sys_select.c revision 1.46.2.2 1 /* $NetBSD: sys_select.c,v 1.46.2.2 2024/11/20 14:09:10 martin Exp $ */
2
3 /*-
4 * Copyright (c) 2007, 2008, 2009, 2010 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran and Mindaugas Rasiukevicius.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1986, 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 * (c) UNIX System Laboratories, Inc.
36 * All or some portions of this file are derived from material licensed
37 * to the University of California by American Telephone and Telegraph
38 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39 * the permission of UNIX System Laboratories, Inc.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)sys_generic.c 8.9 (Berkeley) 2/14/95
66 */
67
68 /*
69 * System calls of synchronous I/O multiplexing subsystem.
70 *
71 * Locking
72 *
73 * Two locks are used: <object-lock> and selcluster_t::sc_lock.
74 *
75 * The <object-lock> might be a device driver or another subsystem, e.g.
76 * socket or pipe. This lock is not exported, and thus invisible to this
77 * subsystem. Mainly, synchronisation between selrecord() and selnotify()
78 * routines depends on this lock, as it will be described in the comments.
79 *
80 * Lock order
81 *
82 * <object-lock> ->
83 * selcluster_t::sc_lock
84 */
85
86 #include <sys/cdefs.h>
87 __KERNEL_RCSID(0, "$NetBSD: sys_select.c,v 1.46.2.2 2024/11/20 14:09:10 martin Exp $");
88
89 #include <sys/param.h>
90 #include <sys/systm.h>
91 #include <sys/filedesc.h>
92 #include <sys/file.h>
93 #include <sys/proc.h>
94 #include <sys/socketvar.h>
95 #include <sys/signalvar.h>
96 #include <sys/uio.h>
97 #include <sys/kernel.h>
98 #include <sys/lwp.h>
99 #include <sys/poll.h>
100 #include <sys/mount.h>
101 #include <sys/syscallargs.h>
102 #include <sys/cpu.h>
103 #include <sys/atomic.h>
104 #include <sys/socketvar.h>
105 #include <sys/sleepq.h>
106 #include <sys/sysctl.h>
107
108 /* Flags for lwp::l_selflag. */
109 #define SEL_RESET 0 /* awoken, interrupted, or not yet polling */
110 #define SEL_SCANNING 1 /* polling descriptors */
111 #define SEL_BLOCKING 2 /* blocking and waiting for event */
112 #define SEL_EVENT 3 /* interrupted, events set directly */
113
114 /* Operations: either select() or poll(). */
115 #define SELOP_SELECT 1
116 #define SELOP_POLL 2
117
118 /*
119 * Per-cluster state for select()/poll(). For a system with fewer
120 * than 32 CPUs, this gives us per-CPU clusters.
121 */
122 #define SELCLUSTERS 32
123 #define SELCLUSTERMASK (SELCLUSTERS - 1)
124
125 typedef struct selcluster {
126 kmutex_t *sc_lock;
127 sleepq_t sc_sleepq;
128 int sc_ncoll;
129 uint32_t sc_mask;
130 } selcluster_t;
131
132 static inline int selscan(char *, const int, const size_t, register_t *);
133 static inline int pollscan(struct pollfd *, const int, register_t *);
134 static void selclear(void);
135
136 static const int sel_flag[] = {
137 POLLRDNORM | POLLHUP | POLLERR,
138 POLLWRNORM | POLLHUP | POLLERR,
139 POLLRDBAND
140 };
141
142 static syncobj_t select_sobj = {
143 .sobj_flag = SOBJ_SLEEPQ_FIFO,
144 .sobj_unsleep = sleepq_unsleep,
145 .sobj_changepri = sleepq_changepri,
146 .sobj_lendpri = sleepq_lendpri,
147 .sobj_owner = syncobj_noowner,
148 };
149
150 static selcluster_t *selcluster[SELCLUSTERS] __read_mostly;
151 static int direct_select __read_mostly = 0;
152
153 /*
154 * Select system call.
