sys_select.c revision 1.5 1 /* $NetBSD: sys_select.c,v 1.5 2008/04/24 18:39:24 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1989, 1993
41 * The Regents of the University of California. All rights reserved.
42 * (c) UNIX System Laboratories, Inc.
43 * All or some portions of this file are derived from material licensed
44 * to the University of California by American Telephone and Telegraph
45 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
46 * the permission of UNIX System Laboratories, Inc.
47 *
48 * Redistribution and use in source and binary forms, with or without
49 * modification, are permitted provided that the following conditions
50 * are met:
51 * 1. Redistributions of source code must retain the above copyright
52 * notice, this list of conditions and the following disclaimer.
53 * 2. Redistributions in binary form must reproduce the above copyright
54 * notice, this list of conditions and the following disclaimer in the
55 * documentation and/or other materials provided with the distribution.
56 * 3. Neither the name of the University nor the names of its contributors
57 * may be used to endorse or promote products derived from this software
58 * without specific prior written permission.
59 *
60 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
61 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
62 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
63 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
64 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
65 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
66 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
67 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
68 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
69 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
70 * SUCH DAMAGE.
71 *
72 * @(#)sys_generic.c 8.9 (Berkeley) 2/14/95
73 */
74
75 /*
76 * System calls relating to files.
77 */
78
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: sys_select.c,v 1.5 2008/04/24 18:39:24 ad Exp $");
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/filedesc.h>
85 #include <sys/ioctl.h>
86 #include <sys/file.h>
87 #include <sys/proc.h>
88 #include <sys/socketvar.h>
89 #include <sys/signalvar.h>
90 #include <sys/uio.h>
91 #include <sys/kernel.h>
92 #include <sys/stat.h>
93 #include <sys/poll.h>
94 #include <sys/vnode.h>
95 #include <sys/mount.h>
96 #include <sys/syscallargs.h>
97 #include <sys/cpu.h>
98 #include <sys/atomic.h>
99 #include <sys/socketvar.h>
100 #include <sys/sleepq.h>
101
102 /* Flags for lwp::l_selflag. */
103 #define SEL_RESET 0 /* awoken, interrupted, or not yet polling */
104 #define SEL_SCANNING 1 /* polling descriptors */
105 #define SEL_BLOCKING 2 /* about to block on select_cv */
106
107 /* Per-CPU state for select()/poll(). */
108 #if MAXCPUS > 32
109 #error adjust this code
110 #endif
111 typedef struct selcpu {
112 kmutex_t sc_lock;
113 sleepq_t sc_sleepq;
114 int sc_ncoll;
115 uint32_t sc_mask;
116 } selcpu_t;
117
118 static int selscan(lwp_t *, fd_mask *, fd_mask *, int, register_t *);
119 static int pollscan(lwp_t *, struct pollfd *, int, register_t *);
120 static void selclear(void);
121
122 static syncobj_t select_sobj = {
123 SOBJ_SLEEPQ_FIFO,
124 sleepq_unsleep,
125 sleepq_changepri,
126 sleepq_lendpri,
127 syncobj_noowner,
128 };
129
130 /*
131 * Select system call.
132 */
133 int
134 sys_pselect(struct lwp *l, const struct sys_pselect_args *uap, register_t *retval)
135 {
136 /* {
137 syscallarg(int) nd;
138 syscallarg(fd_set *) in;
139 syscallarg(fd_set *) ou;
140 syscallarg(fd_set *) ex;
141 syscallarg(const struct timespec *) ts;
142 syscallarg(sigset_t *) mask;
143 } */
144 struct timespec ats;
145 struct timeval atv, *tv = NULL;
146 sigset_t amask, *mask = NULL;
147 int error;
148
149 if (SCARG(uap, ts)) {
150 error = copyin(SCARG(uap, ts), &ats, sizeof(ats));
151 if (error)
152 return error;
153 atv.tv_sec = ats.tv_sec;
154 atv.tv_usec = ats.tv_nsec / 1000;
155 tv = &atv;
156 }
157 if (SCARG(uap, mask) != NULL) {
158 error = copyin(SCARG(uap, mask), &amask, sizeof(amask));
159 if (error)
160 return error;
161 mask = &amask;
162 }
163
164 return selcommon(l, retval, SCARG(uap, nd), SCARG(uap, in),
165 SCARG(uap, ou), SCARG(uap, ex), tv, mask);
166 }
167
168 int
169 inittimeleft(struct timeval *tv, struct timeval *sleeptv)
170 {
171 if (itimerfix(tv))
172 return -1;
173 getmicrouptime(sleeptv);
174 return 0;
175 }
176
177 int
178 gettimeleft(struct timeval *tv, struct timeval *sleeptv)
179 {
180 /*
181 * We have to recalculate the timeout on every retry.
