Home | History | Annotate | Line # | Download | only in kern
sys_sig.c revision 1.43
      1 /*	$NetBSD: sys_sig.c,v 1.43 2014/10/18 08:33:29 snj Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     34  *	The Regents of the University of California.  All rights reserved.
     35  * (c) UNIX System Laboratories, Inc.
     36  * All or some portions of this file are derived from material licensed
     37  * to the University of California by American Telephone and Telegraph
     38  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     39  * the permission of UNIX System Laboratories, Inc.
     40  *
     41  * Redistribution and use in source and binary forms, with or without
     42  * modification, are permitted provided that the following conditions
     43  * are met:
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. Neither the name of the University nor the names of its contributors
     50  *    may be used to endorse or promote products derived from this software
     51  *    without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
     66  */
     67 
     68 #include <sys/cdefs.h>
     69 __KERNEL_RCSID(0, "$NetBSD: sys_sig.c,v 1.43 2014/10/18 08:33:29 snj Exp $");
     70 
     71 #include <sys/param.h>
     72 #include <sys/kernel.h>
     73 #include <sys/signalvar.h>
     74 #include <sys/proc.h>
     75 #include <sys/pool.h>
     76 #include <sys/syscallargs.h>
     77 #include <sys/kauth.h>
     78 #include <sys/wait.h>
     79 #include <sys/kmem.h>
     80 #include <sys/module.h>
     81 
     82 int
     83 sys___sigaction_sigtramp(struct lwp *l,
     84     const struct sys___sigaction_sigtramp_args *uap, register_t *retval)
     85 {
     86 	/* {
     87 		syscallarg(int)				signum;
     88 		syscallarg(const struct sigaction *)	nsa;
     89 		syscallarg(struct sigaction *)		osa;
     90 		syscallarg(void *)			tramp;
     91 		syscallarg(int)				vers;
     92 	} */
     93 	struct sigaction nsa, osa;
     94 	int error;
     95 
     96 	if (SCARG(uap, nsa)) {
     97 		error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
     98 		if (error)
     99 			return (error);
    100 	}
    101 	error = sigaction1(l, SCARG(uap, signum),
    102 	    SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
    103 	    SCARG(uap, tramp), SCARG(uap, vers));
    104 	if (error)
    105 		return (error);
    106 	if (SCARG(uap, osa)) {
    107 		error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
    108 		if (error)
    109 			return (error);
    110 	}
    111 	return 0;
    112 }
    113 
    114 /*
    115  * Manipulate signal mask.  Note that we receive new mask, not pointer, and
    116  * return old mask as return value; the library stub does the rest.
    117  */
    118 int
    119 sys___sigprocmask14(struct lwp *l, const struct sys___sigprocmask14_args *uap,
    120     register_t *retval)
    121 {
    122 	/* {
    123 		syscallarg(int)			how;
    124 		syscallarg(const sigset_t *)	set;
    125 		syscallarg(sigset_t *)		oset;
    126 	} */
    127 	struct proc	*p = l->l_proc;
    128 	sigset_t	nss, oss;
    129 	int		error;
    130 
    131 	if (SCARG(uap, set)) {
    132 		error = copyin(SCARG(uap, set), &nss, sizeof(nss));
    133 		if (error)
    134 			return error;
    135 	}
    136 	mutex_enter(p->p_lock);
    137 	error = sigprocmask1(l, SCARG(uap, how),
    138 	    SCARG(uap, set) ? &nss : 0, SCARG(uap, oset) ? &oss : 0);
    139 	mutex_exit(p->p_lock);
    140 	if (error)
    141 		return error;
    142 	if (SCARG(uap, oset)) {
    143 		error = copyout(&oss, SCARG(uap, oset), sizeof(oss));
    144 		if (error)
    145 			return error;
    146 	}
    147 	return 0;
    148 }
    149 
    150 int
    151 sys___sigpending14(struct lwp *l, const struct sys___sigpending14_args *uap,
    152     register_t *retval)
    153 {
    154 	/* {
    155 		syscallarg(sigset_t *)	set;
    156 	} */
    157 	sigset_t ss;
    158 
    159 	sigpending1(l, &ss);
    160 	return copyout(&ss, SCARG(uap, set), sizeof(ss));
    161 }
    162 
    163 /*
    164  * Suspend process until signal, providing mask to be set in the meantime.