155 */
156 int
157 sys___pselect50(struct lwp *l, const struct sys___pselect50_args *uap,
158 register_t *retval)
159 {
160 /* {
161 syscallarg(int) nd;
162 syscallarg(fd_set *) in;
163 syscallarg(fd_set *) ou;
164 syscallarg(fd_set *) ex;
165 syscallarg(const struct timespec *) ts;
166 syscallarg(sigset_t *) mask;
167 } */
168 struct timespec ats, *ts = NULL;
169 sigset_t amask, *mask = NULL;
170 int error;
171
172 if (SCARG(uap, ts)) {
173 error = copyin(SCARG(uap, ts), &ats, sizeof(ats));
174 if (error)
175 return error;
176 ts = &ats;
177 }
178 if (SCARG(uap, mask) != NULL) {
179 error = copyin(SCARG(uap, mask), &amask, sizeof(amask));
180 if (error)
181 return error;
182 mask = &amask;
183 }
184
185 return selcommon(retval, SCARG(uap, nd), SCARG(uap, in),
186 SCARG(uap, ou), SCARG(uap, ex), ts, mask);
187 }
188
189 int
190 sys___select50(struct lwp *l, const struct sys___select50_args *uap,
191 register_t *retval)
192 {
193 /* {
194 syscallarg(int) nd;
195 syscallarg(fd_set *) in;
196 syscallarg(fd_set *) ou;
197 syscallarg(fd_set *) ex;
198 syscallarg(struct timeval *) tv;
199 } */
200 struct timeval atv;
201 struct timespec ats, *ts = NULL;
202 int error;
203
204 if (SCARG(uap, tv)) {
205 error = copyin(SCARG(uap, tv), (void *)&atv, sizeof(atv));
206 if (error)
207 return error;
208 TIMEVAL_TO_TIMESPEC(&atv, &ats);
209 ts = &ats;
210 }
211
212 return selcommon(retval, SCARG(uap, nd), SCARG(uap, in),
213 SCARG(uap, ou), SCARG(uap, ex), ts, NULL);
214 }
215
216 /*
217 * sel_do_scan: common code to perform the scan on descriptors.
218 */
219 static int
220 sel_do_scan(const int op, void *fds, const int nf, const size_t ni,
221 struct timespec *ts, sigset_t *mask, register_t *retval)
222 {
223 lwp_t * const l = curlwp;
224 selcluster_t *sc;
225 kmutex_t *lock;
226 struct timespec sleepts;
227 int error, timo;
228
229 timo = 0;
230 if (ts && inittimeleft(ts, &sleepts) == -1) {
231 return EINVAL;
232 }
233
234 if (__predict_false(mask))
235 sigsuspendsetup(l, mask);
236
237 sc = curcpu()->ci_data.cpu_selcluster;
238 lock = sc->sc_lock;
239 l->l_selcluster = sc;
240 if (op == SELOP_SELECT) {
241 l->l_selbits = fds;
242 l->l_selni = ni;
243 } else {
244 l->l_selbits = NULL;
245 }
246
247 for (;;) {
248 int ncoll;
249
250 SLIST_INIT(&l->l_selwait);
251 l->l_selret = 0;
252
253 /*
254 * No need to lock. If this is overwritten by another value
255 * while scanning, we will retry below. We only need to see
256 * exact state from the descriptors that we are about to poll,
257 * and lock activity resulting from fo_poll is enough to
258 * provide an up to date value for new polling activity.
259 */
260 l->l_selflag = SEL_SCANNING;
261 ncoll = sc->sc_ncoll;
262
263 if (op == SELOP_SELECT) {
264 error = selscan((char *)fds, nf, ni, retval);
265 } else {
266 error = pollscan((struct pollfd *)fds, nf, retval);
267 }
268 if (error || *retval)
269 break;
270 if (ts && (timo = gettimeleft(ts, &sleepts)) <= 0)
271 break;
272 /*
273 * Acquire the lock and perform the (re)checks. Note, if
274 * collision has occured, then our state does not matter,
275 * as we must perform re-scan. Therefore, check it first.