182 */
183 struct timeval slepttv;
184 /*
185 * reduce tv by elapsed time
186 * based on monotonic time scale
187 */
188 getmicrouptime(&slepttv);
189 timeradd(tv, sleeptv, tv);
190 timersub(tv, &slepttv, tv);
191 *sleeptv = slepttv;
192 return tvtohz(tv);
193 }
194
195 int
196 sys_select(struct lwp *l, const struct sys_select_args *uap, register_t *retval)
197 {
198 /* {
199 syscallarg(int) nd;
200 syscallarg(fd_set *) in;
201 syscallarg(fd_set *) ou;
202 syscallarg(fd_set *) ex;
203 syscallarg(struct timeval *) tv;
204 } */
205 struct timeval atv, *tv = NULL;
206 int error;
207
208 if (SCARG(uap, tv)) {
209 error = copyin(SCARG(uap, tv), (void *)&atv,
210 sizeof(atv));
211 if (error)
212 return error;
213 tv = &atv;
214 }
215
216 return selcommon(l, retval, SCARG(uap, nd), SCARG(uap, in),
217 SCARG(uap, ou), SCARG(uap, ex), tv, NULL);
218 }
219
220 int
221 selcommon(lwp_t *l, register_t *retval, int nd, fd_set *u_in,
222 fd_set *u_ou, fd_set *u_ex, struct timeval *tv, sigset_t *mask)
223 {
224 char smallbits[howmany(FD_SETSIZE, NFDBITS) *
225 sizeof(fd_mask) * 6];
226 proc_t * const p = l->l_proc;
227 char *bits;
228 int ncoll, error, timo;
229 size_t ni;
230 sigset_t oldmask;
231 struct timeval sleeptv;
232 selcpu_t *sc;
233
234 error = 0;
235 if (nd < 0)
236 return (EINVAL);
237 if (nd > p->p_fd->fd_nfiles) {
238 /* forgiving; slightly wrong */
239 nd = p->p_fd->fd_nfiles;
240 }
241 ni = howmany(nd, NFDBITS) * sizeof(fd_mask);
242 if (ni * 6 > sizeof(smallbits))
243 bits = kmem_alloc(ni * 6, KM_SLEEP);
244 else
245 bits = smallbits;
246
247 #define getbits(name, x) \
248 if (u_ ## name) { \
249 error = copyin(u_ ## name, bits + ni * x, ni); \
250 if (error) \
251 goto done; \
252 } else \
253 memset(bits + ni * x, 0, ni);
254 getbits(in, 0);
255 getbits(ou, 1);
256 getbits(ex, 2);
257 #undef getbits
258
259 timo = 0;
260 if (tv && inittimeleft(tv, &sleeptv) == -1) {
261 error = EINVAL;
262 goto done;
263 }
264
265 if (mask) {
266 sigminusset(&sigcantmask, mask);
267 mutex_enter(p->p_lock);
268 oldmask = l->l_sigmask;
269 l->l_sigmask = *mask;
270 mutex_exit(p->p_lock);
271 } else
272 oldmask = l->l_sigmask; /* XXXgcc */
273
274 sc = curcpu()->ci_data.cpu_selcpu;
275 l->l_selcpu = sc;
276 SLIST_INIT(&l->l_selwait);
277 for (;;) {
278 /*
279 * No need to lock. If this is overwritten by another
280 * value while scanning, we will retry below. We only
281 * need to see exact state from the descriptors that
282 * we are about to poll, and lock activity resulting
283 * from fo_poll is enough to provide an up to date value
284 * for new polling activity.