    165  * Note nonstandard calling convention: libc stub passes mask, not pointer,
    166  * to save a copyin.
    167  */
    168 int
    169 sys___sigsuspend14(struct lwp *l, const struct sys___sigsuspend14_args *uap,
    170     register_t *retval)
    171 {
    172 	/* {
    173 		syscallarg(const sigset_t *)	set;
    174 	} */
    175 	sigset_t	ss;
    176 	int		error;
    177 
    178 	if (SCARG(uap, set)) {
    179 		error = copyin(SCARG(uap, set), &ss, sizeof(ss));
    180 		if (error)
    181 			return error;
    182 	}
    183 	return sigsuspend1(l, SCARG(uap, set) ? &ss : 0);
    184 }
    185 
    186 int
    187 sys___sigaltstack14(struct lwp *l, const struct sys___sigaltstack14_args *uap,
    188     register_t *retval)
    189 {
    190 	/* {
    191 		syscallarg(const struct sigaltstack *)	nss;
    192 		syscallarg(struct sigaltstack *)	oss;
    193 	} */
    194 	struct sigaltstack	nss, oss;
    195 	int			error;
    196 
    197 	if (SCARG(uap, nss)) {
    198 		error = copyin(SCARG(uap, nss), &nss, sizeof(nss));
    199 		if (error)
    200 			return error;
    201 	}
    202 	error = sigaltstack1(l,
    203 	    SCARG(uap, nss) ? &nss : 0, SCARG(uap, oss) ? &oss : 0);
    204 	if (error)
    205 		return error;
    206 	if (SCARG(uap, oss)) {
    207 		error = copyout(&oss, SCARG(uap, oss), sizeof(oss));
    208 		if (error)
    209 			return error;
    210 	}
    211 	return 0;
    212 }
    213 
    214 
    215 static int
    216 kill1(struct lwp *l, pid_t pid, ksiginfo_t *ksi, register_t *retval)
    217 {
    218 	int error;
    219 	struct proc *p;
    220 
    221 	if ((u_int)ksi->ksi_signo >= NSIG)
    222 		return EINVAL;
    223 
    224 	if (pid != l->l_proc->p_pid) {
    225 		if (ksi->ksi_pid != l->l_proc->p_pid)
    226 			return EPERM;
    227 
    228 		if (ksi->ksi_uid != kauth_cred_geteuid(l->l_cred))
    229 			return EPERM;
    230 
    231 		switch (ksi->ksi_code) {
    232 		case SI_USER:
    233 		case SI_QUEUE:
    234 			break;
    235 		default:
    236 			return EPERM;
    237 		}
    238 	}
    239 
    240 	if (pid > 0) {
    241 		/* kill single process */
    242 		mutex_enter(proc_lock);
    243 		p = proc_find_raw(pid);
    244 		if (p == NULL || (p->p_stat != SACTIVE && p->p_stat != SSTOP)) {
    245 			mutex_exit(proc_lock);
    246 			/* IEEE Std 1003.1-2001: return success for zombies */
    247 			return p ? 0 : ESRCH;
    248 		}
    249 		mutex_enter(p->p_lock);
    250 		error = kauth_authorize_process(l->l_cred,
    251 		    KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(ksi->ksi_signo),
    252 		    NULL, NULL);
    253 		if (!error && ksi->ksi_signo) {
    254 			kpsignal2(p, ksi);
    255 		}
    256 		mutex_exit(p->p_lock);
    257 		mutex_exit(proc_lock);
    258 		return error;
    259 	}
    260 
    261 	switch (pid) {
    262 	case -1:		/* broadcast signal */
    263 		return killpg1(l, ksi, 0, 1);
    264 	case 0:			/* signal own process group */
    265 		return killpg1(l, ksi, 0, 0);
    266 	default:		/* negative explicit process group */
    267 		return killpg1(l, ksi, -pid, 0);
    268 	}
    269 	/* NOTREACHED */
    270 }
    271 
    272 int
    273 sys_sigqueueinfo(struct lwp *l, const struct sys_sigqueueinfo_args *uap,
    274     register_t *retval)
    275 {
    276 	/* {
    277 		syscallarg(pid_t int)	pid;
    278 		syscallarg(const siginfo_t *)	info;
    279 	} */
    280 	ksiginfo_t	ksi;
    281 	int error;
    282 
    283 	KSI_INIT(&ksi);
