sys_sig.c revision 1.41 1 1.41 apb /* $NetBSD: sys_sig.c,v 1.41 2013/03/08 09:32:59 apb Exp $ */
2 1.2 ad
3 1.2 ad /*-
4 1.14 ad * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 1.2 ad * All rights reserved.
6 1.2 ad *
7 1.2 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.2 ad * by Andrew Doran.
9 1.2 ad *
10 1.2 ad * Redistribution and use in source and binary forms, with or without
11 1.2 ad * modification, are permitted provided that the following conditions
12 1.2 ad * are met:
13 1.2 ad * 1. Redistributions of source code must retain the above copyright
14 1.2 ad * notice, this list of conditions and the following disclaimer.
15 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 ad * notice, this list of conditions and the following disclaimer in the
17 1.2 ad * documentation and/or other materials provided with the distribution.
18 1.2 ad *
19 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.2 ad */
31 1.2 ad
32 1.2 ad /*
33 1.2 ad * Copyright (c) 1982, 1986, 1989, 1991, 1993
34 1.2 ad * The Regents of the University of California. All rights reserved.
35 1.2 ad * (c) UNIX System Laboratories, Inc.
36 1.2 ad * All or some portions of this file are derived from material licensed
37 1.2 ad * to the University of California by American Telephone and Telegraph
38 1.2 ad * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39 1.2 ad * the permission of UNIX System Laboratories, Inc.
40 1.2 ad *
41 1.2 ad * Redistribution and use in source and binary forms, with or without
42 1.2 ad * modification, are permitted provided that the following conditions
43 1.2 ad * are met:
44 1.2 ad * 1. Redistributions of source code must retain the above copyright
45 1.2 ad * notice, this list of conditions and the following disclaimer.
46 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
47 1.2 ad * notice, this list of conditions and the following disclaimer in the
48 1.2 ad * documentation and/or other materials provided with the distribution.
49 1.2 ad * 3. Neither the name of the University nor the names of its contributors
50 1.2 ad * may be used to endorse or promote products derived from this software
51 1.2 ad * without specific prior written permission.
52 1.2 ad *
53 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 1.2 ad * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 1.2 ad * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 1.2 ad * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 1.2 ad * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 1.2 ad * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 1.2 ad * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 1.2 ad * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 1.2 ad * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 1.2 ad * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 1.2 ad * SUCH DAMAGE.
64 1.2 ad *
65 1.2 ad * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95
66 1.2 ad */
67 1.2 ad
68 1.2 ad #include <sys/cdefs.h>
69 1.41 apb __KERNEL_RCSID(0, "$NetBSD: sys_sig.c,v 1.41 2013/03/08 09:32:59 apb Exp $");
70 1.2 ad
71 1.2 ad #include <sys/param.h>
72 1.2 ad #include <sys/kernel.h>
73 1.2 ad #include <sys/signalvar.h>
74 1.2 ad #include <sys/proc.h>
75 1.2 ad #include <sys/pool.h>
76 1.2 ad #include <sys/syscallargs.h>
77 1.2 ad #include <sys/kauth.h>
78 1.2 ad #include <sys/wait.h>
79 1.2 ad #include <sys/kmem.h>
80 1.19 ad #include <sys/module.h>
81 1.2 ad
82 1.2 ad int
83 1.25 rmind sys___sigaction_sigtramp(struct lwp *l,
84 1.25 rmind const struct sys___sigaction_sigtramp_args *uap, register_t *retval)
85 1.2 ad {
86 1.9 dsl /* {
87 1.2 ad syscallarg(int) signum;
88 1.2 ad syscallarg(const struct sigaction *) nsa;
89 1.2 ad syscallarg(struct sigaction *) osa;
90 1.2 ad syscallarg(void *) tramp;
91 1.2 ad syscallarg(int) vers;
92 1.9 dsl } */
93 1.2 ad struct sigaction nsa, osa;
94 1.2 ad int error;
95 1.2 ad
96 1.2 ad if (SCARG(uap, nsa)) {
97 1.2 ad error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
98 1.2 ad if (error)
99 1.2 ad return (error);
100 1.2 ad }
101 1.2 ad error = sigaction1(l, SCARG(uap, signum),
102 1.2 ad SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
103 1.2 ad SCARG(uap, tramp), SCARG(uap, vers));
104 1.2 ad if (error)
105 1.2 ad return (error);
106 1.2 ad if (SCARG(uap, osa)) {
107 1.2 ad error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
108 1.2 ad if (error)
109 1.2 ad return (error);
110 1.2 ad }
111 1.25 rmind return 0;
112 1.2 ad }
113 1.2 ad
114 1.2 ad /*
115 1.2 ad * Manipulate signal mask. Note that we receive new mask, not pointer, and
116 1.2 ad * return old mask as return value; the library stub does the rest.