285 */
286 l->l_selflag = SEL_SCANNING;
287 ncoll = sc->sc_ncoll;
288
289 error = selscan(l, (fd_mask *)(bits + ni * 0),
290 (fd_mask *)(bits + ni * 3), nd, retval);
291
292 if (error || *retval)
293 break;
294 if (tv && (timo = gettimeleft(tv, &sleeptv)) <= 0)
295 break;
296 mutex_spin_enter(&sc->sc_lock);
297 if (l->l_selflag != SEL_SCANNING || sc->sc_ncoll != ncoll) {
298 mutex_spin_exit(&sc->sc_lock);
299 continue;
300 }
301 l->l_selflag = SEL_BLOCKING;
302 lwp_lock(l);
303 lwp_unlock_to(l, &sc->sc_lock);
304 sleepq_enqueue(&sc->sc_sleepq, sc, "select", &select_sobj);
305 KERNEL_UNLOCK_ALL(NULL, &l->l_biglocks); /* XXX */
306 error = sleepq_block(timo, true);
307 if (error != 0)
308 break;
309 }
310 selclear();
311
312 if (mask) {
313 mutex_enter(p->p_lock);
314 l->l_sigmask = oldmask;
315 mutex_exit(p->p_lock);
316 }
317
318 done:
319 /* select is not restarted after signals... */
320 if (error == ERESTART)
321 error = EINTR;
322 if (error == EWOULDBLOCK)
323 error = 0;
324 if (error == 0 && u_in != NULL)
325 error = copyout(bits + ni * 3, u_in, ni);
326 if (error == 0 && u_ou != NULL)
327 error = copyout(bits + ni * 4, u_ou, ni);
328 if (error == 0 && u_ex != NULL)
329 error = copyout(bits + ni * 5, u_ex, ni);
330 if (bits != smallbits)
331 kmem_free(bits, ni * 6);
332 return (error);
333 }
334
335 int
336 selscan(lwp_t *l, fd_mask *ibitp, fd_mask *obitp, int nfd,
337 register_t *retval)
338 {
339 static const int flag[3] = { POLLRDNORM | POLLHUP | POLLERR,
340 POLLWRNORM | POLLHUP | POLLERR,
341 POLLRDBAND };
342 int msk, i, j, fd, n;
343 fd_mask ibits, obits;
344 file_t *fp;
345
346 n = 0;
347 for (msk = 0; msk < 3; msk++) {
348 for (i = 0; i < nfd; i += NFDBITS) {
349 ibits = *ibitp++;
350 obits = 0;
351 while ((j = ffs(ibits)) && (fd = i + --j) < nfd) {
352 ibits &= ~(1 << j);
353 if ((fp = fd_getfile(fd)) == NULL)
354 return (EBADF);
355 if ((*fp->f_ops->fo_poll)(fp, flag[msk])) {
356 obits |= (1 << j);
357 n++;
358 }
359 fd_putfile(fd);
360 }
361 *obitp++ = obits;
362 }
363 }
364 *retval = n;
365 return (0);
366 }
367
368 /*
369 * Poll system call.
370 */
371 int
372 sys_poll(struct lwp *l, const struct sys_poll_args *uap, register_t *retval)
373 {
374 /* {
375 syscallarg(struct pollfd *) fds;
376 syscallarg(u_int) nfds;
377 syscallarg(int) timeout;
378 } */
379 struct timeval atv, *tv = NULL;
380
381 if (SCARG(uap, timeout) != INFTIM) {
382 atv.tv_sec = SCARG(uap, timeout) / 1000;
383 atv.tv_usec = (SCARG(uap, timeout) % 1000) * 1000;
384 tv = &atv;
385 }
386
387 return pollcommon(l, retval, SCARG(uap, fds), SCARG(uap, nfds),
388 tv, NULL);
389 }
390
391 /*
392 * Poll system call.
