_selret != 0);
    285 			*retval = l->l_selret;
    286 			break;
    287 		}
    288 		if (__predict_true(l->l_selflag == SEL_RESET)) {
    289 			/* Events occured, but re-scan is requested. */
    290 			mutex_spin_exit(lock);
    291 			continue;
    292 		}
    293 		/* Nothing happen, therefore - sleep. */
    294 		l->l_selflag = SEL_BLOCKING;
    295 		l->l_kpriority = true;
    296 		sleepq_enter(&sc->sc_sleepq, l, lock);
    297 		sleepq_enqueue(&sc->sc_sleepq, sc, "select", &select_sobj);
    298 		error = sleepq_block(timo, true);
    299 		if (error != 0) {
    300 			break;
    301 		}
    302 		/* Awoken: need to check the state. */
    303 		goto state_check;
    304 	}
    305 	selclear();
    306 
    307 	if (__predict_false(mask))
    308 		sigsuspendteardown(l);
    309 
    310 	/* select and poll are not restarted after signals... */
    311 	if (error == ERESTART)
    312 		return EINTR;
    313 	if (error == EWOULDBLOCK)
    314 		return 0;
    315 	return error;
    316 }
    317 
    318 int
    319 selcommon(register_t *retval, int nd, fd_set *u_in, fd_set *u_ou,
    320     fd_set *u_ex, struct timespec *ts, sigset_t *mask)
    321 {
    322 	char		smallbits[howmany(FD_SETSIZE, NFDBITS) *
    323 			    sizeof(fd_mask) * 6];
    324 	char 		*bits;
    325 	int		error, nf;
    326 	size_t		ni;
    327 
    328 	if (nd < 0)
    329 		return (EINVAL);
    330 	nf = curlwp->l_fd->fd_dt->dt_nfiles;
    331 	if (nd > nf) {
    332 		/* forgiving; slightly wrong */
    333 		nd = nf;
    334 	}
    335 	ni = howmany(nd, NFDBITS) * sizeof(fd_mask);
    336 	if (ni * 6 > sizeof(smallbits)) {
    337 		bits = kmem_alloc(ni * 6, KM_SLEEP);
    338 		if (bits == NULL)
    339 			return ENOMEM;
    340 	} else
    341 		bits = smallbits;
    342 
    343 #define	getbits(name, x)						\
    344 	if (u_ ## name) {						\
    345 		error = copyin(u_ ## name, bits + ni * x, ni);		\
    346 		if (error)						\
    347 			goto fail;					\
    348 	} else								\
    349 		memset(bits + ni * x, 0, ni);
    350 	getbits(in, 0);
    351 	getbits(ou, 1);
    352 	getbits(ex, 2);
    353 #undef	getbits
    354 
    355 	error = sel_do_scan(SELOP_SELECT, bits, nd, ni, ts, mask, retval);
    356 	if (error == 0 && u_in != NULL)
    357 		error = copyout(bits + ni * 3, u_in, ni);
    358 	if (error == 0 && u_ou != NULL)
    359 		error = copyout(bits + ni * 4, u_ou, ni);
    360 	if (error == 0 && u_ex != NULL)
    361 		error = copyout(bits + ni * 5, u_ex, ni);
    362  fail:
    363 	if (bits != smallbits)
    364 		kmem_free(bits, ni * 6);
    365 	return (error);
    366 }
    367 
    368 static inline int
    369 selscan(char *bits, const int nfd, const size_t ni, register_t *retval)
    370 {
    371 	fd_mask *ibitp, *obitp;
    372 	int msk, i, j, fd, n;
    373 	file_t *fp;
    374 
    375 	ibitp = (fd_mask *)(bits + ni * 0);
    376 	obitp = (fd_mask *)(bits + ni * 3);
    377 	n = 0;
    378 
    379 	for (msk = 0; msk < 3; msk++) {
    380 		for (i = 0; i < nfd; i += NFDBITS) {
    381 			fd_mask ibits, obits;
    382 
    383 			ibits = *ibitp++;
    384 			obits = 0;
    385 			while ((j = ffs(ibits)) && (fd = i + --j) < nfd) {
    386 				ibits &= ~(1 << j);
    387 				if ((fp = fd_getfile(fd)) == NULL)
    388 					return (EBADF);
    389 				/*
    390 				 * Setup an argument to selrecord(), which is
    391 				 * a file descriptor number.