117 1.2 ad */
118 1.2 ad int
119 1.25 rmind sys___sigprocmask14(struct lwp *l, const struct sys___sigprocmask14_args *uap,
120 1.25 rmind register_t *retval)
121 1.2 ad {
122 1.9 dsl /* {
123 1.2 ad syscallarg(int) how;
124 1.2 ad syscallarg(const sigset_t *) set;
125 1.2 ad syscallarg(sigset_t *) oset;
126 1.9 dsl } */
127 1.2 ad struct proc *p = l->l_proc;
128 1.2 ad sigset_t nss, oss;
129 1.2 ad int error;
130 1.2 ad
131 1.2 ad if (SCARG(uap, set)) {
132 1.2 ad error = copyin(SCARG(uap, set), &nss, sizeof(nss));
133 1.2 ad if (error)
134 1.25 rmind return error;
135 1.2 ad }
136 1.14 ad mutex_enter(p->p_lock);
137 1.2 ad error = sigprocmask1(l, SCARG(uap, how),
138 1.2 ad SCARG(uap, set) ? &nss : 0, SCARG(uap, oset) ? &oss : 0);
139 1.14 ad mutex_exit(p->p_lock);
140 1.2 ad if (error)
141 1.25 rmind return error;
142 1.2 ad if (SCARG(uap, oset)) {
143 1.2 ad error = copyout(&oss, SCARG(uap, oset), sizeof(oss));
144 1.2 ad if (error)
145 1.25 rmind return error;
146 1.2 ad }
147 1.25 rmind return 0;
148 1.2 ad }
149 1.2 ad
150 1.2 ad int
151 1.25 rmind sys___sigpending14(struct lwp *l, const struct sys___sigpending14_args *uap,
152 1.25 rmind register_t *retval)
153 1.2 ad {
154 1.9 dsl /* {
155 1.2 ad syscallarg(sigset_t *) set;
156 1.9 dsl } */
157 1.2 ad sigset_t ss;
158 1.2 ad
159 1.2 ad sigpending1(l, &ss);
160 1.25 rmind return copyout(&ss, SCARG(uap, set), sizeof(ss));
161 1.2 ad }
162 1.2 ad
163 1.2 ad /*
164 1.2 ad * Suspend process until signal, providing mask to be set in the meantime.
165 1.2 ad * Note nonstandard calling convention: libc stub passes mask, not pointer,
166 1.2 ad * to save a copyin.
167 1.2 ad */
168 1.2 ad int
169 1.25 rmind sys___sigsuspend14(struct lwp *l, const struct sys___sigsuspend14_args *uap,
170 1.25 rmind register_t *retval)
171 1.2 ad {
172 1.9 dsl /* {
173 1.2 ad syscallarg(const sigset_t *) set;
174 1.9 dsl } */
175 1.2 ad sigset_t ss;
176 1.2 ad int error;
177 1.2 ad
178 1.2 ad if (SCARG(uap, set)) {
179 1.2 ad error = copyin(SCARG(uap, set), &ss, sizeof(ss));
180 1.2 ad if (error)
181 1.25 rmind return error;
182 1.2 ad }
183 1.25 rmind return sigsuspend1(l, SCARG(uap, set) ? &ss : 0);
184 1.2 ad }
185 1.2 ad
186 1.2 ad int
187 1.25 rmind sys___sigaltstack14(struct lwp *l, const struct sys___sigaltstack14_args *uap,
188 1.25 rmind register_t *retval)
189 1.2 ad {
190 1.9 dsl /* {
191 1.2 ad syscallarg(const struct sigaltstack *) nss;
192 1.2 ad syscallarg(struct sigaltstack *) oss;
193 1.9 dsl } */
194 1.2 ad struct sigaltstack nss, oss;
195 1.2 ad int error;
196 1.2 ad
197 1.2 ad if (SCARG(uap, nss)) {
198 1.2 ad error = copyin(SCARG(uap, nss), &nss, sizeof(nss));
199 1.2 ad if (error)
200 1.25 rmind return error;
201 1.2 ad }
202 1.2 ad error = sigaltstack1(l,
203 1.2 ad SCARG(uap, nss) ? &nss : 0, SCARG(uap, oss) ? &oss : 0);
204 1.2 ad if (error)
205 1.25 rmind return error;
206 1.2 ad if (SCARG(uap, oss)) {
207 1.2 ad error = copyout(&oss, SCARG(uap, oss), sizeof(oss));
208 1.2 ad if (error)
209 1.25 rmind return error;
210 1.2 ad }
211 1.25 rmind return 0;
212 1.2 ad }
213 1.2 ad
214 1.30 christos
215 1.30 christos static int
216 1.30 christos kill1(struct lwp *l, pid_t pid, ksiginfo_t *ksi, register_t *retval)
217 1.2 ad {
218 1.2 ad int error;
219 1.30 christos struct proc *p;
220 1.2 ad
221 1.30 christos if ((u_int)ksi->ksi_signo >= NSIG)
222 1.25 rmind return EINVAL;
223 1.30 christos
224 1.32 martin if (pid != l->l_proc->p_pid) {
225 1.32 martin if (ksi->ksi_pid != l->l_proc->p_pid)
226 1.32 martin return EPERM;
227 1.32 martin
228 1.32 martin if (ksi->ksi_uid != kauth_cred_geteuid(l->l_cred))
229 1.32 martin return EPERM;
230 1.32 martin
231 1.32 martin switch (ksi->ksi_code) {
232 1.32 martin case SI_USER:
233 1.32 martin case SI_QUEUE:
234 1.32 martin break;
235 1.32 martin default:
236 1.32 martin return EPERM;
237 1.32 martin }
238 1.32 martin }
239 1.30 christos
240 1.30 christos if (pid > 0) {
241 1.2 ad /* kill single process */
242 1.13 ad mutex_enter(proc_lock);
