Home | History | Annotate | Line # | Download | only in kern
sys_select.c revision 1.63
      1 /*	$NetBSD: sys_select.c,v 1.63 2023/10/04 20:29:18 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2007, 2008, 2009, 2010, 2019, 2020, 2023
      5  *     The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Andrew Doran and Mindaugas Rasiukevicius.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1982, 1986, 1989, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  * (c) UNIX System Laboratories, Inc.
     37  * All or some portions of this file are derived from material licensed
     38  * to the University of California by American Telephone and Telegraph
     39  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     40  * the permission of UNIX System Laboratories, Inc.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. Neither the name of the University nor the names of its contributors
     51  *    may be used to endorse or promote products derived from this software
     52  *    without specific prior written permission.
     53  *
     54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     64  * SUCH DAMAGE.
     65  *
     66  *	@(#)sys_generic.c	8.9 (Berkeley) 2/14/95
     67  */
     68 
     69 /*
     70  * System calls of synchronous I/O multiplexing subsystem.
     71  *
     72  * Locking
     73  *
     74  * Two locks are used: <object-lock> and selcluster_t::sc_lock.
     75  *
     76  * The <object-lock> might be a device driver or another subsystem, e.g.
     77  * socket or pipe.  This lock is not exported, and thus invisible to this
     78  * subsystem.  Mainly, synchronisation between selrecord() and selnotify()
     79  * routines depends on this lock, as it will be described in the comments.
     80  *
     81  * Lock order
     82  *
     83  *	<object-lock> ->
     84  *		selcluster_t::sc_lock
     85  */
     86 
     87 #include <sys/cdefs.h>
     88 __KERNEL_RCSID(0, "$NetBSD: sys_select.c,v 1.63 2023/10/04 20:29:18 ad Exp $");
     89 
     90 #include <sys/param.h>
     91 #include <sys/systm.h>
     92 #include <sys/filedesc.h>
     93 #include <sys/file.h>
     94 #include <sys/proc.h>
     95 #include <sys/socketvar.h>
     96 #include <sys/signalvar.h>
     97 #include <sys/uio.h>
     98 #include <sys/kernel.h>
     99 #include <sys/lwp.h>
    100 #include <sys/poll.h>
    101 #include <sys/mount.h>
    102 #include <sys/syscallargs.h>
    103 #include <sys/cpu.h>
    104 #include <sys/atomic.h>
    105 #include <sys/socketvar.h>
    106 #include <sys/sleepq.h>
    107 #include <sys/sysctl.h>
    108 #include <sys/bitops.h>
    109 
    110 /* Flags for lwp::l_selflag. */
    111 #define	SEL_RESET	0	/* awoken, interrupted, or not yet polling */
    112 #define	SEL_SCANNING	1	/* polling descriptors */
    113 #define	SEL_BLOCKING	2	/* blocking and waiting for event */
    114 #define	SEL_EVENT	3	/* interrupted, events set directly */
    115 
    116 /*
    117  * Per-cluster state for select()/poll().  For a system with fewer
    118  * than 64 CPUs, this gives us per-CPU clusters.
    119  */
    120 #define	SELCLUSTERS	64
    121 #define	SELCLUSTERMASK	(SELCLUSTERS - 1)
    122 
    123 typedef struct selcluster {
    124 	kmutex_t	*sc_lock;
    125 	sleepq_t	sc_sleepq;
    126 	uint64_t	sc_mask;
    127 	int		sc_ncoll;
    128 } selcluster_t;
    129 
    130 static inline int	selscan(char *, const int, const size_t, register_t *);
    131 static inline int	pollscan(struct pollfd *, const int, register_t *);
    132 static void		selclear(void);
    133 
    134 static const int sel_flag[] = {
    135 	POLLRDNORM | POLLHUP | POLLERR,
    136 	POLLWRNORM | POLLHUP | POLLERR,
    137 	POLLRDBAND
    138 };
    139 
    140 /*
    141  * LWPs are woken using the sleep queue only due to a collision, the case
    142  * with the maximum Suck Factor.  Save the cost of sorting for named waiters
    143  * by inserting in LIFO order.  In the future it would be preferable to not
    144  * enqueue LWPs at all, unless subject to a collision.