276 */
277 state_check:
278 mutex_spin_enter(lock);
279 if (__predict_false(sc->sc_ncoll != ncoll)) {
280 /* Collision: perform re-scan. */
281 mutex_spin_exit(lock);
282 selclear();
283 continue;
284 }
285 if (__predict_true(l->l_selflag == SEL_EVENT)) {
286 /* Events occured, they are set directly. */
287 mutex_spin_exit(lock);
288 break;
289 }
290 if (__predict_true(l->l_selflag == SEL_RESET)) {
291 /* Events occured, but re-scan is requested. */
292 mutex_spin_exit(lock);
293 selclear();
294 continue;
295 }
296 /* Nothing happen, therefore - sleep. */
297 l->l_selflag = SEL_BLOCKING;
298 l->l_kpriority = true;
299 sleepq_enter(&sc->sc_sleepq, l, lock);
300 sleepq_enqueue(&sc->sc_sleepq, sc, "select", &select_sobj);
301 error = sleepq_block(timo, true);
302 if (error != 0) {
303 break;
304 }
305 /* Awoken: need to check the state. */
306 goto state_check;
307 }
308 selclear();
309
310 /* Add direct events if any. */
311 if (l->l_selflag == SEL_EVENT) {
312 KASSERT(l->l_selret != 0);
313 *retval += l->l_selret;
314 }
315
316 if (__predict_false(mask))
317 sigsuspendteardown(l);
318
319 /* select and poll are not restarted after signals... */
320 if (error == ERESTART)
321 return EINTR;
322 if (error == EWOULDBLOCK)
323 return 0;
324 return error;
325 }
326
327 /* designed to be compatible with FD_SET() FD_ISSET() ... */
328 static int
329 anyset(void *p, size_t nbits)
330 {
331 size_t nwords;
332 __fd_mask mask;
333 __fd_mask *f = (__fd_mask *)p;
334
335 nwords = nbits / __NFDBITS;
336
337 while (nwords-- > 0)
338 if (*f++ != 0)
339 return 1;
340
341 nbits &= __NFDMASK;
342 if (nbits != 0) {
343 mask = (1U << nbits) - 1;
344 if ((*f & mask) != 0)
345 return 1;
346 }
347 return 0;
348 }
349
350 int
351 selcommon(register_t *retval, int nd, fd_set *u_in, fd_set *u_ou,
352 fd_set *u_ex, struct timespec *ts, sigset_t *mask)
353 {
354 char smallbits[howmany(FD_SETSIZE, NFDBITS) *
355 sizeof(fd_mask) * 6];
356 char *bits;
357 int error, nf, fb, db;
358 size_t ni;
359
360 if (nd < 0)
361 return EINVAL;
362
363 nf = atomic_load_consume(&curlwp->l_fd->fd_dt)->dt_nfiles;
364
365 /*
366 * Don't allow absurdly large numbers of fds to be selected.
367 * (used to silently truncate, naughty naughty, no more ...)
368 *
369 * The additional FD_SETSISE allows for cases where the limit
370 * is not a round binary number, but the fd_set wants to
371 * include all the possible fds, as fd_sets are always
372 * multiples of 32 bits (__NFDBITS extra would be enough).
373 *
374 * The first test handles the case where the res limit has been
375 * set lower after some fds were opened, we always allow selecting
376 * up to the highest currently open fd.
377 */
378 if (nd > nf + FD_SETSIZE &&
379 nd > curlwp->l_proc->p_rlimit[RLIMIT_NOFILE].rlim_max + FD_SETSIZE)
380 return EINVAL;
381
382 fb = howmany(nf, __NFDBITS); /* how many fd_masks */
383 db = howmany(nd, __NFDBITS);
384
385 if (db > fb) {
386 size_t off;
387
388 /*
389 * the application wants to supply more fd masks than can
390 * possibly represent valid file descriptors.
391 *
392 * Check the excess fd_masks, if any bits are set in them
393 * that must be an error (cannot represent valid fd).
394 *
395 * Supplying lots of extra cleared fd_masks is dumb,
396 * but harmless, so allow that.