393 */
394 int
395 sys_pollts(struct lwp *l, const struct sys_pollts_args *uap, register_t *retval)
396 {
397 /* {
398 syscallarg(struct pollfd *) fds;
399 syscallarg(u_int) nfds;
400 syscallarg(const struct timespec *) ts;
401 syscallarg(const sigset_t *) mask;
402 } */
403 struct timespec ats;
404 struct timeval atv, *tv = NULL;
405 sigset_t amask, *mask = NULL;
406 int error;
407
408 if (SCARG(uap, ts)) {
409 error = copyin(SCARG(uap, ts), &ats, sizeof(ats));
410 if (error)
411 return error;
412 atv.tv_sec = ats.tv_sec;
413 atv.tv_usec = ats.tv_nsec / 1000;
414 tv = &atv;
415 }
416 if (SCARG(uap, mask)) {
417 error = copyin(SCARG(uap, mask), &amask, sizeof(amask));
418 if (error)
419 return error;
420 mask = &amask;
421 }
422
423 return pollcommon(l, retval, SCARG(uap, fds), SCARG(uap, nfds),
424 tv, mask);
425 }
426
427 int
428 pollcommon(lwp_t *l, register_t *retval,
429 struct pollfd *u_fds, u_int nfds,
430 struct timeval *tv, sigset_t *mask)
431 {
432 char smallbits[32 * sizeof(struct pollfd)];
433 proc_t * const p = l->l_proc;
434 void * bits;
435 sigset_t oldmask;
436 int ncoll, error, timo;
437 size_t ni;
438 struct timeval sleeptv;
439 selcpu_t *sc;
440
441 if (nfds > p->p_fd->fd_nfiles) {
442 /* forgiving; slightly wrong */
443 nfds = p->p_fd->fd_nfiles;
444 }
445 ni = nfds * sizeof(struct pollfd);
446 if (ni > sizeof(smallbits))
447 bits = kmem_alloc(ni, KM_SLEEP);
448 else
449 bits = smallbits;
450
451 error = copyin(u_fds, bits, ni);
452 if (error)
453 goto done;
454
455 timo = 0;
456 if (tv && inittimeleft(tv, &sleeptv) == -1) {
457 error = EINVAL;
458 goto done;
459 }
460
461 if (mask) {
462 sigminusset(&sigcantmask, mask);
463 mutex_enter(p->p_lock);
464 oldmask = l->l_sigmask;
465 l->l_sigmask = *mask;
466 mutex_exit(p->p_lock);
467 } else
468 oldmask = l->l_sigmask; /* XXXgcc */
469
470 sc = curcpu()->ci_data.cpu_selcpu;
471 l->l_selcpu = sc;
472 SLIST_INIT(&l->l_selwait);
473 for (;;) {
474 /*
475 * No need to lock. If this is overwritten by another
476 * value while scanning, we will retry below. We only
477 * need to see exact state from the descriptors that
478 * we are about to poll, and lock activity resulting
479 * from fo_poll is enough to provide an up to date value
480 * for new polling activity.
