Home | History | Annotate | Line # | Download | only in kern
sys_sig.c revision 1.50
      1 /*	$NetBSD: sys_sig.c,v 1.50 2019/11/10 13:28:06 pgoyette Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     34  *	The Regents of the University of California.  All rights reserved.
     35  * (c) UNIX System Laboratories, Inc.
     36  * All or some portions of this file are derived from material licensed
     37  * to the University of California by American Telephone and Telegraph
     38  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     39  * the permission of UNIX System Laboratories, Inc.
     40  *
     41  * Redistribution and use in source and binary forms, with or without
     42  * modification, are permitted provided that the following conditions
     43  * are met:
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. Neither the name of the University nor the names of its contributors
     50  *    may be used to endorse or promote products derived from this software
     51  *    without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
     66  */
     67 
     68 #include <sys/cdefs.h>
     69 __KERNEL_RCSID(0, "$NetBSD: sys_sig.c,v 1.50 2019/11/10 13:28:06 pgoyette Exp $");
     70 
     71 #include "opt_dtrace.h"
     72 
     73 #include <sys/param.h>
     74 #include <sys/kernel.h>
     75 #include <sys/signalvar.h>
     76 #include <sys/proc.h>
     77 #include <sys/pool.h>
     78 #include <sys/syscallargs.h>
     79 #include <sys/kauth.h>
     80 #include <sys/wait.h>
     81 #include <sys/kmem.h>
     82 #include <sys/module.h>
     83 #include <sys/sdt.h>
     84 #include <sys/compat_stub.h>
     85 
     86 SDT_PROVIDER_DECLARE(proc);
     87 SDT_PROBE_DEFINE2(proc, kernel, , signal__clear,
     88     "int", 		/* signal */
     89     "ksiginfo_t *");	/* signal-info */
     90 
     91 int
     92 sys___sigaction_sigtramp(struct lwp *l,
     93     const struct sys___sigaction_sigtramp_args *uap, register_t *retval)
     94 {
     95 	/* {
     96 		syscallarg(int)				signum;
     97 		syscallarg(const struct sigaction *)	nsa;
     98 		syscallarg(struct sigaction *)		osa;
     99 		syscallarg(void *)			tramp;
    100 		syscallarg(int)				vers;
    101 	} */
    102 	struct sigaction nsa, osa;
    103 	int error;
    104 
    105 	if (SCARG(uap, nsa)) {
    106 		error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
    107 		if (error)
    108 			return (error);
    109 	}
    110 	error = sigaction1(l, SCARG(uap, signum),
    111 	    SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
    112 	    SCARG(uap, tramp), SCARG(uap, vers));
    113 	if (error)
    114 		return (error);
    115 	if (SCARG(uap, osa)) {
    116 		error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
    117 		if (error)
    118 			return (error);
    119 	}
    120 	return 0;
    121 }
    122 
    123 /*
    124  * Manipulate signal mask.  Note that we receive new mask, not pointer, and
    125  * return old mask as return value; the library stub does the rest.
    126  */
    127 int
    128 sys___sigprocmask14(struct lwp *l, const struct sys___sigprocmask14_args *uap,
    129     register_t *retval)
    130 {
    131 	/* {
    132 		syscallarg(int)			how;
    133 		syscallarg(const sigset_t *)	set;
    134 		syscallarg(sigset_t *)		oset;
    135 	} */
    136 	struct proc	*p = l->l_proc;
    137 	sigset_t	nss, oss;
    138 	int		error;
    139 
    140 	if (SCARG(uap, set)) {
    141 		error = copyin(SCARG(uap, set), &nss, sizeof(nss));
    142 		if (error)
    143 			return error;
    144 	}
    145 	mutex_enter(p->p_lock);
    146 	error = sigprocmask1(l, SCARG(uap, how),
    147 	    SCARG(uap, set) ? &nss : 0, SCARG(uap, oset) ? &oss : 0);
    148 	mutex_exit(p->p_lock);
    149 	if (error)
    150 		return error;
    151 	if (SCARG(uap, oset)) {
    152 		error = copyout(&oss, SCARG(uap, oset), sizeof(oss));
    153 		if (error)
    154 			return error;
    155 	}
    156 	return 0;
    157 }
    158 
    159 int
    160 sys___sigpending14(struct lwp *l, const struct sys___sigpending14_args *uap,
    161     register_t *retval)
    162 {
    163 	/* {
    164 		syscallarg(sigset_t *)	set;
    165 	} */
    166 	sigset_t ss;
    167 
    168 	sigpending1(l, &ss);
    169 	return copyout(&ss, SCARG(uap, set), sizeof(ss));
    170 }
    171 
    172 /*
    173  * Suspend process until signal, providing mask to be set in the meantime.