243 1.38 christos p = proc_find_raw(pid);
244 1.38 christos if (p == NULL || (p->p_stat != SACTIVE && p->p_stat != SSTOP)) {
245 1.13 ad mutex_exit(proc_lock);
246 1.38 christos /* IEEE Std 1003.1-2001: return success for zombies */
247 1.38 christos return p ? 0 : ESRCH;
248 1.13 ad }
249 1.14 ad mutex_enter(p->p_lock);
250 1.2 ad error = kauth_authorize_process(l->l_cred,
251 1.30 christos KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(ksi->ksi_signo),
252 1.2 ad NULL, NULL);
253 1.30 christos if (!error && ksi->ksi_signo) {
254 1.30 christos kpsignal2(p, ksi);
255 1.2 ad }
256 1.14 ad mutex_exit(p->p_lock);
257 1.13 ad mutex_exit(proc_lock);
258 1.25 rmind return error;
259 1.2 ad }
260 1.30 christos
261 1.30 christos switch (pid) {
262 1.2 ad case -1: /* broadcast signal */
263 1.30 christos return killpg1(l, ksi, 0, 1);
264 1.2 ad case 0: /* signal own process group */
265 1.30 christos return killpg1(l, ksi, 0, 0);
266 1.2 ad default: /* negative explicit process group */
267 1.30 christos return killpg1(l, ksi, -pid, 0);
268 1.2 ad }
269 1.2 ad /* NOTREACHED */
270 1.2 ad }
271 1.2 ad
272 1.2 ad int
273 1.30 christos sys_sigqueueinfo(struct lwp *l, const struct sys_sigqueueinfo_args *uap,
274 1.30 christos register_t *retval)
275 1.30 christos {
276 1.30 christos /* {
277 1.30 christos syscallarg(pid_t int) pid;
278 1.30 christos syscallarg(const siginfo_t *) info;
279 1.30 christos } */
280 1.30 christos ksiginfo_t ksi;
281 1.30 christos int error;
282 1.30 christos
283 1.30 christos KSI_INIT(&ksi);
284 1.30 christos
285 1.30 christos if ((error = copyin(&SCARG(uap, info)->_info, &ksi.ksi_info,
286 1.30 christos sizeof(ksi.ksi_info))) != 0)
287 1.30 christos return error;
288 1.30 christos
289 1.30 christos return kill1(l, SCARG(uap, pid), &ksi, retval);
290 1.30 christos }
291 1.30 christos
292 1.30 christos int
293 1.30 christos sys_kill(struct lwp *l, const struct sys_kill_args *uap, register_t *retval)
294 1.30 christos {
295 1.30 christos /* {
296 1.30 christos syscallarg(pid_t) pid;
297 1.30 christos syscallarg(int) signum;
298 1.30 christos } */
299 1.30 christos ksiginfo_t ksi;
300 1.30 christos
301 1.30 christos KSI_INIT(&ksi);
302 1.30 christos
303 1.30 christos ksi.ksi_signo = SCARG(uap, signum);
304 1.30 christos ksi.ksi_code = SI_USER;
305 1.30 christos ksi.ksi_pid = l->l_proc->p_pid;
306 1.30 christos ksi.ksi_uid = kauth_cred_geteuid(l->l_cred);
307 1.30 christos
308 1.30 christos return kill1(l, SCARG(uap, pid), &ksi, retval);
309 1.30 christos }
310 1.30 christos
311 1.30 christos int
312 1.25 rmind sys_getcontext(struct lwp *l, const struct sys_getcontext_args *uap,
313 1.25 rmind register_t *retval)
314 1.2 ad {
315 1.9 dsl /* {
316 1.2 ad syscallarg(struct __ucontext *) ucp;
317 1.9 dsl } */
318 1.2 ad struct proc *p = l->l_proc;
319 1.2 ad ucontext_t uc;
320 1.2 ad
321 1.31 joerg memset(&uc, 0, sizeof(uc));
322 1.31 joerg
323 1.14 ad mutex_enter(p->p_lock);
324 1.2 ad getucontext(l, &uc);
325 1.14 ad mutex_exit(p->p_lock);
326 1.2 ad
327 1.25 rmind return copyout(&uc, SCARG(uap, ucp), sizeof (*SCARG(uap, ucp)));
328 1.2 ad }
329 1.2 ad
330 1.2 ad int
331 1.25 rmind sys_setcontext(struct lwp *l, const struct sys_setcontext_args *uap,
332 1.25 rmind register_t *retval)
333 1.2 ad {
334 1.9 dsl /* {
335 1.2 ad syscallarg(const ucontext_t *) ucp;
336 1.9 dsl } */
337 1.2 ad struct proc *p = l->l_proc;
338 1.2 ad ucontext_t uc;
339 1.2 ad int error;
340 1.2 ad
341 1.2 ad error = copyin(SCARG(uap, ucp), &uc, sizeof (uc));
342 1.2 ad if (error)
343 1.25 rmind return error;
344 1.25 rmind if ((uc.uc_flags & _UC_CPU) == 0)
345 1.25 rmind return EINVAL;
346 1.14 ad mutex_enter(p->p_lock);
347 1.2 ad error = setucontext(l, &uc);
348 1.14 ad mutex_exit(p->p_lock);
349 1.2 ad if (error)
350 1.25 rmind return error;
351 1.2 ad
352 1.25 rmind return EJUSTRETURN;
353 1.2 ad }
354 1.2 ad
355 1.2 ad /*
356 1.2 ad * sigtimedwait(2) system call, used also for implementation
357 1.2 ad * of sigwaitinfo() and sigwait().