    145  */
    146 syncobj_t select_sobj = {
    147 	.sobj_name	= "select",
    148 	.sobj_flag	= SOBJ_SLEEPQ_LIFO,
    149 	.sobj_boostpri  = PRI_KERNEL,
    150 	.sobj_unsleep	= sleepq_unsleep,
    151 	.sobj_changepri	= sleepq_changepri,
    152 	.sobj_lendpri	= sleepq_lendpri,
    153 	.sobj_owner	= syncobj_noowner,
    154 };
    155 
    156 static selcluster_t	*selcluster[SELCLUSTERS] __read_mostly;
    157 static int		direct_select __read_mostly = 0;
    158 
    159 /* Operations: either select() or poll(). */
    160 const char		selop_select[] = "select";
    161 const char		selop_poll[] = "poll";
    162 
    163 /*
    164  * Select system call.
    165  */
    166 int
    167 sys___pselect50(struct lwp *l, const struct sys___pselect50_args *uap,
    168     register_t *retval)
    169 {
    170 	/* {
    171 		syscallarg(int)				nd;
    172 		syscallarg(fd_set *)			in;
    173 		syscallarg(fd_set *)			ou;
    174 		syscallarg(fd_set *)			ex;
    175 		syscallarg(const struct timespec *)	ts;
    176 		syscallarg(sigset_t *)			mask;
    177 	} */
    178 	struct timespec	ats, *ts = NULL;
    179 	sigset_t	amask, *mask = NULL;
    180 	int		error;
    181 
    182 	if (SCARG(uap, ts)) {
    183 		error = copyin(SCARG(uap, ts), &ats, sizeof(ats));
    184 		if (error)
    185 			return error;
    186 		ts = &ats;
    187 	}
    188 	if (SCARG(uap, mask) != NULL) {
    189 		error = copyin(SCARG(uap, mask), &amask, sizeof(amask));
    190 		if (error)
    191 			return error;
    192 		mask = &amask;
    193 	}
    194 
    195 	return selcommon(retval, SCARG(uap, nd), SCARG(uap, in),
    196 	    SCARG(uap, ou), SCARG(uap, ex), ts, mask);
    197 }
    198 
    199 int
    200 sys___select50(struct lwp *l, const struct sys___select50_args *uap,
    201     register_t *retval)
    202 {
    203 	/* {
    204 		syscallarg(int)			nd;
    205 		syscallarg(fd_set *)		in;
    206 		syscallarg(fd_set *)		ou;
    207 		syscallarg(fd_set *)		ex;
    208 		syscallarg(struct timeval *)	tv;
    209 	} */
    210 	struct timeval atv;
    211 	struct timespec ats, *ts = NULL;
    212 	int error;
    213 
    214 	if (SCARG(uap, tv)) {
    215 		error = copyin(SCARG(uap, tv), (void *)&atv, sizeof(atv));
    216 		if (error)
    217 			return error;
    218 
    219 		if (atv.tv_usec < 0 || atv.tv_usec >= 1000000)
    220 			return EINVAL;
    221 
    222 		TIMEVAL_TO_TIMESPEC(&atv, &ats);
    223 		ts = &ats;
    224 	}
    225 
    226 	return selcommon(retval, SCARG(uap, nd), SCARG(uap, in),
    227 	    SCARG(uap, ou), SCARG(uap, ex), ts, NULL);
    228 }
    229 
    230 /*
    231  * sel_do_scan: common code to perform the scan on descriptors.
    232  */
    233 static int
    234 sel_do_scan(const char *opname, void *fds, const int nf, const size_t ni,
    235     struct timespec *ts, sigset_t *mask, register_t *retval)
    236 {
    237 	lwp_t		* const l = curlwp;
    238 	selcluster_t	*sc;
    239 	kmutex_t	*lock;
    240 	struct timespec	sleepts;
    241 	int		error, timo;
    242 
    243 	timo = 0;
    244 	if (ts && inittimeleft(ts, &sleepts) == -1) {
    245 		return EINVAL;
    246 	}
    247 
    248 	if (__predict_false(mask))
    249 		sigsuspendsetup(l, mask);
    250 
    251 	/*
    252 	 * We may context switch during or at any time after picking a CPU
    253 	 * and cluster to associate with, but it doesn't matter.  In the
    254 	 * unlikely event we migrate elsewhere all we risk is a little lock
    255 	 * contention; correctness is not sacrificed.
    256 	 */
    257 	sc = curcpu()->ci_data.cpu_selcluster;
    258 	lock = sc->sc_lock;
    259 	l->l_selcluster = sc;
    260 
    261 	if (opname == selop_select) {
    262 		l->l_selbits = fds;
    263 		l->l_selni = ni;
    264 	} else {
    265 		l->l_selbits = NULL;
    266 	}
    267 
    268 	for (;;) {
    269 		int ncoll;
    270 
    271 		SLIST_INIT(&l->l_selwait);
    272 		l->l_selret = 0;
    273 
    274 		/*
    275 		 * No need to lock.  If this is overwritten by another value
    276 		 * while scanning, we will retry below.  We only need to see
    277 		 * exact state from the descriptors that we are about to poll,
    278 		 * and lock activity resulting from fo_poll is enough to
    279 		 * provide an up to date value for new polling activity.