    174  * Note nonstandard calling convention: libc stub passes mask, not pointer,
    175  * to save a copyin.
    176  */
    177 int
    178 sys___sigsuspend14(struct lwp *l, const struct sys___sigsuspend14_args *uap,
    179     register_t *retval)
    180 {
    181 	/* {
    182 		syscallarg(const sigset_t *)	set;
    183 	} */
    184 	sigset_t	ss;
    185 	int		error;
    186 
    187 	if (SCARG(uap, set)) {
    188 		error = copyin(SCARG(uap, set), &ss, sizeof(ss));
    189 		if (error)
    190 			return error;
    191 	}
    192 	return sigsuspend1(l, SCARG(uap, set) ? &ss : 0);
    193 }
    194 
    195 int
    196 sys___sigaltstack14(struct lwp *l, const struct sys___sigaltstack14_args *uap,
    197     register_t *retval)
    198 {
    199 	/* {
    200 		syscallarg(const struct sigaltstack *)	nss;
    201 		syscallarg(struct sigaltstack *)	oss;
    202 	} */
    203 	struct sigaltstack	nss, oss;
    204 	int			error;
    205 
    206 	if (SCARG(uap, nss)) {
    207 		error = copyin(SCARG(uap, nss), &nss, sizeof(nss));
    208 		if (error)
    209 			return error;
    210 	}
    211 	error = sigaltstack1(l,
    212 	    SCARG(uap, nss) ? &nss : 0, SCARG(uap, oss) ? &oss : 0);
    213 	if (error)
    214 		return error;
    215 	if (SCARG(uap, oss)) {
    216 		error = copyout(&oss, SCARG(uap, oss), sizeof(oss));
    217 		if (error)
    218 			return error;
    219 	}
    220 	return 0;
    221 }
    222 
    223 int
    224 kill1(struct lwp *l, pid_t pid, ksiginfo_t *ksi, register_t *retval)
    225 {
    226 	int error;
    227 	struct proc *p;
    228 
    229 	if ((u_int)ksi->ksi_signo >= NSIG)
    230 		return EINVAL;
    231 
    232 	if (pid != l->l_proc->p_pid) {
    233 		if (ksi->ksi_pid != l->l_proc->p_pid)
    234 			return EPERM;
    235 
    236 		if (ksi->ksi_uid != kauth_cred_geteuid(l->l_cred))
    237 			return EPERM;
    238 
    239 		switch (ksi->ksi_code) {
    240 		case SI_USER:
    241 		case SI_QUEUE:
    242 			break;
    243 		default:
    244 			return EPERM;
    245 		}
    246 	}
    247 
    248 	if (pid > 0) {
    249 		/* kill single process */
    250 		mutex_enter(proc_lock);
    251 		p = proc_find_raw(pid);
    252 		if (p == NULL || (p->p_stat != SACTIVE && p->p_stat != SSTOP)) {
    253 			mutex_exit(proc_lock);
    254 			/* IEEE Std 1003.1-2001: return success for zombies */
    255 			return p ? 0 : ESRCH;
    256 		}
    257 		mutex_enter(p->p_lock);
    258 		error = kauth_authorize_process(l->l_cred,
    259 		    KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(ksi->ksi_signo),
    260 		    NULL, NULL);
    261 		if (!error && ksi->ksi_signo) {
    262 			error = kpsignal2(p, ksi);
    263 		}
    264 		mutex_exit(p->p_lock);
    265 		mutex_exit(proc_lock);
    266 		return error;
    267 	}
    268 
    269 	switch (pid) {
    270 	case -1:		/* broadcast signal */
    271 		return killpg1(l, ksi, 0, 1);
    272 	case 0:			/* signal own process group */
    273 		return killpg1(l, ksi, 0, 0);
    274 	default:		/* negative explicit process group */
    275 		return killpg1(l, ksi, -pid, 0);
    276 	}
    277 	/* NOTREACHED */
    278 }
    279 
    280 int
    281 sys_sigqueueinfo(struct lwp *l, const struct sys_sigqueueinfo_args *uap,
    282     register_t *retval)
    283 {
    284 	/* {
    285 		syscallarg(pid_t int)	pid;
    286 		syscallarg(const siginfo_t *)	info;
    287 	} */
    288 	ksiginfo_t	ksi;
    289 	int error;
    290 
    291 	KSI_INIT(&ksi);
    292 
    293 	if ((error = copyin(&SCARG(uap, info)->_info, &ksi.ksi_info,
    294 	    sizeof(ksi.ksi_info))) != 0)
    295 		return error;
    296 
    297 	return kill1(l, SCARG(uap, pid), &ksi, retval);