    392 				 */
    393 				curlwp->l_selrec = fd;
    394 				if ((*fp->f_ops->fo_poll)(fp, sel_flag[msk])) {
    395 					obits |= (1 << j);
    396 					n++;
    397 				}
    398 				fd_putfile(fd);
    399 			}
    400 			*obitp++ = obits;
    401 		}
    402 	}
    403 	*retval = n;
    404 	return (0);
    405 }
    406 
    407 /*
    408  * Poll system call.
    409  */
    410 int
    411 sys_poll(struct lwp *l, const struct sys_poll_args *uap, register_t *retval)
    412 {
    413 	/* {
    414 		syscallarg(struct pollfd *)	fds;
    415 		syscallarg(u_int)		nfds;
    416 		syscallarg(int)			timeout;
    417 	} */
    418 	struct timespec	ats, *ts = NULL;
    419 
    420 	if (SCARG(uap, timeout) != INFTIM) {
    421 		ats.tv_sec = SCARG(uap, timeout) / 1000;
    422 		ats.tv_nsec = (SCARG(uap, timeout) % 1000) * 1000000;
    423 		ts = &ats;
    424 	}
    425 
    426 	return pollcommon(retval, SCARG(uap, fds), SCARG(uap, nfds), ts, NULL);
    427 }
    428 
    429 /*
    430  * Poll system call.
    431  */
    432 int
    433 sys___pollts50(struct lwp *l, const struct sys___pollts50_args *uap,
    434     register_t *retval)
    435 {
    436 	/* {
    437 		syscallarg(struct pollfd *)		fds;
    438 		syscallarg(u_int)			nfds;
    439 		syscallarg(const struct timespec *)	ts;
    440 		syscallarg(const sigset_t *)		mask;
    441 	} */
    442 	struct timespec	ats, *ts = NULL;
    443 	sigset_t	amask, *mask = NULL;
    444 	int		error;
    445 
    446 	if (SCARG(uap, ts)) {
    447 		error = copyin(SCARG(uap, ts), &ats, sizeof(ats));
    448 		if (error)
    449 			return error;
    450 		ts = &ats;
    451 	}
    452 	if (SCARG(uap, mask)) {
    453 		error = copyin(SCARG(uap, mask), &amask, sizeof(amask));
    454 		if (error)
    455 			return error;
    456 		mask = &amask;
    457 	}
    458 
    459 	return pollcommon(retval, SCARG(uap, fds), SCARG(uap, nfds), ts, mask);
    460 }
    461 
    462 int
    463 pollcommon(register_t *retval, struct pollfd *u_fds, u_int nfds,
    464     struct timespec *ts, sigset_t *mask)
    465 {
    466 	struct pollfd	smallfds[32];
    467 	struct pollfd	*fds;
    468 	int		error;
    469 	size_t		ni;
    470 
    471 	if (nfds > 1000 + curlwp->l_fd->fd_dt->dt_nfiles) {
    472 		/*
    473 		 * Either the user passed in a very sparse 'fds' or junk!
    474 		 * The kmem_alloc() call below would be bad news.
    475 		 * We could process the 'fds' array in chunks, but that
    476 		 * is a lot of code that isn't normally useful.
    477 		 * (Or just move the copyin/out into pollscan().)
    478 		 * Historically the code silently truncated 'fds' to
    479 		 * dt_nfiles entries - but that does cause issues.