    280 		 */
    281 		if (ts && (ts->tv_sec | ts->tv_nsec | direct_select) == 0) {
    282 			/* Non-blocking: no need for selrecord()/selclear() */
    283 			l->l_selflag = SEL_RESET;
    284 		} else {
    285 			l->l_selflag = SEL_SCANNING;
    286 		}
    287 		ncoll = sc->sc_ncoll;
    288 		membar_release();
    289 
    290 		if (opname == selop_select) {
    291 			error = selscan((char *)fds, nf, ni, retval);
    292 		} else {
    293 			error = pollscan((struct pollfd *)fds, nf, retval);
    294 		}
    295 		if (error || *retval)
    296 			break;
    297 		if (ts && (timo = gettimeleft(ts, &sleepts)) <= 0)
    298 			break;
    299 		/*
    300 		 * Acquire the lock and perform the (re)checks.  Note, if
    301 		 * collision has occurred, then our state does not matter,
    302 		 * as we must perform re-scan.  Therefore, check it first.
    303 		 */
    304 state_check:
    305 		mutex_spin_enter(lock);
    306 		if (__predict_false(sc->sc_ncoll != ncoll)) {
    307 			/* Collision: perform re-scan. */
    308 			mutex_spin_exit(lock);
    309 			selclear();
    310 			continue;
    311 		}
    312 		if (__predict_true(l->l_selflag == SEL_EVENT)) {
    313 			/* Events occurred, they are set directly. */
    314 			mutex_spin_exit(lock);
    315 			break;
    316 		}
    317 		if (__predict_true(l->l_selflag == SEL_RESET)) {
    318 			/* Events occurred, but re-scan is requested. */
    319 			mutex_spin_exit(lock);
    320 			selclear();
    321 			continue;
    322 		}
    323 		/* Nothing happen, therefore - sleep. */
    324 		l->l_selflag = SEL_BLOCKING;
    325 		KASSERT(l->l_blcnt == 0);
    326 		(void)sleepq_enter(&sc->sc_sleepq, l, lock);
    327 		sleepq_enqueue(&sc->sc_sleepq, sc, opname, &select_sobj, true);
    328 		error = sleepq_block(timo, true, &select_sobj, 0);
    329 		if (error != 0) {
    330 			break;
    331 		}
    332 		/* Awoken: need to check the state. */
    333 		goto state_check;
    334 	}
    335 	selclear();
    336 
    337 	/* Add direct events if any. */
    338 	if (l->l_selflag == SEL_EVENT) {
    339 		KASSERT(l->l_selret != 0);
    340 		*retval += l->l_selret;
    341 	}
    342 
    343 	if (__predict_false(mask))
    344 		sigsuspendteardown(l);
    345 
    346 	/* select and poll are not restarted after signals... */
    347 	if (error == ERESTART)
    348 		return EINTR;
    349 	if (error == EWOULDBLOCK)
    350 		return 0;
    351 	return error;
    352 }
    353 
    354 int
    355 selcommon(register_t *retval, int nd, fd_set *u_in, fd_set *u_ou,
    356     fd_set *u_ex, struct timespec *ts, sigset_t *mask)
    357 {
    358 	char		smallbits[howmany(FD_SETSIZE, NFDBITS) *
    359 			    sizeof(fd_mask) * 6];
    360 	char 		*bits;
    361 	int		error, nf;
    362 	size_t		ni;
    363 
    364 	if (nd < 0)
    365 		return (EINVAL);
    366 	nf = atomic_load_consume(&curlwp->l_fd->fd_dt)->dt_nfiles;
    367 	if (nd > nf) {
    368 		/* forgiving; slightly wrong */
    369 		nd = nf;
    370 	}
    371 	ni = howmany(nd, NFDBITS) * sizeof(fd_mask);
    372 	if (ni * 6 > sizeof(smallbits))
    373 		bits = kmem_alloc(ni * 6, KM_SLEEP);
    374 	else
    375 		bits = smallbits;
    376 
    377 #define	getbits(name, x)						\