481 */
482 ncoll = sc->sc_ncoll;
483 l->l_selflag = SEL_SCANNING;
484
485 error = pollscan(l, (struct pollfd *)bits, nfds, retval);
486
487 if (error || *retval)
488 break;
489 if (tv && (timo = gettimeleft(tv, &sleeptv)) <= 0)
490 break;
491 mutex_spin_enter(&sc->sc_lock);
492 if (l->l_selflag != SEL_SCANNING || sc->sc_ncoll != ncoll) {
493 mutex_spin_exit(&sc->sc_lock);
494 continue;
495 }
496 l->l_selflag = SEL_BLOCKING;
497 lwp_lock(l);
498 lwp_unlock_to(l, &sc->sc_lock);
499 sleepq_enqueue(&sc->sc_sleepq, sc, "select", &select_sobj);
500 KERNEL_UNLOCK_ALL(NULL, &l->l_biglocks); /* XXX */
501 error = sleepq_block(timo, true);
502 if (error != 0)
503 break;
504 }
505 selclear();
506
507 if (mask) {
508 mutex_enter(p->p_lock);
509 l->l_sigmask = oldmask;
510 mutex_exit(p->p_lock);
511 }
512 done:
513 /* poll is not restarted after signals... */
514 if (error == ERESTART)
515 error = EINTR;
516 if (error == EWOULDBLOCK)
517 error = 0;
518 if (error == 0)
519 error = copyout(bits, u_fds, ni);
520 if (bits != smallbits)
521 kmem_free(bits, ni);
522 return (error);
523 }
524
525 int
526 pollscan(lwp_t *l, struct pollfd *fds, int nfd, register_t *retval)
527 {
528 int i, n;
529 file_t *fp;
530
531 n = 0;
532 for (i = 0; i < nfd; i++, fds++) {
533 if (fds->fd < 0) {
534 fds->revents = 0;
535 } else if ((fp = fd_getfile(fds->fd)) == NULL) {
536 fds->revents = POLLNVAL;
537 n++;
538 } else {
539 fds->revents = (*fp->f_ops->fo_poll)(fp,
540 fds->events | POLLERR | POLLHUP);
541 if (fds->revents != 0)
542 n++;
543 fd_putfile(fds->fd);
544 }
545 }
546 *retval = n;
547 return (0);
548 }
549
550 /*ARGSUSED*/
551 int
552 seltrue(dev_t dev, int events, lwp_t *l)
553 {
554
555 return (events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
556 }
557
558 /*
559 * Record a select request. Concurrency issues:
560 *
561 * The caller holds the same lock across calls to selrecord() and
562 * selnotify(), so we don't need to consider a concurrent wakeup
563 * while in this routine.
564 *
565 * The only activity we need to guard against is selclear(), called by
566 * another thread that is exiting selcommon() or pollcommon().
567 * `sel_lwp' can only become non-NULL while the caller's lock is held,
568 * so it cannot become non-NULL due to a change made by another thread
569 * while we are in this routine. It can only become _NULL_ due to a
570 * call to selclear().
571 *
572 * If it is non-NULL and != selector there is the potential for
573 * selclear() to be called by another thread. If either of those
574 * conditions are true, we're not interested in touching the `named
575 * waiter' part of the selinfo record because we need to record a
576 * collision. Hence there is no need for additional locking in this
577 * routine.
578 */
579 void
580 selrecord(lwp_t *selector, struct selinfo *sip)
581 {
582 selcpu_t *sc;
583 lwp_t *other;
584
585 KASSERT(selector == curlwp);
586
587 sc = selector->l_selcpu;
588 other = sip->sel_lwp;
589
590 if (other == selector) {
591 /* `selector' has already claimed it. */
592 KASSERT(sip->sel_cpu = sc);
593 } else if (other == NULL) {
594 /*
595 * First named waiter, although there may be unnamed
596 * waiters (collisions). Issue a memory barrier to
597 * ensure that we access sel_lwp (above) before other
598 * fields - this guards against a call to selclear().
599 */
600 membar_enter();
601 sip->sel_lwp = selector;
602 SLIST_INSERT_HEAD(&selector->l_selwait, sip, sel_chain);
603 /* Replace selinfo's lock with our chosen CPU's lock. */
604 sip->sel_cpu = sc;
605 } else {
606 /* Multiple waiters: record a collision. */
607 sip->sel_collision |= sc->sc_mask;
608 KASSERT(sip->sel_cpu != NULL);
609 }
610 }
611
612 /*
613 * Do a wakeup when a selectable event occurs. Concurrency issues:
614 *
615 * As per selrecord(), the caller's object lock is held. If there
616 * is a named waiter, we must acquire the associated selcpu's lock
617 * in order to synchronize with selclear() and pollers going to sleep
618 * in selcommon() and/or pollcommon().