    284 
    285 	if ((error = copyin(&SCARG(uap, info)->_info, &ksi.ksi_info,
    286 	    sizeof(ksi.ksi_info))) != 0)
    287 		return error;
    288 
    289 	return kill1(l, SCARG(uap, pid), &ksi, retval);
    290 }
    291 
    292 int
    293 sys_kill(struct lwp *l, const struct sys_kill_args *uap, register_t *retval)
    294 {
    295 	/* {
    296 		syscallarg(pid_t)	pid;
    297 		syscallarg(int)	signum;
    298 	} */
    299 	ksiginfo_t	ksi;
    300 
    301 	KSI_INIT(&ksi);
    302 
    303 	ksi.ksi_signo = SCARG(uap, signum);
    304 	ksi.ksi_code = SI_USER;
    305 	ksi.ksi_pid = l->l_proc->p_pid;
    306 	ksi.ksi_uid = kauth_cred_geteuid(l->l_cred);
    307 
    308 	return kill1(l, SCARG(uap, pid), &ksi, retval);
    309 }
    310 
    311 int
    312 sys_getcontext(struct lwp *l, const struct sys_getcontext_args *uap,
    313     register_t *retval)
    314 {
    315 	/* {
    316 		syscallarg(struct __ucontext *) ucp;
    317 	} */
    318 	struct proc *p = l->l_proc;
    319 	ucontext_t uc;
    320 
    321 	memset(&uc, 0, sizeof(uc));
    322 
    323 	mutex_enter(p->p_lock);
    324 	getucontext(l, &uc);
    325 	mutex_exit(p->p_lock);
    326 
    327 	return copyout(&uc, SCARG(uap, ucp), sizeof (*SCARG(uap, ucp)));
    328 }
    329 
    330 int
    331 sys_setcontext(struct lwp *l, const struct sys_setcontext_args *uap,
    332     register_t *retval)
    333 {
    334 	/* {
    335 		syscallarg(const ucontext_t *) ucp;
    336 	} */
    337 	struct proc *p = l->l_proc;
    338 	ucontext_t uc;
    339 	int error;
    340 
    341 	error = copyin(SCARG(uap, ucp), &uc, sizeof (uc));
    342 	if (error)
    343 		return error;
    344 	if ((uc.uc_flags & _UC_CPU) == 0)
    345 		return EINVAL;
    346 	mutex_enter(p->p_lock);
    347 	error = setucontext(l, &uc);
    348 	mutex_exit(p->p_lock);
    349 	if (error)
    350  		return error;
    351 
    352 	return EJUSTRETURN;
    353 }
    354 
    355 /*
    356  * sigtimedwait(2) system call, used also for implementation
    357  * of sigwaitinfo() and sigwait().
    358  *
    359  * This only handles single LWP in signal wait. libpthread provides
    360  * its own sigtimedwait() wrapper to DTRT WRT individual threads.
    361  */
    362 int
    363 sys_____sigtimedwait50(struct lwp *l,
    364     const struct sys_____sigtimedwait50_args *uap, register_t *retval)
    365 {
    366 
    367 	return sigtimedwait1(l, uap, retval, copyin, copyout, copyin, copyout);
    368 }
    369 
    370 int
    371 sigaction1(struct lwp *l, int signum, const struct sigaction *nsa,
    372 	struct sigaction *osa, const void *tramp, int vers)
    373 {
    374 	struct proc *p;
    375 	struct sigacts *ps;
    376 	sigset_t tset;
    377 	int prop, error;
    378 	ksiginfoq_t kq;
    379 	static bool v0v1valid;
    380 
    381 	if (signum <= 0 || signum >= NSIG)
    382 		return EINVAL;
    383 
    384 	p = l->l_proc;
    385 	error = 0;
    386 	ksiginfo_queue_init(&kq);
    387 
    388 	/*
    389 	 * Trampoline ABI version 0 is reserved for the legacy kernel
    390 	 * provided on-stack trampoline.  Conversely, if we are using a
    391 	 * non-0 ABI version, we must have a trampoline.  Only validate the
    392 	 * vers if a new sigaction was supplied and there was an actual
    393 	 * handler specified (not SIG_IGN or SIG_DFL), which don't require
    394 	 * a trampoline. Emulations use legacy kernel trampolines with
    395 	 * version 0, alternatively check for that too.