358 1.2 ad *
359 1.2 ad * This only handles single LWP in signal wait. libpthread provides
360 1.2 ad * it's own sigtimedwait() wrapper to DTRT WRT individual threads.
361 1.2 ad */
362 1.2 ad int
363 1.21 christos sys_____sigtimedwait50(struct lwp *l,
364 1.21 christos const struct sys_____sigtimedwait50_args *uap, register_t *retval)
365 1.2 ad {
366 1.2 ad
367 1.36 christos return sigtimedwait1(l, uap, retval, copyin, copyout, copyin, copyout);
368 1.2 ad }
369 1.2 ad
370 1.2 ad int
371 1.2 ad sigaction1(struct lwp *l, int signum, const struct sigaction *nsa,
372 1.2 ad struct sigaction *osa, const void *tramp, int vers)
373 1.2 ad {
374 1.2 ad struct proc *p;
375 1.2 ad struct sigacts *ps;
376 1.2 ad sigset_t tset;
377 1.2 ad int prop, error;
378 1.2 ad ksiginfoq_t kq;
379 1.20 ad static bool v0v1valid;
380 1.2 ad
381 1.2 ad if (signum <= 0 || signum >= NSIG)
382 1.25 rmind return EINVAL;
383 1.2 ad
384 1.2 ad p = l->l_proc;
385 1.2 ad error = 0;
386 1.2 ad ksiginfo_queue_init(&kq);
387 1.2 ad
388 1.2 ad /*
389 1.2 ad * Trampoline ABI version 0 is reserved for the legacy kernel
390 1.2 ad * provided on-stack trampoline. Conversely, if we are using a
391 1.2 ad * non-0 ABI version, we must have a trampoline. Only validate the
392 1.2 ad * vers if a new sigaction was supplied. Emulations use legacy
393 1.2 ad * kernel trampolines with version 0, alternatively check for that
394 1.2 ad * too.
395 1.19 ad *
396 1.19 ad * If version < 2, we try to autoload the compat module. Note
397 1.19 ad * that we interlock with the unload check in compat_modcmd()
398 1.29 pgoyette * using kernconfig_lock. If the autoload fails, we don't try it
399 1.19 ad * again for this process.
400 1.19 ad */
401 1.20 ad if (nsa != NULL) {
402 1.39 christos if (__predict_false(vers < 2)) {
403 1.39 christos if (p->p_flag & PK_32)
404 1.39 christos v0v1valid = true;
405 1.39 christos else if ((p->p_lflag & PL_SIGCOMPAT) == 0) {
406 1.39 christos kernconfig_lock();
407 1.39 christos if (sendsig_sigcontext_vec == NULL) {
408 1.39 christos (void)module_autoload("compat",
409 1.39 christos MODULE_CLASS_ANY);
410 1.39 christos }
411 1.39 christos if (sendsig_sigcontext_vec != NULL) {
412 1.39 christos /*
413 1.39 christos * We need to remember if the
414 1.39 christos * sigcontext method may be useable,
415 1.39 christos * because libc may use it even
416 1.39 christos * if siginfo is available.
417 1.39 christos */
418 1.39 christos v0v1valid = true;
419 1.39 christos }
420 1.39 christos mutex_enter(proc_lock);
421 1.20 ad /*
422 1.39 christos * Prevent unload of compat module while
423 1.39 christos * this process remains.