    480 		 */
    481 		return EINVAL;
    482 	}
    483 	ni = nfds * sizeof(struct pollfd);
    484 	if (ni > sizeof(smallfds)) {
    485 		fds = kmem_alloc(ni, KM_SLEEP);
    486 		if (fds == NULL)
    487 			return ENOMEM;
    488 	} else
    489 		fds = smallfds;
    490 
    491 	error = copyin(u_fds, fds, ni);
    492 	if (error)
    493 		goto fail;
    494 
    495 	error = sel_do_scan(SELOP_POLL, fds, nfds, ni, ts, mask, retval);
    496 	if (error == 0)
    497 		error = copyout(fds, u_fds, ni);
    498  fail:
    499 	if (fds != smallfds)
    500 		kmem_free(fds, ni);
    501 	return (error);
    502 }
    503 
    504 static inline int
    505 pollscan(struct pollfd *fds, const int nfd, register_t *retval)
    506 {
    507 	file_t *fp;
    508 	int i, n = 0;
    509 
    510 	for (i = 0; i < nfd; i++, fds++) {
    511 		if (fds->fd < 0) {
    512 			fds->revents = 0;
    513 		} else if ((fp = fd_getfile(fds->fd)) == NULL) {
    514 			fds->revents = POLLNVAL;
    515 			n++;
    516 		} else {
    517 			/*
    518 			 * Perform poll: registers select request or returns
    519 			 * the events which are set.  Setup an argument for
    520 			 * selrecord(), which is a pointer to struct pollfd.
    521 			 */
    522 			curlwp->l_selrec = (uintptr_t)fds;
    523 			fds->revents = (*fp->f_ops->fo_poll)(fp,
    524 			    fds->events | POLLERR | POLLHUP);
    525 			if (fds->revents != 0)
    526 				n++;
    527 			fd_putfile(fds->fd);
    528 		}
    529 	}
    530 	*retval = n;
    531 	return (0);
    532 }
    533 
    534 int
    535 seltrue(dev_t dev, int events, lwp_t *l)
    536 {
    537 
    538 	return (events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
    539 }
    540 
    541 /*
    542  * Record a select request.  Concurrency issues:
    543  *
    544  * The caller holds the same lock across calls to selrecord() and
    545  * selnotify(), so we don't need to consider a concurrent wakeup
    546  * while in this routine.
    547  *
    548  * The only activity we need to guard against is selclear(), called by
    549  * another thread that is exiting sel_do_scan().
    550  * `sel_lwp' can only become non-NULL while the caller's lock is held,
    551  * so it cannot become non-NULL due to a change made by another thread
    552  * while we are in this routine.  It can only become _NULL_ due to a
    553  * call to selclear().
    554  *
    555  * If it is non-NULL and != selector there is the potential for
    556  * selclear() to be called by another thread.  If either of those
    557  * conditions are true, we're not interested in touching the `named
    558  * waiter' part of the selinfo record because we need to record a
    559  * collision.  Hence there is no need for additional locking in this
    560  * routine.
    561  */
    562 void
    563 selrecord(lwp_t *selector, struct selinfo *sip)
    564 {
    565 	selcluster_t *sc;
    566 	lwp_t *other;
    567 
    568 	KASSERT(selector == curlwp);
    569 
    570 	sc = selector->l_selcluster;
    571 	other = sip->sel_lwp;
    572 
    573 	if (other == selector) {
    574 		/* 1. We (selector) already claimed to be the first LWP. */
    575 		KASSERT(sip->sel_cluster = sc);
    576 	} else if (other == NULL) {
    577 		/*
    578 		 * 2. No first LWP, therefore we (selector) are the first.
    579 		 *
    580 		 * There may be unnamed waiters (collisions).  Issue a memory
    581 		 * barrier to ensure that we access sel_lwp (above) before
    582 		 * other fields - this guards against a call to selclear().
    583 		 */
    584 		membar_enter();
    585 		sip->sel_lwp = selector;
    586 		SLIST_INSERT_HEAD(&selector->l_selwait, sip, sel_chain);
    587 		/* Copy the argument, which is for selnotify(). */
    588 		sip->sel_fdinfo = selector->l_selrec;
    589 		/* Replace selinfo's lock with the chosen cluster's lock. */
    590 		sip->sel_cluster = sc;
    591 	} else {
    592 		/* 3. Multiple waiters: record a collision. */
    593 		sip->sel_collision |= sc->sc_mask;
    594 		KASSERT(sip->sel_cluster != NULL);
    595 	}
    596 }
    597 
    598 /*
    599  * sel_setevents: a helper function for selnotify(), to set the events
    600  * for LWP sleeping in selcommon() or pollcommon().