    396 	 *
    397 	 * If version < 2, we try to autoload the compat module.  Note
    398 	 * that we interlock with the unload check in compat_modcmd()
    399 	 * using kernconfig_lock.  If the autoload fails, we don't try it
    400 	 * again for this process.
    401 	 */
    402 	if (nsa != NULL && nsa->sa_handler != SIG_IGN
    403 	    && nsa->sa_handler != SIG_DFL) {
    404 		if (__predict_false(vers < 2)) {
    405 			if (p->p_flag & PK_32)
    406 				v0v1valid = true;
    407 			else if ((p->p_lflag & PL_SIGCOMPAT) == 0) {
    408 				kernconfig_lock();
    409 				if (sendsig_sigcontext_vec == NULL) {
    410 					(void)module_autoload("compat",
    411 					    MODULE_CLASS_ANY);
    412 				}
    413 				if (sendsig_sigcontext_vec != NULL) {
    414 					/*
    415 					 * We need to remember if the
    416 					 * sigcontext method may be useable,
    417 					 * because libc may use it even
    418 					 * if siginfo is available.
    419 					 */
    420 					v0v1valid = true;
    421 				}
    422 				mutex_enter(proc_lock);
    423 				/*
    424 				 * Prevent unload of compat module while
    425 				 * this process remains.
    426 				 */
    427 				p->p_lflag |= PL_SIGCOMPAT;
    428 				mutex_exit(proc_lock);
    429 				kernconfig_unlock();
    430 			}
    431 		}
    432 
    433 		switch (vers) {
    434 		case 0:
    435 			/* sigcontext, kernel supplied trampoline. */
    436 			if (tramp != NULL || !v0v1valid) {
    437 				return EINVAL;
    438 			}
    439 			break;
    440 		case 1:
    441 			/* sigcontext, user supplied trampoline. */
    442 			if (tramp == NULL || !v0v1valid) {
    443 				return EINVAL;
    444 			}
    445 			break;
    446 		case 2:
    447 		case 3:
    448 			/* siginfo, user supplied trampoline. */
    449 			if (tramp == NULL) {
    450 				return EINVAL;
    451 			}
    452 			break;
    453 		default:
    454 			return EINVAL;
    455 		}
    456 	}
    457 
    458 	mutex_enter(p->p_lock);
    459 
    460 	ps = p->p_sigacts;
    461 	if (osa)
    462 		*osa = SIGACTION_PS(ps, signum);
    463 	if (!nsa)
    464 		goto out;
    465 
    466 	prop = sigprop[signum];
    467 	if ((nsa->sa_flags & ~SA_ALLBITS) || (prop & SA_CANTMASK)) {
    468 		error = EINVAL;
    469 		goto out;
    470 	}
    471 
    472 	SIGACTION_PS(ps, signum) = *nsa;
    473 	ps->sa_sigdesc[signum].sd_tramp = tramp;
    474 	ps->sa_sigdesc[signum].sd_vers = vers;
    475 	sigminusset(&sigcantmask, &SIGACTION_PS(ps, signum).sa_mask);
    476 
    477 	if ((prop & SA_NORESET) != 0)
    478 		SIGACTION_PS(ps, signum).sa_flags &= ~SA_RESETHAND;
    479 
    480 	if (signum == SIGCHLD) {
    481 		if (nsa->sa_flags & SA_NOCLDSTOP)
    482 			p->p_sflag |= PS_NOCLDSTOP;
    483 		else
    484 			p->p_sflag &= ~PS_NOCLDSTOP;
    485 		if (nsa->sa_flags & SA_NOCLDWAIT) {
    486 			/*
    487 			 * Paranoia: since SA_NOCLDWAIT is implemented by
    488 			 * reparenting the dying child to PID 1 (and trust
    489 			 * it to reap the zombie), PID 1 itself is forbidden
    490 			 * to set SA_NOCLDWAIT.
    491 			 */
    492 			if (p->p_pid == 1)
    493 				p->p_flag &= ~PK_NOCLDWAIT;
    494 			else
    495 				p->p_flag |= PK_NOCLDWAIT;
    496 		} else
    497 			p->p_flag &= ~PK_NOCLDWAIT;
    498 
    499 		if (nsa->sa_handler == SIG_IGN) {
    500 			/*
    501 			 * Paranoia: same as above.