424 1.20 ad */
425 1.39 christos p->p_lflag |= PL_SIGCOMPAT;
426 1.39 christos mutex_exit(proc_lock);
427 1.39 christos kernconfig_unlock();
428 1.20 ad }
429 1.19 ad }
430 1.19 ad
431 1.20 ad switch (vers) {
432 1.20 ad case 0:
433 1.20 ad /* sigcontext, kernel supplied trampoline. */
434 1.20 ad if (tramp != NULL || !v0v1valid) {
435 1.20 ad return EINVAL;
436 1.20 ad }
437 1.20 ad break;
438 1.20 ad case 1:
439 1.20 ad /* sigcontext, user supplied trampoline. */
440 1.20 ad if (tramp == NULL || !v0v1valid) {
441 1.20 ad return EINVAL;
442 1.20 ad }
443 1.20 ad break;
444 1.20 ad case 2:
445 1.20 ad case 3:
446 1.20 ad /* siginfo, user supplied trampoline. */
447 1.20 ad if (tramp == NULL) {
448 1.20 ad return EINVAL;
449 1.20 ad }
450 1.20 ad break;
451 1.20 ad default:
452 1.20 ad return EINVAL;
453 1.20 ad }
454 1.2 ad }
455 1.2 ad
456 1.14 ad mutex_enter(p->p_lock);
457 1.2 ad
458 1.2 ad ps = p->p_sigacts;
459 1.2 ad if (osa)
460 1.2 ad *osa = SIGACTION_PS(ps, signum);
461 1.2 ad if (!nsa)
462 1.2 ad goto out;
463 1.2 ad
464 1.2 ad prop = sigprop[signum];
465 1.2 ad if ((nsa->sa_flags & ~SA_ALLBITS) || (prop & SA_CANTMASK)) {
466 1.2 ad error = EINVAL;
467 1.2 ad goto out;
468 1.2 ad }
469 1.2 ad
470 1.2 ad SIGACTION_PS(ps, signum) = *nsa;
471 1.2 ad ps->sa_sigdesc[signum].sd_tramp = tramp;
472 1.2 ad ps->sa_sigdesc[signum].sd_vers = vers;
473 1.2 ad sigminusset(&sigcantmask, &SIGACTION_PS(ps, signum).sa_mask);
474 1.2 ad
475 1.2 ad if ((prop & SA_NORESET) != 0)
476 1.2 ad SIGACTION_PS(ps, signum).sa_flags &= ~SA_RESETHAND;
477 1.2 ad
478 1.2 ad if (signum == SIGCHLD) {
479 1.2 ad if (nsa->sa_flags & SA_NOCLDSTOP)
480 1.2 ad p->p_sflag |= PS_NOCLDSTOP;
481 1.2 ad else
482 1.2 ad p->p_sflag &= ~PS_NOCLDSTOP;
483 1.2 ad if (nsa->sa_flags & SA_NOCLDWAIT) {
484 1.2 ad /*
485 1.2 ad * Paranoia: since SA_NOCLDWAIT is implemented by
486 1.2 ad * reparenting the dying child to PID 1 (and trust
487 1.2 ad * it to reap the zombie), PID 1 itself is forbidden
488 1.2 ad * to set SA_NOCLDWAIT.
489 1.2 ad */
490 1.2 ad if (p->p_pid == 1)
491 1.4 pavel p->p_flag &= ~PK_NOCLDWAIT;
492 1.2 ad else
493 1.4 pavel p->p_flag |= PK_NOCLDWAIT;
494 1.2 ad } else
495 1.4 pavel p->p_flag &= ~PK_NOCLDWAIT;
496 1.2 ad
497 1.2 ad if (nsa->sa_handler == SIG_IGN) {
498 1.2 ad /*
499 1.2 ad * Paranoia: same as above.
500 1.2 ad */
501 1.2 ad if (p->p_pid == 1)
502 1.4 pavel p->p_flag &= ~PK_CLDSIGIGN;
503 1.2 ad else
504 1.4 pavel p->p_flag |= PK_CLDSIGIGN;
505 1.2 ad } else
506 1.4 pavel p->p_flag &= ~PK_CLDSIGIGN;
507 1.2 ad }
508 1.2 ad
509 1.2 ad if ((nsa->sa_flags & SA_NODEFER) == 0)
510 1.2 ad sigaddset(&SIGACTION_PS(ps, signum).sa_mask, signum);
511 1.2 ad else
512 1.2 ad sigdelset(&SIGACTION_PS(ps, signum).sa_mask, signum);
513 1.2 ad
514 1.2 ad /*
515 1.2 ad * Set bit in p_sigctx.ps_sigignore for signals that are set to
516 1.2 ad * SIG_IGN, and for signals set to SIG_DFL where the default is to
517 1.2 ad * ignore. However, don't put SIGCONT in p_sigctx.ps_sigignore, as
518 1.2 ad * we have to restart the process.