    601  */
    602 static inline bool
    603 sel_setevents(lwp_t *l, struct selinfo *sip, const int events)
    604 {
    605 	const int oflag = l->l_selflag;
    606 	int ret = 0;
    607 
    608 	/*
    609 	 * If we require re-scan or it was required by somebody else,
    610 	 * then just (re)set SEL_RESET and return.
    611 	 */
    612 	if (__predict_false(events == 0 || oflag == SEL_RESET)) {
    613 		l->l_selflag = SEL_RESET;
    614 		return true;
    615 	}
    616 	/*
    617 	 * Direct set.  Note: select state of LWP is locked.  First,
    618 	 * determine whether it is selcommon() or pollcommon().
    619 	 */
    620 	if (l->l_selbits != NULL) {
    621 		const size_t ni = l->l_selni;
    622 		fd_mask *fds = (fd_mask *)l->l_selbits;
    623 		fd_mask *ofds = (fd_mask *)((char *)fds + ni * 3);
    624 		const int fd = sip->sel_fdinfo, fbit = 1 << (fd & __NFDMASK);
    625 		const int idx = fd >> __NFDSHIFT;
    626 		int n;
    627 
    628 		for (n = 0; n < 3; n++) {
    629 			if ((fds[idx] & fbit) != 0 && (sel_flag[n] & events)) {
    630 				ofds[idx] |= fbit;
    631 				ret++;
    632 			}
    633 			fds = (fd_mask *)((char *)fds + ni);
    634 			ofds = (fd_mask *)((char *)ofds + ni);
    635 		}
    636 	} else {
    637 		struct pollfd *pfd = (void *)sip->sel_fdinfo;
    638 		int revents = events & (pfd->events | POLLERR | POLLHUP);
    639 
    640 		if (revents) {
    641 			pfd->revents |= revents;
    642 			ret = 1;
    643 		}
    644 	}
    645 	/* Check whether there are any events to return. */
    646 	if (!ret) {
    647 		return false;
    648 	}
    649 	/* Indicate direct set and note the event (cluster lock is held). */
    650 	l->l_selflag = SEL_EVENT;
    651 	l->l_selret += ret;
    652 	return true;
    653 }
    654 
    655 /*
    656  * Do a wakeup when a selectable event occurs.  Concurrency issues:
    657  *
    658  * As per selrecord(), the caller's object lock is held.  If there
    659  * is a named waiter, we must acquire the associated selcluster's lock
    660  * in order to synchronize with selclear() and pollers going to sleep
    661  * in sel_do_scan().
    662  *
    663  * sip->sel_cluser cannot change at this point, as it is only changed
    664  * in selrecord(), and concurrent calls to selrecord() are locked
    665  * out by the caller.
    666  */
    667 void
    668 selnotify(struct selinfo *sip, int events, long knhint)
    669 {
    670 	selcluster_t *sc;
    671 	uint32_t mask;
    672 	int index, oflag;
    673 	lwp_t *l;
    674 	kmutex_t *lock;
    675 
    676 	KNOTE(&sip->sel_klist, knhint);
    677 
    678 	if (sip->sel_lwp != NULL) {
    679 		/* One named LWP is waiting. */
    680 		sc = sip->sel_cluster;
    681 		lock = sc->sc_lock;
    682 		mutex_spin_enter(lock);
    683 		/* Still there? */
    684 		if (sip->sel_lwp != NULL) {
    685 			/*
    686 			 * Set the events for our LWP and indicate that.
    687 			 * Otherwise, request for a full re-scan.
    688 			 */
    689 			l = sip->sel_lwp;
    690 			oflag = l->l_selflag;
    691 #ifndef NO_DIRECT_SELECT
    692 			if (!sel_setevents(l, sip, events)) {
    693 				/* No events to return. */
    694 				mutex_spin_exit(lock);
    695 				return;
    696 			}
    697 #else
    698 			l->l_selflag = SEL_RESET;
    699 #endif
    700 			/*
    701 			 * If thread is sleeping, wake it up.  If it's not
    702 			 * yet asleep, it will notice the change in state
    703 			 * and will re-poll the descriptors.