    378 	if (u_ ## name) {						\
    379 		error = copyin(u_ ## name, bits + ni * x, ni);		\
    380 		if (error)						\
    381 			goto fail;					\
    382 	} else								\
    383 		memset(bits + ni * x, 0, ni);
    384 	getbits(in, 0);
    385 	getbits(ou, 1);
    386 	getbits(ex, 2);
    387 #undef	getbits
    388 
    389 	error = sel_do_scan(selop_select, bits, nd, ni, ts, mask, retval);
    390 	if (error == 0 && u_in != NULL)
    391 		error = copyout(bits + ni * 3, u_in, ni);
    392 	if (error == 0 && u_ou != NULL)
    393 		error = copyout(bits + ni * 4, u_ou, ni);
    394 	if (error == 0 && u_ex != NULL)
    395 		error = copyout(bits + ni * 5, u_ex, ni);
    396  fail:
    397 	if (bits != smallbits)
    398 		kmem_free(bits, ni * 6);
    399 	return (error);
    400 }
    401 
    402 static inline int
    403 selscan(char *bits, const int nfd, const size_t ni, register_t *retval)
    404 {
    405 	fd_mask *ibitp, *obitp;
    406 	int msk, i, j, fd, n;
    407 	file_t *fp;
    408 	lwp_t *l;
    409 
    410 	ibitp = (fd_mask *)(bits + ni * 0);
    411 	obitp = (fd_mask *)(bits + ni * 3);
    412 	n = 0;
    413 	l = curlwp;
    414 
    415 	memset(obitp, 0, ni * 3);
    416 	for (msk = 0; msk < 3; msk++) {
    417 		for (i = 0; i < nfd; i += NFDBITS) {
    418 			fd_mask ibits, obits;
    419 
    420 			ibits = *ibitp;
    421 			obits = 0;
    422 			while ((j = ffs(ibits)) && (fd = i + --j) < nfd) {
    423 				ibits &= ~(1U << j);
    424 				if ((fp = fd_getfile(fd)) == NULL)
    425 					return (EBADF);
    426 				/*
    427 				 * Setup an argument to selrecord(), which is
    428 				 * a file descriptor number.
    429 				 */
    430 				l->l_selrec = fd;
    431 				if ((*fp->f_ops->fo_poll)(fp, sel_flag[msk])) {
    432 					if (!direct_select) {
    433 						/*
    434 						 * Have events: do nothing in
    435 						 * selrecord().
    436 						 */
    437 						l->l_selflag = SEL_RESET;
    438 					}
    439 					obits |= (1U << j);
    440 					n++;
    441 				}
    442 				fd_putfile(fd);
    443 			}
    444 			if (obits != 0) {
    445 				if (direct_select) {
    446 					kmutex_t *lock;
    447 					lock = l->l_selcluster->sc_lock;
    448 					mutex_spin_enter(lock);
    449 					*obitp |= obits;
    450 					mutex_spin_exit(lock);
    451 				} else {
    452 					*obitp |= obits;
    453 				}
    454 			}
    455 			ibitp++;
    456 			obitp++;
    457 		}
    458 	}
    459 	*retval = n;
    460 	return (0);
    461 }
    462 
    463 /*
    464  * Poll system call.
    465  */
    466 int
    467 sys_poll(struct lwp *l, const struct sys_poll_args *uap, register_t *retval)
    468 {
    469 	/* {
    470 		syscallarg(struct pollfd *)	fds;
    471 		syscallarg(u_int)		nfds;
    472 		syscallarg(int)			timeout;
    473 	} */
    474 	struct timespec	ats, *ts = NULL;
    475 
    476 	if (SCARG(uap, timeout) != INFTIM) {
    477 		ats.tv_sec = SCARG(uap, timeout) / 1000;
    478 		ats.tv_nsec = (SCARG(uap, timeout) % 1000) * 1000000;
    479 		ts = &ats;
    480 	}
    481 
    482 	return pollcommon(retval, SCARG(uap, fds), SCARG(uap, nfds), ts, NULL);
    483 }
    484 
    485 /*
    486  * Poll system call.