519 1.2 ad */
520 1.2 ad if (nsa->sa_handler == SIG_IGN ||
521 1.2 ad (nsa->sa_handler == SIG_DFL && (prop & SA_IGNORE) != 0)) {
522 1.2 ad /* Never to be seen again. */
523 1.2 ad sigemptyset(&tset);
524 1.2 ad sigaddset(&tset, signum);
525 1.2 ad sigclearall(p, &tset, &kq);
526 1.2 ad if (signum != SIGCONT) {
527 1.2 ad /* Easier in psignal */
528 1.2 ad sigaddset(&p->p_sigctx.ps_sigignore, signum);
529 1.2 ad }
530 1.2 ad sigdelset(&p->p_sigctx.ps_sigcatch, signum);
531 1.2 ad } else {
532 1.2 ad sigdelset(&p->p_sigctx.ps_sigignore, signum);
533 1.2 ad if (nsa->sa_handler == SIG_DFL)
534 1.2 ad sigdelset(&p->p_sigctx.ps_sigcatch, signum);
535 1.2 ad else
536 1.2 ad sigaddset(&p->p_sigctx.ps_sigcatch, signum);
537 1.2 ad }
538 1.2 ad
539 1.2 ad /*
540 1.2 ad * Previously held signals may now have become visible. Ensure that
541 1.2 ad * we check for them before returning to userspace.
542 1.2 ad */
543 1.6 ad if (sigispending(l, 0)) {
544 1.6 ad lwp_lock(l);
545 1.6 ad l->l_flag |= LW_PENDSIG;
546 1.6 ad lwp_unlock(l);
547 1.6 ad }
548 1.25 rmind out:
549 1.14 ad mutex_exit(p->p_lock);
550 1.2 ad ksiginfo_queue_drain(&kq);
551 1.2 ad
552 1.25 rmind return error;
553 1.2 ad }
554 1.2 ad
555 1.2 ad int
556 1.2 ad sigprocmask1(struct lwp *l, int how, const sigset_t *nss, sigset_t *oss)
557 1.2 ad {
558 1.37 rmind sigset_t *mask = &l->l_sigmask;
559 1.37 rmind bool more;
560 1.2 ad
561 1.37 rmind KASSERT(mutex_owned(l->l_proc->p_lock));
562 1.2 ad
563 1.37 rmind if (oss) {
564 1.17 wrstuden *oss = *mask;
565 1.2 ad }
566 1.2 ad
567 1.37 rmind if (nss == NULL) {
568 1.37 rmind return 0;
569 1.37 rmind }
570 1.37 rmind
571 1.37 rmind switch (how) {
572 1.37 rmind case SIG_BLOCK:
573 1.37 rmind sigplusset(nss, mask);
574 1.37 rmind more = false;
575 1.37 rmind break;
576 1.37 rmind case SIG_UNBLOCK:
577 1.37 rmind sigminusset(nss, mask);
578 1.37 rmind more = true;
579 1.37 rmind break;
580 1.37 rmind case SIG_SETMASK:
581 1.37 rmind *mask = *nss;
582 1.37 rmind more = true;
583 1.37 rmind break;
584 1.37 rmind default:
585 1.37 rmind return EINVAL;
586 1.37 rmind }
587 1.37 rmind sigminusset(&sigcantmask, mask);
588 1.37 rmind if (more && sigispending(l, 0)) {
589 1.37 rmind /*
590 1.37 rmind * Check for pending signals on return to user.
591 1.37 rmind */
592 1.37 rmind lwp_lock(l);
593 1.37 rmind l->l_flag |= LW_PENDSIG;
594 1.37 rmind lwp_unlock(l);
595 1.37 rmind }
596 1.25 rmind return 0;
597 1.2 ad }
598 1.2 ad
599 1.2 ad void
600 1.2 ad sigpending1(struct lwp *l, sigset_t *ss)
601 1.2 ad {
602 1.2 ad struct proc *p = l->l_proc;
603 1.2 ad
604 1.14 ad mutex_enter(p->p_lock);
605 1.2 ad *ss = l->l_sigpend.sp_set;
606 1.2 ad sigplusset(&p->p_sigpend.sp_set, ss);
607 1.14 ad mutex_exit(p->p_lock);
608 1.2 ad }
609 1.2 ad
610 1.33 christos void
611 1.33 christos sigsuspendsetup(struct lwp *l, const sigset_t *ss)
612 1.2 ad {
613 1.25 rmind struct proc *p = l->l_proc;
614 1.2 ad
615 1.33 christos /*
616 1.33 christos * When returning from sigsuspend/pselect/pollts, we want
617 1.33 christos * the old mask to be restored after the
618 1.33 christos * signal handler has finished. Thus, we
619 1.33 christos * save it here and mark the sigctx structure
620 1.33 christos * to indicate this.