397 */
398 ni = (db - fb) * sizeof(fd_mask); /* excess bytes */
399 bits = smallbits;
400
401 /* skip over the valid fd_masks, those will be checked below */
402 off = howmany(nf, __NFDBITS) * sizeof(__fd_mask);
403
404 nd -= fb * NFDBITS; /* the number of excess fds */
405
406 #define checkbits(name, o, sz, fds) \
407 do { \
408 if (u_ ## name != NULL) { \
409 error = copyin((char *)u_ ## name + o, \
410 bits, sz); \
411 if (error) \
412 goto fail; \
413 if (anyset(bits, (fds) ? \
414 (size_t)(fds) : CHAR_BIT * (sz))) { \
415 error = EBADF; \
416 goto fail; \
417 } \
418 } \
419 } while (0)
420
421 while (ni > sizeof(smallbits)) {
422 checkbits(in, off, sizeof(smallbits), 0);
423 checkbits(ou, off, sizeof(smallbits), 0);
424 checkbits(ex, off, sizeof(smallbits), 0);
425
426 off += sizeof(smallbits);
427 ni -= sizeof(smallbits);
428 nd -= sizeof(smallbits) * CHAR_BIT;
429 }
430 checkbits(in, off, ni, nd);
431 checkbits(ou, off, ni, nd);
432 checkbits(ex, off, ni, nd);
433 #undef checkbits
434
435 db = fb; /* now just check the plausible fds */
436 nd = db * __NFDBITS;
437 }
438
439 ni = db * sizeof(fd_mask);
440 if (ni * 6 > sizeof(smallbits))
441 bits = kmem_alloc(ni * 6, KM_SLEEP);
442 else
443 bits = smallbits;
444
445 #define getbits(name, x) \
446 do { \
447 if (u_ ## name) { \
448 error = copyin(u_ ## name, bits + ni * x, ni); \
449 if (error) \
450 goto fail; \
451 } else \
452 memset(bits + ni * x, 0, ni); \
453 } while (0)
454
455 getbits(in, 0);
456 getbits(ou, 1);
457 getbits(ex, 2);
458 #undef getbits
459
460 error = sel_do_scan(SELOP_SELECT, bits, nd, ni, ts, mask, retval);
461
462 #define copyback(name, x) \
463 do { \
464 if (error == 0 && u_ ## name != NULL) \
465 error = copyout(bits + ni * x, \
466 u_ ## name, ni); \
467 } while (0)
468
469 copyback(in, 3);
470 copyback(ou, 4);
471 copyback(ex, 5);
472 #undef copyback
473
474 fail:
475 if (bits != smallbits)
476 kmem_free(bits, ni * 6);
477 return (error);
478 }
479
480 static inline int
481 selscan(char *bits, const int nfd, const size_t ni, register_t *retval)
482 {
483 fd_mask *ibitp, *obitp;
484 int msk, i, j, fd, n;
485 file_t *fp;
486
487 ibitp = (fd_mask *)(bits + ni * 0);
488 obitp = (fd_mask *)(bits + ni * 3);
489 n = 0;
490
491 memset(obitp, 0, ni * 3);
492 for (msk = 0; msk < 3; msk++) {
493 for (i = 0; i < nfd; i += NFDBITS) {
494 fd_mask ibits, obits;
495
496 ibits = *ibitp;
497 obits = 0;
498 while ((j = ffs(ibits)) && (fd = i + --j) < nfd) {
499 ibits &= ~(1 << j);
500 if ((fp = fd_getfile(fd)) == NULL)
501 return (EBADF);
502 /*
503 * Setup an argument to selrecord(), which is
504 * a file descriptor number.
505 */
506 curlwp->l_selrec = fd;
507 if ((*fp->f_ops->fo_poll)(fp, sel_flag[msk])) {
508 obits |= (1 << j);
509 n++;
510 }
511 fd_putfile(fd);
512 }
513 if (obits != 0) {
514 if (direct_select) {
515 kmutex_t *lock;
516 lock = curlwp->l_selcluster->sc_lock;
517 mutex_spin_enter(lock);
518 *obitp |= obits;
519 mutex_spin_exit(lock);
520 } else {
521 *obitp |= obits;
522 }
523 }
524 ibitp++;
525 obitp++;
526 }
527 }
528 *retval = n;
529 return (0);
530 }
531
532 /*
533 * Poll system call.