    487  */
    488 int
    489 sys___pollts50(struct lwp *l, const struct sys___pollts50_args *uap,
    490     register_t *retval)
    491 {
    492 	/* {
    493 		syscallarg(struct pollfd *)		fds;
    494 		syscallarg(u_int)			nfds;
    495 		syscallarg(const struct timespec *)	ts;
    496 		syscallarg(const sigset_t *)		mask;
    497 	} */
    498 	struct timespec	ats, *ts = NULL;
    499 	sigset_t	amask, *mask = NULL;
    500 	int		error;
    501 
    502 	if (SCARG(uap, ts)) {
    503 		error = copyin(SCARG(uap, ts), &ats, sizeof(ats));
    504 		if (error)
    505 			return error;
    506 		ts = &ats;
    507 	}
    508 	if (SCARG(uap, mask)) {
    509 		error = copyin(SCARG(uap, mask), &amask, sizeof(amask));
    510 		if (error)
    511 			return error;
    512 		mask = &amask;
    513 	}
    514 
    515 	return pollcommon(retval, SCARG(uap, fds), SCARG(uap, nfds), ts, mask);
    516 }
    517 
    518 int
    519 pollcommon(register_t *retval, struct pollfd *u_fds, u_int nfds,
    520     struct timespec *ts, sigset_t *mask)
    521 {
    522 	struct pollfd	smallfds[32];
    523 	struct pollfd	*fds;
    524 	int		error;
    525 	size_t		ni;
    526 
    527 	if (nfds > curlwp->l_proc->p_rlimit[RLIMIT_NOFILE].rlim_max + 1000) {
    528 		/*
    529 		 * Prevent userland from causing over-allocation.
    530 		 * Raising the default limit too high can still cause
    531 		 * a lot of memory to be allocated, but this also means
    532 		 * that the file descriptor array will also be large.
    533 		 *
    534 		 * To reduce the memory requirements here, we could
    535 		 * process the 'fds' array in chunks, but that
    536 		 * is a lot of code that isn't normally useful.
    537 		 * (Or just move the copyin/out into pollscan().)
    538 		 *
    539 		 * Historically the code silently truncated 'fds' to
    540 		 * dt_nfiles entries - but that does cause issues.
    541 		 *
    542 		 * Using the max limit equivalent to sysctl
    543 		 * kern.maxfiles is the moral equivalent of OPEN_MAX
    544 		 * as specified by POSIX.
    545 		 *
    546 		 * We add a slop of 1000 in case the resource limit was
    547 		 * changed after opening descriptors or the same descriptor
    548 		 * was specified more than once.
    549 		 */
    550 		return EINVAL;
    551 	}
    552 	ni = nfds * sizeof(struct pollfd);
    553 	if (ni > sizeof(smallfds))
    554 		fds = kmem_alloc(ni, KM_SLEEP);
    555 	else
    556 		fds = smallfds;
    557 
    558 	error = copyin(u_fds, fds, ni);
    559 	if (error)
    560 		goto fail;
    561 
    562 	error = sel_do_scan(selop_poll, fds, nfds, ni, ts, mask, retval);
    563 	if (error == 0)
    564 		error = copyout(fds, u_fds, ni);
    565  fail:
    566 	if (fds != smallfds)
    567 		kmem_free(fds, ni);
    568 	return (error);
    569 }
    570 
    571 static inline int
    572 pollscan(struct pollfd *fds, const int nfd, register_t *retval)
    573 {
    574 	file_t *fp;
    575 	int i, n = 0, revents;
    576 
    577 	for (i = 0; i < nfd; i++, fds++) {
    578 		fds->revents = 0;
    579 		if (fds->fd < 0) {
    580 			revents = 0;
    581 		} else if ((fp = fd_getfile(fds->fd)) == NULL) {
    582 			revents = POLLNVAL;
    583 		} else {
    584 			/*
    585 			 * Perform poll: registers select request or returns
    586 			 * the events which are set.  Setup an argument for
    587 			 * selrecord(), which is a pointer to struct pollfd.
    588 			 */
    589 			curlwp->l_selrec = (uintptr_t)fds;
    590 			revents = (*fp->f_ops->fo_poll)(fp,
    591 			    fds->events | POLLERR | POLLHUP);
    592 			fd_putfile(fds->fd);
    593 		}
    594 		if (revents) {
    595 			if (!direct_select)  {
    596 				/* Have events: do nothing in selrecord(). */
    597 				curlwp->l_selflag = SEL_RESET;
    598 			}
    599 			fds->revents = revents;
    600 			n++;
    601 		}
    602 	}
    603 	*retval = n;
    604 	return (0);
    605 }
    606 
    607 int
    608 seltrue(dev_t dev, int events, lwp_t *l)
    609 {
    610 
    611 	return (events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
    612 }
    613 
    614 /*
    615  * Record a select request.  Concurrency issues:
    616  *
    617  * The caller holds the same lock across calls to selrecord() and
    618  * selnotify(), so we don't need to consider a concurrent wakeup
    619  * while in this routine.
    620  *
    621  * The only activity we need to guard against is selclear(), called by
    622  * another thread that is exiting sel_do_scan().
    623  * `sel_lwp' can only become non-NULL while the caller's lock is held,
    624  * so it cannot become non-NULL due to a change made by another thread
    625  * while we are in this routine.  It can only become _NULL_ due to a
    626  * call to selclear().