621 1.33 christos */
622 1.33 christos mutex_enter(p->p_lock);
623 1.33 christos l->l_sigrestore = 1;
624 1.33 christos l->l_sigoldmask = l->l_sigmask;
625 1.33 christos l->l_sigmask = *ss;
626 1.33 christos sigminusset(&sigcantmask, &l->l_sigmask);
627 1.2 ad
628 1.33 christos /* Check for pending signals when sleeping. */
629 1.33 christos if (sigispending(l, 0)) {
630 1.33 christos lwp_lock(l);
631 1.33 christos l->l_flag |= LW_PENDSIG;
632 1.33 christos lwp_unlock(l);
633 1.2 ad }
634 1.33 christos mutex_exit(p->p_lock);
635 1.33 christos }
636 1.33 christos
637 1.34 christos void
638 1.34 christos sigsuspendteardown(struct lwp *l)
639 1.34 christos {
640 1.34 christos struct proc *p = l->l_proc;
641 1.34 christos
642 1.34 christos mutex_enter(p->p_lock);
643 1.35 christos /* Check for pending signals when sleeping. */
644 1.34 christos if (l->l_sigrestore) {
645 1.35 christos if (sigispending(l, 0)) {
646 1.35 christos lwp_lock(l);
647 1.35 christos l->l_flag |= LW_PENDSIG;
648 1.35 christos lwp_unlock(l);
649 1.35 christos } else {
650 1.35 christos l->l_sigrestore = 0;
651 1.35 christos l->l_sigmask = l->l_sigoldmask;
652 1.35 christos }
653 1.34 christos }
654 1.34 christos mutex_exit(p->p_lock);
655 1.34 christos }
656 1.34 christos
657 1.33 christos int
658 1.33 christos sigsuspend1(struct lwp *l, const sigset_t *ss)
659 1.33 christos {
660 1.33 christos
661 1.33 christos if (ss)
662 1.33 christos sigsuspendsetup(l, ss);
663 1.2 ad
664 1.5 thorpej while (kpause("pause", true, 0, NULL) == 0)
665 1.2 ad ;
666 1.2 ad
667 1.2 ad /* always return EINTR rather than ERESTART... */
668 1.25 rmind return EINTR;
669 1.2 ad }
670 1.2 ad
671 1.2 ad int
672 1.2 ad sigaltstack1(struct lwp *l, const struct sigaltstack *nss,
673 1.25 rmind struct sigaltstack *oss)
674 1.2 ad {
675 1.2 ad struct proc *p = l->l_proc;
676 1.2 ad int error = 0;
677 1.2 ad
678 1.14 ad mutex_enter(p->p_lock);
679 1.2 ad
680 1.2 ad if (oss)
681 1.2 ad *oss = l->l_sigstk;
682 1.2 ad
683 1.2 ad if (nss) {
684 1.2 ad if (nss->ss_flags & ~SS_ALLBITS)
685 1.2 ad error = EINVAL;
686 1.2 ad else if (nss->ss_flags & SS_DISABLE) {
687 1.2 ad if (l->l_sigstk.ss_flags & SS_ONSTACK)
688 1.2 ad error = EINVAL;
689 1.2 ad } else if (nss->ss_size < MINSIGSTKSZ)
690 1.2 ad error = ENOMEM;
691 1.2 ad
692 1.2 ad if (!error)
693 1.2 ad l->l_sigstk = *nss;
694 1.2 ad }
695 1.2 ad
696 1.14 ad mutex_exit(p->p_lock);
697 1.2 ad
698 1.25 rmind return error;
699 1.2 ad }
700 1.2 ad
701 1.2 ad int
702 1.26 pooka sigtimedwait1(struct lwp *l, const struct sys_____sigtimedwait50_args *uap,
703 1.36 christos register_t *retval, copyin_t fetchss, copyout_t storeinf, copyin_t fetchts,
704 1.36 christos copyout_t storets)
705 1.2 ad {
706 1.9 dsl /* {
707 1.2 ad syscallarg(const sigset_t *) set;
708 1.2 ad syscallarg(siginfo_t *) info;
709 1.2 ad syscallarg(struct timespec *) timeout;
710 1.9 dsl } */
711 1.2 ad struct proc *p = l->l_proc;
712 1.25 rmind int error, signum, timo;
713 1.2 ad struct timespec ts, tsstart, tsnow;
714 1.24 rmind ksiginfo_t ksi;
715 1.2 ad
716 1.2 ad /*
717 1.2 ad * Calculate timeout, if it was specified.
718 1.40 apb *
719 1.40 apb * NULL pointer means an infinite timeout.
720 1.40 apb * {.tv_sec = 0, .tv_nsec = 0} means do not block.
721 1.2 ad */
722 1.2 ad if (SCARG(uap, timeout)) {
723 1.25 rmind error = (*fetchts)(SCARG(uap, timeout), &ts, sizeof(ts));
724 1.23 christos if (error)
725 1.23 christos return error;
726 1.2 ad
727 1.23 christos if ((error = itimespecfix(&ts)) != 0)
728 1.23 christos return error;
729 1.2 ad
730 1.23 christos timo = tstohz(&ts);
731 1.41 apb if (timo == 0) {
732 1.41 apb if (ts.tv_sec == 0 && ts.tv_nsec == 0)
733 1.41 apb timo = -1; /* do not block */
734 1.41 apb else
735 1.41 apb timo = 1; /* the shortest possible timeout */
736 1.41 apb }
737 1.2 ad
738 1.2 ad /*
739 1.2 ad * Remember current uptime, it would be used in
740 1.2 ad * ECANCELED/ERESTART case.