534 */
535 int
536 sys_poll(struct lwp *l, const struct sys_poll_args *uap, register_t *retval)
537 {
538 /* {
539 syscallarg(struct pollfd *) fds;
540 syscallarg(u_int) nfds;
541 syscallarg(int) timeout;
542 } */
543 struct timespec ats, *ts = NULL;
544
545 if (SCARG(uap, timeout) != INFTIM) {
546 ats.tv_sec = SCARG(uap, timeout) / 1000;
547 ats.tv_nsec = (SCARG(uap, timeout) % 1000) * 1000000;
548 ts = &ats;
549 }
550
551 return pollcommon(retval, SCARG(uap, fds), SCARG(uap, nfds), ts, NULL);
552 }
553
554 /*
555 * Poll system call.
556 */
557 int
558 sys___pollts50(struct lwp *l, const struct sys___pollts50_args *uap,
559 register_t *retval)
560 {
561 /* {
562 syscallarg(struct pollfd *) fds;
563 syscallarg(u_int) nfds;
564 syscallarg(const struct timespec *) ts;
565 syscallarg(const sigset_t *) mask;
566 } */
567 struct timespec ats, *ts = NULL;
568 sigset_t amask, *mask = NULL;
569 int error;
570
571 if (SCARG(uap, ts)) {
572 error = copyin(SCARG(uap, ts), &ats, sizeof(ats));
573 if (error)
574 return error;
575 ts = &ats;
576 }
577 if (SCARG(uap, mask)) {
578 error = copyin(SCARG(uap, mask), &amask, sizeof(amask));
579 if (error)
580 return error;
581 mask = &amask;
582 }
583
584 return pollcommon(retval, SCARG(uap, fds), SCARG(uap, nfds), ts, mask);
585 }
586
587 int
588 pollcommon(register_t *retval, struct pollfd *u_fds, u_int nfds,
589 struct timespec *ts, sigset_t *mask)
590 {
591 struct pollfd smallfds[32];
592 struct pollfd *fds;
593 int error;
594 size_t ni;
595
596 if (nfds > curlwp->l_proc->p_rlimit[RLIMIT_NOFILE].rlim_max + 1000) {
597 /*
598 * Prevent userland from causing over-allocation.
599 * Raising the default limit too high can still cause
600 * a lot of memory to be allocated, but this also means
601 * that the file descriptor array will also be large.
602 *
603 * To reduce the memory requirements here, we could
604 * process the 'fds' array in chunks, but that
605 * is a lot of code that isn't normally useful.
606 * (Or just move the copyin/out into pollscan().)
607 *
608 * Historically the code silently truncated 'fds' to
609 * dt_nfiles entries - but that does cause issues.
610 *
611 * Using the max limit equivalent to sysctl
612 * kern.maxfiles is the moral equivalent of OPEN_MAX
613 * as specified by POSIX.
614 *
615 * We add a slop of 1000 in case the resource limit was
616 * changed after opening descriptors or the same descriptor
617 * was specified more than once.
618 */
619 return EINVAL;
620 }
621 ni = nfds * sizeof(struct pollfd);
622 if (ni > sizeof(smallfds))
623 fds = kmem_alloc(ni, KM_SLEEP);
624 else
625 fds = smallfds;
626
627 error = copyin(u_fds, fds, ni);
628 if (error)
629 goto fail;
630
631 error = sel_do_scan(SELOP_POLL, fds, nfds, ni, ts, mask, retval);
632 if (error == 0)
633 error = copyout(fds, u_fds, ni);
634 fail:
635 if (fds != smallfds)
636 kmem_free(fds, ni);
637 return (error);
638 }
639
640 static inline int
641 pollscan(struct pollfd *fds, const int nfd, register_t *retval)
642 {
643 file_t *fp;
644 int i, n = 0, revents;
645
646 for (i = 0; i < nfd; i++, fds++) {
647 fds->revents = 0;
648 if (fds->fd < 0) {
649 revents = 0;
650 } else if ((fp = fd_getfile(fds->fd)) == NULL) {
651 revents = POLLNVAL;
652 } else {
653 /*
654 * Perform poll: registers select request or returns
655 * the events which are set. Setup an argument for
656 * selrecord(), which is a pointer to struct pollfd.