    627  *
    628  * If it is non-NULL and != selector there is the potential for
    629  * selclear() to be called by another thread.  If either of those
    630  * conditions are true, we're not interested in touching the `named
    631  * waiter' part of the selinfo record because we need to record a
    632  * collision.  Hence there is no need for additional locking in this
    633  * routine.
    634  */
    635 void
    636 selrecord(lwp_t *selector, struct selinfo *sip)
    637 {
    638 	selcluster_t *sc;
    639 	lwp_t *other;
    640 
    641 	KASSERT(selector == curlwp);
    642 
    643 	sc = selector->l_selcluster;
    644 	other = sip->sel_lwp;
    645 
    646 	if (selector->l_selflag == SEL_RESET) {
    647 		/* 0. We're not going to block - will poll again if needed. */
    648 	} else if (other == selector) {
    649 		/* 1. We (selector) already claimed to be the first LWP. */
    650 		KASSERT(sip->sel_cluster == sc);
    651 	} else if (other == NULL) {
    652 		/*
    653 		 * 2. No first LWP, therefore we (selector) are the first.
    654 		 *
    655 		 * There may be unnamed waiters (collisions).  Issue a memory
    656 		 * barrier to ensure that we access sel_lwp (above) before
    657 		 * other fields - this guards against a call to selclear().
    658 		 */
    659 		membar_acquire();
    660 		sip->sel_lwp = selector;
    661 		SLIST_INSERT_HEAD(&selector->l_selwait, sip, sel_chain);
    662 		/* Copy the argument, which is for selnotify(). */
    663 		sip->sel_fdinfo = selector->l_selrec;
    664 		/* Replace selinfo's lock with the chosen cluster's lock. */
    665 		sip->sel_cluster = sc;
    666 	} else {
    667 		/* 3. Multiple waiters: record a collision. */
    668 		sip->sel_collision |= sc->sc_mask;
    669 		KASSERT(sip->sel_cluster != NULL);
    670 	}
    671 }
    672 
    673 /*
    674  * Record a knote.
    675  *
    676  * The caller holds the same lock as for selrecord().
    677  */
    678 void
    679 selrecord_knote(struct selinfo *sip, struct knote *kn)
    680 {
    681 	klist_insert(&sip->sel_klist, kn);
    682 }
    683 
    684 /*
    685  * Remove a knote.
    686  *
    687  * The caller holds the same lock as for selrecord().
    688  *
    689  * Returns true if the last knote was removed and the list
    690  * is now empty.
    691  */
    692 bool
    693 selremove_knote(struct selinfo *sip, struct knote *kn)
    694 {
    695 	return klist_remove(&sip->sel_klist, kn);
    696 }
    697 
    698 /*
    699  * sel_setevents: a helper function for selnotify(), to set the events
    700  * for LWP sleeping in selcommon() or pollcommon().
    701  */
    702 static inline bool
    703 sel_setevents(lwp_t *l, struct selinfo *sip, const int events)
    704 {
    705 	const int oflag = l->l_selflag;
    706 	int ret = 0;
    707 
    708 	/*
    709 	 * If we require re-scan or it was required by somebody else,
    710 	 * then just (re)set SEL_RESET and return.
    711 	 */
    712 	if (__predict_false(events == 0 || oflag == SEL_RESET)) {
    713 		l->l_selflag = SEL_RESET;
    714 		return true;
    715 	}
    716 	/*
    717 	 * Direct set.  Note: select state of LWP is locked.  First,
    718 	 * determine whether it is selcommon() or pollcommon().