741 1.2 ad */
742 1.2 ad getnanouptime(&tsstart);
743 1.25 rmind } else {
744 1.25 rmind memset(&tsstart, 0, sizeof(tsstart)); /* XXXgcc */
745 1.41 apb timo = 0; /* infinite timeout */
746 1.2 ad }
747 1.2 ad
748 1.36 christos error = (*fetchss)(SCARG(uap, set), &l->l_sigwaitset,
749 1.2 ad sizeof(l->l_sigwaitset));
750 1.25 rmind if (error)
751 1.25 rmind return error;
752 1.2 ad
753 1.2 ad /*
754 1.2 ad * Silently ignore SA_CANTMASK signals. psignal1() would ignore
755 1.2 ad * SA_CANTMASK signals in waitset, we do this only for the below
756 1.2 ad * siglist check.
757 1.2 ad */
758 1.2 ad sigminusset(&sigcantmask, &l->l_sigwaitset);
759 1.2 ad
760 1.14 ad mutex_enter(p->p_lock);
761 1.2 ad
762 1.25 rmind /* Check for pending signals in the process, if no - then in LWP. */
763 1.24 rmind if ((signum = sigget(&p->p_sigpend, &ksi, 0, &l->l_sigwaitset)) == 0)
764 1.24 rmind signum = sigget(&l->l_sigpend, &ksi, 0, &l->l_sigwaitset);
765 1.2 ad
766 1.2 ad if (signum != 0) {
767 1.25 rmind /* If found a pending signal, just copy it out to the user. */
768 1.14 ad mutex_exit(p->p_lock);
769 1.2 ad goto out;
770 1.2 ad }
771 1.2 ad
772 1.41 apb if (timo < 0) {
773 1.41 apb /* If not allowed to block, return an error */
774 1.41 apb mutex_exit(p->p_lock);
775 1.41 apb return EAGAIN;
776 1.41 apb }
777 1.41 apb
778 1.2 ad /*
779 1.25 rmind * Set up the sigwait list and wait for signal to arrive.
780 1.25 rmind * We can either be woken up or time out.
781 1.2 ad */
782 1.24 rmind l->l_sigwaited = &ksi;
783 1.2 ad LIST_INSERT_HEAD(&p->p_sigwaiters, l, l_sigwaiter);
784 1.14 ad error = cv_timedwait_sig(&l->l_sigcv, p->p_lock, timo);
785 1.2 ad
786 1.2 ad /*
787 1.25 rmind * Need to find out if we woke as a result of _lwp_wakeup() or a
788 1.2 ad * signal outside our wait set.
789 1.2 ad */
790 1.2 ad if (l->l_sigwaited != NULL) {
791 1.2 ad if (error == EINTR) {
792 1.25 rmind /* Wakeup via _lwp_wakeup(). */
793 1.2 ad error = ECANCELED;
794 1.2 ad } else if (!error) {
795 1.25 rmind /* Spurious wakeup - arrange for syscall restart. */
796 1.2 ad error = ERESTART;
797 1.2 ad }
798 1.2 ad l->l_sigwaited = NULL;
799 1.2 ad LIST_REMOVE(l, l_sigwaiter);
800 1.2 ad }
801 1.14 ad mutex_exit(p->p_lock);
802 1.2 ad
803 1.2 ad /*
804 1.2 ad * If the sleep was interrupted (either by signal or wakeup), update
805 1.2 ad * the timeout and copyout new value back. It would be used when
806 1.2 ad * the syscall would be restarted or called again.
807 1.2 ad */
808 1.2 ad if (timo && (error == ERESTART || error == ECANCELED)) {
809 1.2 ad getnanouptime(&tsnow);
810 1.2 ad
811 1.25 rmind /* Compute how much time has passed since start. */
812 1.2 ad timespecsub(&tsnow, &tsstart, &tsnow);
813 1.25 rmind
814 1.25 rmind /* Substract passed time from timeout. */
815 1.2 ad timespecsub(&ts, &tsnow, &ts);
816 1.2 ad
817 1.2 ad if (ts.tv_sec < 0)
818 1.2 ad error = EAGAIN;
819 1.2 ad else {
820 1.25 rmind /* Copy updated timeout to userland. */
821 1.25 rmind error = (*storets)(&ts, SCARG(uap, timeout),
822 1.2 ad sizeof(ts));
823 1.2 ad }
824 1.2 ad }
825 1.25 rmind out:
826 1.2 ad /*
827 1.2 ad * If a signal from the wait set arrived, copy it to userland.
828 1.2 ad * Copy only the used part of siginfo, the padding part is
829 1.2 ad * left unchanged (userland is not supposed to touch it anyway).
830 1.2 ad */
831 1.27 drochner if (error == 0 && SCARG(uap, info)) {
832 1.25 rmind error = (*storeinf)(&ksi.ksi_info, SCARG(uap, info),
833 1.24 rmind sizeof(ksi.ksi_info));
834 1.25 rmind }
835 1.27 drochner if (error == 0)
836 1.27 drochner *retval = ksi.ksi_info._signo;
837 1.2 ad return error;
838 1.2 ad }
839