657 */
658 curlwp->l_selrec = (uintptr_t)fds;
659 revents = (*fp->f_ops->fo_poll)(fp,
660 fds->events | POLLERR | POLLHUP);
661 fd_putfile(fds->fd);
662 }
663 if (revents) {
664 fds->revents = revents;
665 n++;
666 }
667 }
668 *retval = n;
669 return (0);
670 }
671
672 int
673 seltrue(dev_t dev, int events, lwp_t *l)
674 {
675
676 return (events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
677 }
678
679 /*
680 * Record a select request. Concurrency issues:
681 *
682 * The caller holds the same lock across calls to selrecord() and
683 * selnotify(), so we don't need to consider a concurrent wakeup
684 * while in this routine.
685 *
686 * The only activity we need to guard against is selclear(), called by
687 * another thread that is exiting sel_do_scan().
688 * `sel_lwp' can only become non-NULL while the caller's lock is held,
689 * so it cannot become non-NULL due to a change made by another thread
690 * while we are in this routine. It can only become _NULL_ due to a
691 * call to selclear().
692 *
693 * If it is non-NULL and != selector there is the potential for
694 * selclear() to be called by another thread. If either of those
695 * conditions are true, we're not interested in touching the `named
696 * waiter' part of the selinfo record because we need to record a
697 * collision. Hence there is no need for additional locking in this
698 * routine.
699 */
700 void
701 selrecord(lwp_t *selector, struct selinfo *sip)
702 {
703 selcluster_t *sc;
704 lwp_t *other;
705
706 KASSERT(selector == curlwp);
707
708 sc = selector->l_selcluster;
709 other = sip->sel_lwp;
710
711 if (other == selector) {
712 /* 1. We (selector) already claimed to be the first LWP. */
713 KASSERT(sip->sel_cluster == sc);
714 } else if (other == NULL) {
715 /*
716 * 2. No first LWP, therefore we (selector) are the first.
717 *
718 * There may be unnamed waiters (collisions). Issue a memory
719 * barrier to ensure that we access sel_lwp (above) before
720 * other fields - this guards against a call to selclear().
721 */
722 membar_enter();
723 sip->sel_lwp = selector;
724 SLIST_INSERT_HEAD(&selector->l_selwait, sip, sel_chain);
725 /* Copy the argument, which is for selnotify(). */
726 sip->sel_fdinfo = selector->l_selrec;
727 /* Replace selinfo's lock with the chosen cluster's lock. */
728 sip->sel_cluster = sc;
729 } else {
730 /* 3. Multiple waiters: record a collision. */
731 sip->sel_collision |= sc->sc_mask;
732 KASSERT(sip->sel_cluster != NULL);
733 }
734 }
735
736 /*
737 * sel_setevents: a helper function for selnotify(), to set the events
738 * for LWP sleeping in selcommon() or pollcommon().
739 */
740 static inline bool
741 sel_setevents(lwp_t *l, struct selinfo *sip, const int events)
742 {
743 const int oflag = l->l_selflag;
744 int ret = 0;
745
746 /*
747 * If we require re-scan or it was required by somebody else,
748 * then just (re)set SEL_RESET and return.
749 */
750 if (__predict_false(events == 0 || oflag == SEL_RESET)) {
751 l->l_selflag = SEL_RESET;
752 return true;
753 }
754 /*
755 * Direct set. Note: select state of LWP is locked. First,
756 * determine whether it is selcommon() or pollcommon().