    502 			 */
    503 			if (p->p_pid == 1)
    504 				p->p_flag &= ~PK_CLDSIGIGN;
    505 			else
    506 				p->p_flag |= PK_CLDSIGIGN;
    507 		} else
    508 			p->p_flag &= ~PK_CLDSIGIGN;
    509 	}
    510 
    511 	if ((nsa->sa_flags & SA_NODEFER) == 0)
    512 		sigaddset(&SIGACTION_PS(ps, signum).sa_mask, signum);
    513 	else
    514 		sigdelset(&SIGACTION_PS(ps, signum).sa_mask, signum);
    515 
    516 	/*
    517 	 * Set bit in p_sigctx.ps_sigignore for signals that are set to
    518 	 * SIG_IGN, and for signals set to SIG_DFL where the default is to
    519 	 * ignore. However, don't put SIGCONT in p_sigctx.ps_sigignore, as
    520 	 * we have to restart the process.
    521 	 */
    522 	if (nsa->sa_handler == SIG_IGN ||
    523 	    (nsa->sa_handler == SIG_DFL && (prop & SA_IGNORE) != 0)) {
    524 		/* Never to be seen again. */
    525 		sigemptyset(&tset);
    526 		sigaddset(&tset, signum);
    527 		sigclearall(p, &tset, &kq);
    528 		if (signum != SIGCONT) {
    529 			/* Easier in psignal */
    530 			sigaddset(&p->p_sigctx.ps_sigignore, signum);
    531 		}
    532 		sigdelset(&p->p_sigctx.ps_sigcatch, signum);
    533 	} else {
    534 		sigdelset(&p->p_sigctx.ps_sigignore, signum);
    535 		if (nsa->sa_handler == SIG_DFL)
    536 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
    537 		else
    538 			sigaddset(&p->p_sigctx.ps_sigcatch, signum);
    539 	}
    540 
    541 	/*
    542 	 * Previously held signals may now have become visible.  Ensure that
    543 	 * we check for them before returning to userspace.
    544 	 */
    545 	if (sigispending(l, 0)) {
    546 		lwp_lock(l);
    547 		l->l_flag |= LW_PENDSIG;
    548 		lwp_unlock(l);
    549 	}
    550 out:
    551 	mutex_exit(p->p_lock);
    552 	ksiginfo_queue_drain(&kq);
    553 
    554 	return error;
    555 }
    556 
    557 int
    558 sigprocmask1(struct lwp *l, int how, const sigset_t *nss, sigset_t *oss)
    559 {
    560 	sigset_t *mask = &l->l_sigmask;
    561 	bool more;
    562 
    563 	KASSERT(mutex_owned(l->l_proc->p_lock));
    564 
    565 	if (oss) {
    566 		*oss = *mask;
    567 	}
    568 
    569 	if (nss == NULL) {
    570 		return 0;
    571 	}
    572 
    573 	switch (how) {
    574 	case SIG_BLOCK:
    575 		sigplusset(nss, mask);
    576 		more = false;
    577 		break;
    578 	case SIG_UNBLOCK:
    579 		sigminusset(nss, mask);
    580 		more = true;
    581 		break;
    582 	case SIG_SETMASK:
    583 		*mask = *nss;
    584 		more = true;
    585 		break;
    586 	default:
    587 		return EINVAL;
    588 	}
    589 	sigminusset(&sigcantmask, mask);
    590 	if (more && sigispending(l, 0)) {
    591 		/*
    592 		 * Check for pending signals on return to user.
    593 		 */
    594 		lwp_lock(l);
    595 		l->l_flag |= LW_PENDSIG;
    596 		lwp_unlock(l);
    597 	}
    598 	return 0;
    599 }
    600 
    601 void
    602 sigpending1(struct lwp *l, sigset_t *ss)
    603 {
    604 	struct proc *p = l->l_proc;
    605 
    606 	mutex_enter(p->p_lock);
    607 	*ss = l->l_sigpend.sp_set;
    608 	sigplusset(&p->p_sigpend.sp_set, ss);
    609 	mutex_exit(p->p_lock);
    610 }
    611 
    612 void
    613 sigsuspendsetup(struct lwp *l, const sigset_t *ss)
    614 {
    615 	struct proc *p = l->l_proc;
    616 
    617 	/*
    618 	 * When returning from sigsuspend/pselect/pollts, we want
    619 	 * the old mask to be restored after the
    620 	 * signal handler has finished.  Thus, we
    621 	 * save it here and mark the sigctx structure
    622 	 * to indicate this.