    719 	 */
    720 	if (l->l_selbits != NULL) {
    721 		const size_t ni = l->l_selni;
    722 		fd_mask *fds = (fd_mask *)l->l_selbits;
    723 		fd_mask *ofds = (fd_mask *)((char *)fds + ni * 3);
    724 		const int fd = sip->sel_fdinfo, fbit = 1 << (fd & __NFDMASK);
    725 		const int idx = fd >> __NFDSHIFT;
    726 		int n;
    727 
    728 		for (n = 0; n < 3; n++) {
    729 			if ((fds[idx] & fbit) != 0 &&
    730 			    (ofds[idx] & fbit) == 0 &&
    731 			    (sel_flag[n] & events)) {
    732 				ofds[idx] |= fbit;
    733 				ret++;
    734 			}
    735 			fds = (fd_mask *)((char *)fds + ni);
    736 			ofds = (fd_mask *)((char *)ofds + ni);
    737 		}
    738 	} else {
    739 		struct pollfd *pfd = (void *)sip->sel_fdinfo;
    740 		int revents = events & (pfd->events | POLLERR | POLLHUP);
    741 
    742 		if (revents) {
    743 			if (pfd->revents == 0)
    744 				ret = 1;
    745 			pfd->revents |= revents;
    746 		}
    747 	}
    748 	/* Check whether there are any events to return. */
    749 	if (!ret) {
    750 		return false;
    751 	}
    752 	/* Indicate direct set and note the event (cluster lock is held). */
    753 	l->l_selflag = SEL_EVENT;
    754 	l->l_selret += ret;
    755 	return true;
    756 }
    757 
    758 /*
    759  * Do a wakeup when a selectable event occurs.  Concurrency issues:
    760  *
    761  * As per selrecord(), the caller's object lock is held.  If there
    762  * is a named waiter, we must acquire the associated selcluster's lock
    763  * in order to synchronize with selclear() and pollers going to sleep
    764  * in sel_do_scan().
    765  *
    766  * sip->sel_cluser cannot change at this point, as it is only changed
    767  * in selrecord(), and concurrent calls to selrecord() are locked
    768  * out by the caller.
    769  */
    770 void
    771 selnotify(struct selinfo *sip, int events, long knhint)
    772 {
    773 	selcluster_t *sc;
    774 	uint64_t mask;
    775 	int index, oflag;
    776 	lwp_t *l;
    777 	kmutex_t *lock;
    778 
    779 	KNOTE(&sip->sel_klist, knhint);
    780 
    781 	if (sip->sel_lwp != NULL) {
    782 		/* One named LWP is waiting. */
    783 		sc = sip->sel_cluster;
    784 		lock = sc->sc_lock;
    785 		mutex_spin_enter(lock);
    786 		/* Still there? */
    787 		if (sip->sel_lwp != NULL) {
    788 			/*
    789 			 * Set the events for our LWP and indicate that.
    790 			 * Otherwise, request for a full re-scan.
    791 			 */
    792 			l = sip->sel_lwp;
    793 			oflag = l->l_selflag;
    794 
    795 			if (!direct_select) {
    796 				l->l_selflag = SEL_RESET;
    797 			} else if (!sel_setevents(l, sip, events)) {
    798 				/* No events to return. */
    799 				mutex_spin_exit(lock);
    800 				return;
    801 			}
    802 
    803 			/*
    804 			 * If thread is sleeping, wake it up.  If it's not
    805 			 * yet asleep, it will notice the change in state
    806 			 * and will re-poll the descriptors.
    807 			 */
    808 			if (oflag == SEL_BLOCKING && l->l_mutex == lock) {
    809 				KASSERT(l->l_wchan == sc);
    810 				sleepq_unsleep(l, false);
    811 			}
    812 		}
    813 		mutex_spin_exit(lock);
    814 	}
    815 
    816 	if ((mask = sip->sel_collision) != 0) {
    817 		/*
    818 		 * There was a collision (multiple waiters): we must
    819 		 * inform all potentially interested waiters.
    820 		 */
    821 		sip->sel_collision = 0;
    822 		do {
    823 			index = ffs64(mask) - 1;
    824 			mask ^= __BIT(index);
    825 			sc = selcluster[index];
    826 			lock = sc->sc_lock;
    827 			mutex_spin_enter(lock);
    828 			sc->sc_ncoll++;
    829 			sleepq_wake(&sc->sc_sleepq, sc, (u_int)-1, lock);
    830 		} while (__predict_false(mask != 0));
    831 	}
    832 }
    833 
    834 /*
    835  * Remove an LWP from all objects that it is waiting for.  Concurrency
    836  * issues:
    837  *
    838  * The object owner's (e.g. device driver) lock is not held here.  Calls
    839  * can be made to selrecord() and we do not synchronize against those
    840  * directly using locks.  However, we use `sel_lwp' to lock out changes.
    841  * Before clearing it we must use memory barriers to ensure that we can
    842  * safely traverse the list of selinfo records.
    843  */
    844 static void
    845 selclear(void)
    846 {
    847 	struct selinfo *sip, *next;
    848 	selcluster_t *sc;
    849 	lwp_t *l;
    850 	kmutex_t *lock;
    851 
    852 	l = curlwp;
    853 	sc = l->l_selcluster;
    854 	lock = sc->sc_lock;
    855 
    856 	/*
    857 	 * If the request was non-blocking, or we found events on the first
    858 	 * descriptor, there will be no need to clear anything - avoid
    859 	 * taking the lock.