757 */
758 if (l->l_selbits != NULL) {
759 const size_t ni = l->l_selni;
760 fd_mask *fds = (fd_mask *)l->l_selbits;
761 fd_mask *ofds = (fd_mask *)((char *)fds + ni * 3);
762 const int fd = sip->sel_fdinfo, fbit = 1 << (fd & __NFDMASK);
763 const int idx = fd >> __NFDSHIFT;
764 int n;
765
766 for (n = 0; n < 3; n++) {
767 if ((fds[idx] & fbit) != 0 &&
768 (ofds[idx] & fbit) == 0 &&
769 (sel_flag[n] & events)) {
770 ofds[idx] |= fbit;
771 ret++;
772 }
773 fds = (fd_mask *)((char *)fds + ni);
774 ofds = (fd_mask *)((char *)ofds + ni);
775 }
776 } else {
777 struct pollfd *pfd = (void *)sip->sel_fdinfo;
778 int revents = events & (pfd->events | POLLERR | POLLHUP);
779
780 if (revents) {
781 if (pfd->revents == 0)
782 ret = 1;
783 pfd->revents |= revents;
784 }
785 }
786 /* Check whether there are any events to return. */
787 if (!ret) {
788 return false;
789 }
790 /* Indicate direct set and note the event (cluster lock is held). */
791 l->l_selflag = SEL_EVENT;
792 l->l_selret += ret;
793 return true;
794 }
795
796 /*
797 * Do a wakeup when a selectable event occurs. Concurrency issues:
798 *
799 * As per selrecord(), the caller's object lock is held. If there
800 * is a named waiter, we must acquire the associated selcluster's lock
801 * in order to synchronize with selclear() and pollers going to sleep
802 * in sel_do_scan().
803 *
804 * sip->sel_cluser cannot change at this point, as it is only changed
805 * in selrecord(), and concurrent calls to selrecord() are locked
806 * out by the caller.
807 */
808 void
809 selnotify(struct selinfo *sip, int events, long knhint)
810 {
811 selcluster_t *sc;
812 uint32_t mask;
813 int index, oflag;
814 lwp_t *l;
815 kmutex_t *lock;
816
817 KNOTE(&sip->sel_klist, knhint);
818
819 if (sip->sel_lwp != NULL) {
820 /* One named LWP is waiting. */
821 sc = sip->sel_cluster;
822 lock = sc->sc_lock;
823 mutex_spin_enter(lock);
824 /* Still there? */
825 if (sip->sel_lwp != NULL) {
826 /*
827 * Set the events for our LWP and indicate that.
828 * Otherwise, request for a full re-scan.
829 */
830 l = sip->sel_lwp;
831 oflag = l->l_selflag;
832
833 if (!direct_select) {
834 l->l_selflag = SEL_RESET;
835 } else if (!sel_setevents(l, sip, events)) {
836 /* No events to return. */
837 mutex_spin_exit(lock);
838 return;
839 }
840
841 /*
842 * If thread is sleeping, wake it up. If it's not
843 * yet asleep, it will notice the change in state
844 * and will re-poll the descriptors.
845 */
846 if (oflag == SEL_BLOCKING && l->l_mutex == lock) {
847 KASSERT(l->l_wchan == sc);
848 sleepq_unsleep(l, false);
849 }
850 }
851 mutex_spin_exit(lock);
852 }
853
854 if ((mask = sip->sel_collision) != 0) {
855 /*
856 * There was a collision (multiple waiters): we must
857 * inform all potentially interested waiters.
858 */
859 sip->sel_collision = 0;
860 do {
861 index = ffs(mask) - 1;
862 mask &= ~(1 << index);
863 sc = selcluster[index];
864 lock = sc->sc_lock;
865 mutex_spin_enter(lock);
866 sc->sc_ncoll++;
867 sleepq_wake(&sc->sc_sleepq, sc, (u_int)-1, lock);
868 } while (__predict_false(mask != 0));
869 }
870 }
871
872 /*
873 * Remove an LWP from all objects that it is waiting for. Concurrency
874 * issues:
875 *
876 * The object owner's (e.g. device driver) lock is not held here. Calls
877 * can be made to selrecord() and we do not synchronize against those
878 * directly using locks. However, we use `sel_lwp' to lock out changes.
879 * Before clearing it we must use memory barriers to ensure that we can
880 * safely traverse the list of selinfo records.