619 *
620 * sip->sel_cpu cannot change at this point, as it is only changed
621 * in selrecord(), and concurrent calls to selrecord() are locked
622 * out by the caller.
623 */
624 void
625 selnotify(struct selinfo *sip, int events, long knhint)
626 {
627 selcpu_t *sc;
628 uint32_t mask;
629 int index, oflag, swapin;
630 lwp_t *l;
631
632 KNOTE(&sip->sel_klist, knhint);
633
634 if (sip->sel_lwp != NULL) {
635 /* One named LWP is waiting. */
636 swapin = 0;
637 sc = sip->sel_cpu;
638 mutex_spin_enter(&sc->sc_lock);
639 /* Still there? */
640 if (sip->sel_lwp != NULL) {
641 l = sip->sel_lwp;
642 /*
643 * If thread is sleeping, wake it up. If it's not
644 * yet asleep, it will notice the change in state
645 * and will re-poll the descriptors.
646 */
647 oflag = l->l_selflag;
648 l->l_selflag = SEL_RESET;
649 if (oflag == SEL_BLOCKING &&
650 l->l_mutex == &sc->sc_lock) {
651 KASSERT(l->l_wchan == sc);
652 swapin = sleepq_unsleep(l, false);
653 }
654 }
655 mutex_spin_exit(&sc->sc_lock);
656 if (swapin)
657 uvm_kick_scheduler();
658 }
659
660 if ((mask = sip->sel_collision) != 0) {
661 /*
662 * There was a collision (multiple waiters): we must
663 * inform all potentially interested waiters.
664 */
665 sip->sel_collision = 0;
666 do {
667 index = ffs(mask) - 1;
668 mask &= ~(1 << index);
669 sc = cpu_lookup_byindex(index)->ci_data.cpu_selcpu;
670 mutex_spin_enter(&sc->sc_lock);
671 sc->sc_ncoll++;
672 sleepq_wake(&sc->sc_sleepq, sc, (u_int)-1);
673 } while (__predict_false(mask != 0));
674 }
675 }
676
677 /*
678 * Remove an LWP from all objects that it is waiting for. Concurrency
679 * issues:
680 *
681 * The object owner's (e.g. device driver) lock is not held here. Calls
682 * can be made to selrecord() and we do not synchronize against those
683 * directly using locks. However, we use `sel_lwp' to lock out changes.
684 * Before clearing it we must use memory barriers to ensure that we can
685 * safely traverse the list of selinfo records.
686 */
687 static void
688 selclear(void)
689 {
690 struct selinfo *sip, *next;
691 selcpu_t *sc;
692 lwp_t *l;
693
694 l = curlwp;
695 sc = l->l_selcpu;
696
697 mutex_spin_enter(&sc->sc_lock);
698 for (sip = SLIST_FIRST(&l->l_selwait); sip != NULL; sip = next) {
699 KASSERT(sip->sel_lwp == l);
700 KASSERT(sip->sel_cpu == l->l_selcpu);
701 /*
702 * Read link to next selinfo record, if any.
703 * It's no longer safe to touch `sip' after clearing
704 * `sel_lwp', so ensure that the read of `sel_chain'
705 * completes before the clearing of sel_lwp becomes
706 * globally visible.
707 */
708 next = SLIST_NEXT(sip, sel_chain);
709 membar_exit();
710 /* Release the record for another named waiter to use. */
711 sip->sel_lwp = NULL;
712 }
713 mutex_spin_exit(&sc->sc_lock);
714 }
715
716 /*
717 * Initialize the select/poll system calls. Called once for each
718 * CPU in the system, as they are attached.
719 */
720 void
721 selsysinit(struct cpu_info *ci)
722 {
723 selcpu_t *sc;
724
725 sc = kmem_alloc(roundup2(sizeof(selcpu_t), coherency_unit) +
726 coherency_unit, KM_SLEEP);
727 sc = (void *)roundup2((uintptr_t)sc, coherency_unit);
728 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SCHED);
729 sleepq_init(&sc->sc_sleepq, &sc->sc_lock);
730 sc->sc_ncoll = 0;
731 sc->sc_mask = (1 << cpu_index(ci));
732 ci->ci_data.cpu_selcpu = sc;
733 }
734
735 /*
736 * Initialize a selinfo record.