    623 	 */
    624 	mutex_enter(p->p_lock);
    625 	l->l_sigrestore = 1;
    626 	l->l_sigoldmask = l->l_sigmask;
    627 	l->l_sigmask = *ss;
    628 	sigminusset(&sigcantmask, &l->l_sigmask);
    629 
    630 	/* Check for pending signals when sleeping. */
    631 	if (sigispending(l, 0)) {
    632 		lwp_lock(l);
    633 		l->l_flag |= LW_PENDSIG;
    634 		lwp_unlock(l);
    635 	}
    636 	mutex_exit(p->p_lock);
    637 }
    638 
    639 void
    640 sigsuspendteardown(struct lwp *l)
    641 {
    642 	struct proc *p = l->l_proc;
    643 
    644 	mutex_enter(p->p_lock);
    645 	/* Check for pending signals when sleeping. */
    646 	if (l->l_sigrestore) {
    647 		if (sigispending(l, 0)) {
    648 			lwp_lock(l);
    649 			l->l_flag |= LW_PENDSIG;
    650 			lwp_unlock(l);
    651 		} else {
    652 			l->l_sigrestore = 0;
    653 			l->l_sigmask = l->l_sigoldmask;
    654 		}
    655 	}
    656 	mutex_exit(p->p_lock);
    657 }
    658 
    659 int
    660 sigsuspend1(struct lwp *l, const sigset_t *ss)
    661 {
    662 
    663 	if (ss)
    664 		sigsuspendsetup(l, ss);
    665 
    666 	while (kpause("pause", true, 0, NULL) == 0)
    667 		;
    668 
    669 	/* always return EINTR rather than ERESTART... */
    670 	return EINTR;
    671 }
    672 
    673 int
    674 sigaltstack1(struct lwp *l, const struct sigaltstack *nss,
    675     struct sigaltstack *oss)
    676 {
    677 	struct proc *p = l->l_proc;
    678 	int error = 0;
    679 
    680 	mutex_enter(p->p_lock);
    681 
    682 	if (oss)
    683 		*oss = l->l_sigstk;
    684 
    685 	if (nss) {
    686 		if (nss->ss_flags & ~SS_ALLBITS)
    687 			error = EINVAL;
    688 		else if (nss->ss_flags & SS_DISABLE) {
    689 			if (l->l_sigstk.ss_flags & SS_ONSTACK)
    690 				error = EINVAL;
    691 		} else if (nss->ss_size < MINSIGSTKSZ)
    692 			error = ENOMEM;
    693 
    694 		if (!error)
    695 			l->l_sigstk = *nss;
    696 	}
    697 
    698 	mutex_exit(p->p_lock);
    699 
    700 	return error;
    701 }
    702 
    703 int
    704 sigtimedwait1(struct lwp *l, const struct sys_____sigtimedwait50_args *uap,
    705     register_t *retval, copyin_t fetchss, copyout_t storeinf, copyin_t fetchts,
    706     copyout_t storets)
    707 {
    708 	/* {
    709 		syscallarg(const sigset_t *) set;
    710 		syscallarg(siginfo_t *) info;
    711 		syscallarg(struct timespec *) timeout;
    712 	} */
    713 	struct proc *p = l->l_proc;
    714 	int error, signum, timo;
    715 	struct timespec ts, tsstart, tsnow;
    716 	ksiginfo_t ksi;
    717 
    718 	/*
    719 	 * Calculate timeout, if it was specified.
    720 	 *
    721 	 * NULL pointer means an infinite timeout.
    722 	 * {.tv_sec = 0, .tv_nsec = 0} means do not block.
    723 	 */
    724 	if (SCARG(uap, timeout)) {
    725 		error = (*fetchts)(SCARG(uap, timeout), &ts, sizeof(ts));
    726 		if (error)
    727 			return error;
    728 
    729 		if ((error = itimespecfix(&ts)) != 0)
    730 			return error;
    731 
    732 		timo = tstohz(&ts);
    733 		if (timo == 0) {
    734 			if (ts.tv_sec == 0 && ts.tv_nsec == 0)
    735 				timo = -1; /* do not block */
    736 			else
    737 				timo = 1; /* the shortest possible timeout */
    738 		}
    739 
    740 		/*
    741 		 * Remember current uptime, it would be used in
    742 		 * ECANCELED/ERESTART case.