881 */
882 static void
883 selclear(void)
884 {
885 struct selinfo *sip, *next;
886 selcluster_t *sc;
887 lwp_t *l;
888 kmutex_t *lock;
889
890 l = curlwp;
891 sc = l->l_selcluster;
892 lock = sc->sc_lock;
893
894 mutex_spin_enter(lock);
895 for (sip = SLIST_FIRST(&l->l_selwait); sip != NULL; sip = next) {
896 KASSERT(sip->sel_lwp == l);
897 KASSERT(sip->sel_cluster == l->l_selcluster);
898
899 /*
900 * Read link to next selinfo record, if any.
901 * It's no longer safe to touch `sip' after clearing
902 * `sel_lwp', so ensure that the read of `sel_chain'
903 * completes before the clearing of sel_lwp becomes
904 * globally visible.
905 */
906 next = SLIST_NEXT(sip, sel_chain);
907 membar_exit();
908 /* Release the record for another named waiter to use. */
909 sip->sel_lwp = NULL;
910 }
911 mutex_spin_exit(lock);
912 }
913
914 /*
915 * Initialize the select/poll system calls. Called once for each
916 * CPU in the system, as they are attached.
917 */
918 void
919 selsysinit(struct cpu_info *ci)
920 {
921 selcluster_t *sc;
922 u_int index;
923
924 /* If already a cluster in place for this bit, re-use. */
925 index = cpu_index(ci) & SELCLUSTERMASK;
926 sc = selcluster[index];
927 if (sc == NULL) {
928 sc = kmem_alloc(roundup2(sizeof(selcluster_t),
929 coherency_unit) + coherency_unit, KM_SLEEP);
930 sc = (void *)roundup2((uintptr_t)sc, coherency_unit);
931 sc->sc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
932 sleepq_init(&sc->sc_sleepq);
933 sc->sc_ncoll = 0;
934 sc->sc_mask = __BIT(index);
935 selcluster[index] = sc;
936 }
937 ci->ci_data.cpu_selcluster = sc;
938 }
939
940 /*
941 * Initialize a selinfo record.
942 */
943 void
944 selinit(struct selinfo *sip)
945 {
946
947 memset(sip, 0, sizeof(*sip));
948 }
949
950 /*
951 * Destroy a selinfo record. The owning object must not gain new
952 * references while this is in progress: all activity on the record
953 * must be stopped.
954 *
955 * Concurrency issues: we only need guard against a call to selclear()
956 * by a thread exiting sel_do_scan(). The caller has prevented further
957 * references being made to the selinfo record via selrecord(), and it
958 * will not call selnotify() again.
959 */
960 void
961 seldestroy(struct selinfo *sip)
962 {
963 selcluster_t *sc;
964 kmutex_t *lock;
965 lwp_t *l;
966
967 if (sip->sel_lwp == NULL)
968 return;
969
970 /*
971 * Lock out selclear(). The selcluster pointer can't change while
972 * we are here since it is only ever changed in selrecord(),
973 * and that will not be entered again for this record because
974 * it is dying.
975 */
976 KASSERT(sip->sel_cluster != NULL);
977 sc = sip->sel_cluster;
978 lock = sc->sc_lock;
979 mutex_spin_enter(lock);
980 if ((l = sip->sel_lwp) != NULL) {
981 /*
982 * This should rarely happen, so although SLIST_REMOVE()
983 * is slow, using it here is not a problem.
984 */
985 KASSERT(l->l_selcluster == sc);
986 SLIST_REMOVE(&l->l_selwait, sip, selinfo, sel_chain);
987 sip->sel_lwp = NULL;
988 }
989 mutex_spin_exit(lock);
990 }
991
992 /*
993 * System control nodes.
994 */
995 SYSCTL_SETUP(sysctl_select_setup, "sysctl select setup")
996 {
997
998 sysctl_createv(clog, 0, NULL, NULL,
999 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1000 CTLTYPE_INT, "direct_select",
1001 SYSCTL_DESCR("Enable/disable direct select (for testing)"),
1002 NULL, 0, &direct_select, 0,
1003 CTL_KERN, CTL_CREATE, CTL_EOL);
1004 }
1005