737 */
738 void
739 selinit(struct selinfo *sip)
740 {
741
742 memset(sip, 0, sizeof(*sip));
743 }
744
745 /*
746 * Destroy a selinfo record. The owning object must not gain new
747 * references while this is in progress: all activity on the record
748 * must be stopped.
749 *
750 * Concurrency issues: we only need guard against a call to selclear()
751 * by a thread exiting selcommon() and/or pollcommon(). The caller has
752 * prevented further references being made to the selinfo record via
753 * selrecord(), and it won't call selwakeup() again.
754 */
755 void
756 seldestroy(struct selinfo *sip)
757 {
758 selcpu_t *sc;
759 lwp_t *l;
760
761 if (sip->sel_lwp == NULL)
762 return;
763
764 /*
765 * Lock out selclear(). The selcpu pointer can't change while
766 * we are here since it is only ever changed in selrecord(),
767 * and that will not be entered again for this record because
768 * it is dying.
769 */
770 KASSERT(sip->sel_cpu != NULL);
771 sc = sip->sel_cpu;
772 mutex_spin_enter(&sc->sc_lock);
773 if ((l = sip->sel_lwp) != NULL) {
774 /*
775 * This should rarely happen, so although SLIST_REMOVE()
776 * is slow, using it here is not a problem.
777 */
778 KASSERT(l->l_selcpu == sc);
779 SLIST_REMOVE(&l->l_selwait, sip, selinfo, sel_chain);
780 sip->sel_lwp = NULL;
781 }
782 mutex_spin_exit(&sc->sc_lock);
783 }
784
785 int
786 pollsock(struct socket *so, const struct timeval *tvp, int events)
787 {
788 int ncoll, error, timo;
789 struct timeval sleeptv, tv;
790 selcpu_t *sc;
791 lwp_t *l;
792
793 timo = 0;
794 if (tvp != NULL) {
795 tv = *tvp;
796 if (inittimeleft(&tv, &sleeptv) == -1)
797 return EINVAL;
798 }
799
800 l = curlwp;
801 sc = l->l_cpu->ci_data.cpu_selcpu;
802 l->l_selcpu = sc;
803 SLIST_INIT(&l->l_selwait);
804 error = 0;
805 for (;;) {
806 /*
807 * No need to lock. If this is overwritten by another
808 * value while scanning, we will retry below. We only
809 * need to see exact state from the descriptors that
810 * we are about to poll, and lock activity resulting
811 * from fo_poll is enough to provide an up to date value
812 * for new polling activity.
813 */
814 ncoll = sc->sc_ncoll;
815 l->l_selflag = SEL_SCANNING;
816 if (sopoll(so, events) != 0)
817 break;
818 if (tvp && (timo = gettimeleft(&tv, &sleeptv)) <= 0)
819 break;
820 mutex_spin_enter(&sc->sc_lock);
821 if (l->l_selflag != SEL_SCANNING || sc->sc_ncoll != ncoll) {
822 mutex_spin_exit(&sc->sc_lock);
823 continue;
824 }
825 l->l_selflag = SEL_BLOCKING;
826 lwp_lock(l);
827 lwp_unlock_to(l, &sc->sc_lock);
828 sleepq_enqueue(&sc->sc_sleepq, sc, "pollsock", &select_sobj);
829 KERNEL_UNLOCK_ALL(NULL, &l->l_biglocks); /* XXX */
830 error = sleepq_block(timo, true);
831 if (error != 0)
832 break;
833 }
834 selclear();
835 /* poll is not restarted after signals... */
836 if (error == ERESTART)
837 error = EINTR;
838 if (error == EWOULDBLOCK)
839 error = 0;
840 return (error);
841 }
842