    743 		 */
    744 		getnanouptime(&tsstart);
    745 	} else {
    746 		memset(&tsstart, 0, sizeof(tsstart)); /* XXXgcc */
    747 		timo = 0; /* infinite timeout */
    748 	}
    749 
    750 	error = (*fetchss)(SCARG(uap, set), &l->l_sigwaitset,
    751 	    sizeof(l->l_sigwaitset));
    752 	if (error)
    753 		return error;
    754 
    755 	/*
    756 	 * Silently ignore SA_CANTMASK signals. psignal1() would ignore
    757 	 * SA_CANTMASK signals in waitset, we do this only for the below
    758 	 * siglist check.
    759 	 */
    760 	sigminusset(&sigcantmask, &l->l_sigwaitset);
    761 
    762 	mutex_enter(p->p_lock);
    763 
    764 	/* Check for pending signals in the process, if no - then in LWP. */
    765 	if ((signum = sigget(&p->p_sigpend, &ksi, 0, &l->l_sigwaitset)) == 0)
    766 		signum = sigget(&l->l_sigpend, &ksi, 0, &l->l_sigwaitset);
    767 
    768 	if (signum != 0) {
    769 		/* If found a pending signal, just copy it out to the user. */
    770 		mutex_exit(p->p_lock);
    771 		goto out;
    772 	}
    773 
    774 	if (timo < 0) {
    775 		/* If not allowed to block, return an error */
    776 		mutex_exit(p->p_lock);
    777 		return EAGAIN;
    778 	}
    779 
    780 	/*
    781 	 * Set up the sigwait list and wait for signal to arrive.
    782 	 * We can either be woken up or time out.
    783 	 */
    784 	l->l_sigwaited = &ksi;
    785 	LIST_INSERT_HEAD(&p->p_sigwaiters, l, l_sigwaiter);
    786 	error = cv_timedwait_sig(&l->l_sigcv, p->p_lock, timo);
    787 
    788 	/*
    789 	 * Need to find out if we woke as a result of _lwp_wakeup() or a
    790 	 * signal outside our wait set.
    791 	 */
    792 	if (l->l_sigwaited != NULL) {
    793 		if (error == EINTR) {
    794 			/* Wakeup via _lwp_wakeup(). */
    795 			error = ECANCELED;
    796 		} else if (!error) {
    797 			/* Spurious wakeup - arrange for syscall restart. */
    798 			error = ERESTART;
    799 		}
    800 		l->l_sigwaited = NULL;
    801 		LIST_REMOVE(l, l_sigwaiter);
    802 	}
    803 	mutex_exit(p->p_lock);
    804 
    805 	/*
    806 	 * If the sleep was interrupted (either by signal or wakeup), update
    807 	 * the timeout and copyout new value back.  It would be used when
    808 	 * the syscall would be restarted or called again.
    809 	 */
    810 	if (timo && (error == ERESTART || error == ECANCELED)) {
    811 		getnanouptime(&tsnow);
    812 
    813 		/* Compute how much time has passed since start. */
    814 		timespecsub(&tsnow, &tsstart, &tsnow);
    815 
    816 		/* Substract passed time from timeout. */
    817 		timespecsub(&ts, &tsnow, &ts);
    818 
    819 		if (ts.tv_sec < 0)
    820 			error = EAGAIN;
    821 		else {
    822 			/* Copy updated timeout to userland. */
    823 			error = (*storets)(&ts, SCARG(uap, timeout),
    824 			    sizeof(ts));
    825 		}
    826 	}
    827 out:
    828 	/*
    829 	 * If a signal from the wait set arrived, copy it to userland.
    830 	 * Copy only the used part of siginfo, the padding part is
    831 	 * left unchanged (userland is not supposed to touch it anyway).
    832 	 */
    833 	if (error == 0 && SCARG(uap, info)) {
    834 		error = (*storeinf)(&ksi.ksi_info, SCARG(uap, info),
    835 		    sizeof(ksi.ksi_info));
    836 	}
    837 	if (error == 0)
    838 		*retval = ksi.ksi_info._signo;
    839 	return error;
    840 }
    841