    704 			 */
    705 			if (oflag == SEL_BLOCKING && l->l_mutex == lock) {
    706 				KASSERT(l->l_wchan == sc);
    707 				sleepq_unsleep(l, false);
    708 			}
    709 		}
    710 		mutex_spin_exit(lock);
    711 	}
    712 
    713 	if ((mask = sip->sel_collision) != 0) {
    714 		/*
    715 		 * There was a collision (multiple waiters): we must
    716 		 * inform all potentially interested waiters.
    717 		 */
    718 		sip->sel_collision = 0;
    719 		do {
    720 			index = ffs(mask) - 1;
    721 			mask &= ~(1 << index);
    722 			sc = selcluster[index];
    723 			lock = sc->sc_lock;
    724 			mutex_spin_enter(lock);
    725 			sc->sc_ncoll++;
    726 			sleepq_wake(&sc->sc_sleepq, sc, (u_int)-1, lock);
    727 		} while (__predict_false(mask != 0));
    728 	}
    729 }
    730 
    731 /*
    732  * Remove an LWP from all objects that it is waiting for.  Concurrency
    733  * issues:
    734  *
    735  * The object owner's (e.g. device driver) lock is not held here.  Calls
    736  * can be made to selrecord() and we do not synchronize against those
    737  * directly using locks.  However, we use `sel_lwp' to lock out changes.
    738  * Before clearing it we must use memory barriers to ensure that we can
    739  * safely traverse the list of selinfo records.
    740  */
    741 static void
    742 selclear(void)
    743 {
    744 	struct selinfo *sip, *next;
    745 	selcluster_t *sc;
    746 	lwp_t *l;
    747 	kmutex_t *lock;
    748 
    749 	l = curlwp;
    750 	sc = l->l_selcluster;
    751 	lock = sc->sc_lock;
    752 
    753 	mutex_spin_enter(lock);
    754 	for (sip = SLIST_FIRST(&l->l_selwait); sip != NULL; sip = next) {
    755 		KASSERT(sip->sel_lwp == l);
    756 		KASSERT(sip->sel_cluster == l->l_selcluster);
    757 
    758 		/*
    759 		 * Read link to next selinfo record, if any.
    760 		 * It's no longer safe to touch `sip' after clearing
    761 		 * `sel_lwp', so ensure that the read of `sel_chain'
    762 		 * completes before the clearing of sel_lwp becomes
    763 		 * globally visible.
    764 		 */
    765 		next = SLIST_NEXT(sip, sel_chain);
    766 		membar_exit();
    767 		/* Release the record for another named waiter to use. */
    768 		sip->sel_lwp = NULL;
    769 	}
    770 	mutex_spin_exit(lock);
    771 }
    772 
    773 /*
    774  * Initialize the select/poll system calls.  Called once for each
    775  * CPU in the system, as they are attached.
    776  */
    777 void
    778 selsysinit(struct cpu_info *ci)
    779 {
    780 	selcluster_t *sc;
    781 	u_int index;
    782 
    783 	/* If already a cluster in place for this bit, re-use. */
    784 	index = cpu_index(ci) & SELCLUSTERMASK;
    785 	sc = selcluster[index];
    786 	if (sc == NULL) {
    787 		sc = kmem_alloc(roundup2(sizeof(selcluster_t),
    788 		    coherency_unit) + coherency_unit, KM_SLEEP);
    789 		sc = (void *)roundup2((uintptr_t)sc, coherency_unit);
    790 		sc->sc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
    791 		sleepq_init(&sc->sc_sleepq);
    792 		sc->sc_ncoll = 0;
    793 		sc->sc_mask = (1 << index);
    794 		selcluster[index] = sc;
    795 	}
    796 	ci->ci_data.cpu_selcluster = sc;
    797 }
    798 
    799 /*
    800  * Initialize a selinfo record.