    860 	 */
    861 	if (SLIST_EMPTY(&l->l_selwait)) {
    862 		return;
    863 	}
    864 
    865 	mutex_spin_enter(lock);
    866 	for (sip = SLIST_FIRST(&l->l_selwait); sip != NULL; sip = next) {
    867 		KASSERT(sip->sel_lwp == l);
    868 		KASSERT(sip->sel_cluster == l->l_selcluster);
    869 
    870 		/*
    871 		 * Read link to next selinfo record, if any.
    872 		 * It's no longer safe to touch `sip' after clearing
    873 		 * `sel_lwp', so ensure that the read of `sel_chain'
    874 		 * completes before the clearing of sel_lwp becomes
    875 		 * globally visible.
    876 		 */
    877 		next = SLIST_NEXT(sip, sel_chain);
    878 		/* Release the record for another named waiter to use. */
    879 		atomic_store_release(&sip->sel_lwp, NULL);
    880 	}
    881 	mutex_spin_exit(lock);
    882 }
    883 
    884 /*
    885  * Initialize the select/poll system calls.  Called once for each
    886  * CPU in the system, as they are attached.
    887  */
    888 void
    889 selsysinit(struct cpu_info *ci)
    890 {
    891 	selcluster_t *sc;
    892 	u_int index;
    893 
    894 	/* If already a cluster in place for this bit, re-use. */
    895 	index = cpu_index(ci) & SELCLUSTERMASK;
    896 	sc = selcluster[index];
    897 	if (sc == NULL) {
    898 		sc = kmem_alloc(roundup2(sizeof(selcluster_t),
    899 		    coherency_unit) + coherency_unit, KM_SLEEP);
    900 		sc = (void *)roundup2((uintptr_t)sc, coherency_unit);
    901 		sc->sc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
    902 		sleepq_init(&sc->sc_sleepq);
    903 		sc->sc_ncoll = 0;
    904 		sc->sc_mask = __BIT(index);
    905 		selcluster[index] = sc;
    906 	}
    907 	ci->ci_data.cpu_selcluster = sc;
    908 }
    909 
    910 /*
    911  * Initialize a selinfo record.
    912  */
    913 void
    914 selinit(struct selinfo *sip)
    915 {
    916 
    917 	memset(sip, 0, sizeof(*sip));
    918 	klist_init(&sip->sel_klist);
    919 }
    920 
    921 /*
    922  * Destroy a selinfo record.  The owning object must not gain new
    923  * references while this is in progress: all activity on the record
    924  * must be stopped.
    925  *
    926  * Concurrency issues: we only need guard against a call to selclear()
    927  * by a thread exiting sel_do_scan().  The caller has prevented further
    928  * references being made to the selinfo record via selrecord(), and it
    929  * will not call selnotify() again.
    930  */
    931 void
    932 seldestroy(struct selinfo *sip)
    933 {
    934 	selcluster_t *sc;
    935 	kmutex_t *lock;
    936 	lwp_t *l;
    937 
    938 	klist_fini(&sip->sel_klist);
    939 
    940 	if (sip->sel_lwp == NULL)
    941 		return;
    942 
    943 	/*
    944 	 * Lock out selclear().  The selcluster pointer can't change while
    945 	 * we are here since it is only ever changed in selrecord(),
    946 	 * and that will not be entered again for this record because
    947 	 * it is dying.
    948 	 */
    949 	KASSERT(sip->sel_cluster != NULL);
    950 	sc = sip->sel_cluster;
    951 	lock = sc->sc_lock;
    952 	mutex_spin_enter(lock);
    953 	if ((l = sip->sel_lwp) != NULL) {
    954 		/*
    955 		 * This should rarely happen, so although SLIST_REMOVE()
    956 		 * is slow, using it here is not a problem.
    957 		 */
    958 		KASSERT(l->l_selcluster == sc);
    959 		SLIST_REMOVE(&l->l_selwait, sip, selinfo, sel_chain);
    960 		sip->sel_lwp = NULL;
    961 	}
    962 	mutex_spin_exit(lock);
    963 }
    964 
    965 /*
    966  * System control nodes.
    967  */
    968 SYSCTL_SETUP(sysctl_select_setup, "sysctl select setup")
    969 {
    970 
    971 	sysctl_createv(clog, 0, NULL, NULL,
    972 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
    973 		CTLTYPE_INT, "direct_select",
    974 		SYSCTL_DESCR("Enable/disable direct select (for testing)"),
    975 		NULL, 0, &direct_select, 0,
    976 		CTL_KERN, CTL_CREATE, CTL_EOL);
    977 }
    978