    801  */
    802 void
    803 selinit(struct selinfo *sip)
    804 {
    805 
    806 	memset(sip, 0, sizeof(*sip));
    807 }
    808 
    809 /*
    810  * Destroy a selinfo record.  The owning object must not gain new
    811  * references while this is in progress: all activity on the record
    812  * must be stopped.
    813  *
    814  * Concurrency issues: we only need guard against a call to selclear()
    815  * by a thread exiting sel_do_scan().  The caller has prevented further
    816  * references being made to the selinfo record via selrecord(), and it
    817  * will not call selnotify() again.
    818  */
    819 void
    820 seldestroy(struct selinfo *sip)
    821 {
    822 	selcluster_t *sc;
    823 	kmutex_t *lock;
    824 	lwp_t *l;
    825 
    826 	if (sip->sel_lwp == NULL)
    827 		return;
    828 
    829 	/*
    830 	 * Lock out selclear().  The selcluster pointer can't change while
    831 	 * we are here since it is only ever changed in selrecord(),
    832 	 * and that will not be entered again for this record because
    833 	 * it is dying.
    834 	 */
    835 	KASSERT(sip->sel_cluster != NULL);
    836 	sc = sip->sel_cluster;
    837 	lock = sc->sc_lock;
    838 	mutex_spin_enter(lock);
    839 	if ((l = sip->sel_lwp) != NULL) {
    840 		/*
    841 		 * This should rarely happen, so although SLIST_REMOVE()
    842 		 * is slow, using it here is not a problem.
    843 		 */
    844 		KASSERT(l->l_selcluster == sc);
    845 		SLIST_REMOVE(&l->l_selwait, sip, selinfo, sel_chain);
    846 		sip->sel_lwp = NULL;
    847 	}
    848 	mutex_spin_exit(lock);
    849 }
    850 
    851 int
    852 pollsock(struct socket *so, const struct timespec *tsp, int events)
    853 {
    854 	int		ncoll, error, timo;
    855 	struct timespec	sleepts, ts;
    856 	selcluster_t	*sc;
    857 	lwp_t		*l;
    858 	kmutex_t	*lock;
    859 
    860 	timo = 0;
    861 	if (tsp != NULL) {
    862 		ts = *tsp;
    863 		if (inittimeleft(&ts, &sleepts) == -1)
    864 			return EINVAL;
    865 	}
    866 
    867 	l = curlwp;
    868 	sc = curcpu()->ci_data.cpu_selcluster;
    869 	lock = sc->sc_lock;
    870 	l->l_selcluster = sc;
    871 	SLIST_INIT(&l->l_selwait);
    872 	error = 0;
    873 	for (;;) {
    874 		/*
    875 		 * No need to lock.  If this is overwritten by another
    876 		 * value while scanning, we will retry below.  We only
    877 		 * need to see exact state from the descriptors that
    878 		 * we are about to poll, and lock activity resulting
    879 		 * from fo_poll is enough to provide an up to date value
    880 		 * for new polling activity.
    881 		 */
    882 		ncoll = sc->sc_ncoll;
    883 		l->l_selflag = SEL_SCANNING;
    884 		if (sopoll(so, events) != 0)
    885 			break;
    886 		if (tsp && (timo = gettimeleft(&ts, &sleepts)) <= 0)
    887 			break;
    888 		mutex_spin_enter(lock);
    889 		if (l->l_selflag != SEL_SCANNING || sc->sc_ncoll != ncoll) {
    890 			mutex_spin_exit(lock);
    891 			continue;
    892 		}
    893 		l->l_selflag = SEL_BLOCKING;
    894 		sleepq_enter(&sc->sc_sleepq, l, lock);
    895 		sleepq_enqueue(&sc->sc_sleepq, sc, "pollsock", &select_sobj);
    896 		error = sleepq_block(timo, true);
    897 		if (error != 0)
    898 			break;
    899 	}
    900 	selclear();
    901 	/* poll is not restarted after signals... */
    902 	if (error == ERESTART)
    903 		error = EINTR;
    904 	if (error == EWOULDBLOCK)
    905 		error = 0;
    906 	return (error);
    907 }
    908