    298 }
    299 
    300 int
    301 sys_kill(struct lwp *l, const struct sys_kill_args *uap, register_t *retval)
    302 {
    303 	/* {
    304 		syscallarg(pid_t)	pid;
    305 		syscallarg(int)	signum;
    306 	} */
    307 	ksiginfo_t	ksi;
    308 
    309 	KSI_INIT(&ksi);
    310 
    311 	ksi.ksi_signo = SCARG(uap, signum);
    312 	ksi.ksi_code = SI_USER;
    313 	ksi.ksi_pid = l->l_proc->p_pid;
    314 	ksi.ksi_uid = kauth_cred_geteuid(l->l_cred);
    315 
    316 	return kill1(l, SCARG(uap, pid), &ksi, retval);
    317 }
    318 
    319 int
    320 sys_getcontext(struct lwp *l, const struct sys_getcontext_args *uap,
    321     register_t *retval)
    322 {
    323 	/* {
    324 		syscallarg(struct __ucontext *) ucp;
    325 	} */
    326 	struct proc *p = l->l_proc;
    327 	ucontext_t uc;
    328 
    329 	memset(&uc, 0, sizeof(uc));
    330 
    331 	mutex_enter(p->p_lock);
    332 	getucontext(l, &uc);
    333 	mutex_exit(p->p_lock);
    334 
    335 	return copyout(&uc, SCARG(uap, ucp), sizeof (*SCARG(uap, ucp)));
    336 }
    337 
    338 int
    339 sys_setcontext(struct lwp *l, const struct sys_setcontext_args *uap,
    340     register_t *retval)
    341 {
    342 	/* {
    343 		syscallarg(const ucontext_t *) ucp;
    344 	} */
    345 	struct proc *p = l->l_proc;
    346 	ucontext_t uc;
    347 	int error;
    348 
    349 	error = copyin(SCARG(uap, ucp), &uc, sizeof (uc));
    350 	if (error)
    351 		return error;
    352 	if ((uc.uc_flags & _UC_CPU) == 0)
    353 		return EINVAL;
    354 	mutex_enter(p->p_lock);
    355 	error = setucontext(l, &uc);
    356 	mutex_exit(p->p_lock);
    357 	if (error)
    358  		return error;
    359 
    360 	return EJUSTRETURN;
    361 }
    362 
    363 /*
    364  * sigtimedwait(2) system call, used also for implementation
    365  * of sigwaitinfo() and sigwait().
    366  *
    367  * This only handles single LWP in signal wait. libpthread provides
    368  * its own sigtimedwait() wrapper to DTRT WRT individual threads.
    369  */
    370 int
    371 sys_____sigtimedwait50(struct lwp *l,
    372     const struct sys_____sigtimedwait50_args *uap, register_t *retval)
    373 {
    374 
    375 	return sigtimedwait1(l, uap, retval, copyin, copyout, copyin, copyout);
    376 }
    377 
    378 int
    379 sigaction1(struct lwp *l, int signum, const struct sigaction *nsa,
    380 	struct sigaction *osa, const void *tramp, int vers)
    381 {
    382 	struct proc *p;
    383 	struct sigacts *ps;
    384 	sigset_t tset;
    385 	int prop, error;
    386 	ksiginfoq_t kq;
    387 	static bool v0v1valid;
    388 
    389 	if (signum <= 0 || signum >= NSIG)
    390 		return EINVAL;
    391 
    392 	p = l->l_proc;
    393 	error = 0;
    394 	ksiginfo_queue_init(&kq);
    395 
    396 	/*
    397 	 * Trampoline ABI version 0 is reserved for the legacy kernel
    398 	 * provided on-stack trampoline.  Conversely, if we are using a
    399 	 * non-0 ABI version, we must have a trampoline.  Only validate the
    400 	 * vers if a new sigaction was supplied and there was an actual
    401 	 * handler specified (not SIG_IGN or SIG_DFL), which don't require
    402 	 * a trampoline. Emulations use legacy kernel trampolines with
    403 	 * version 0, alternatively check for that too.
    404 	 *
    405 	 * If version < 2, we try to autoload the compat module.  Note
    406 	 * that we interlock with the unload check in compat_modcmd()
    407 	 * using kernconfig_lock.  If the autoload fails, we don't try it
    408 	 * again for this process.
    409 	 */
    410 	if (nsa != NULL && nsa->sa_handler != SIG_IGN
    411 	    && nsa->sa_handler != SIG_DFL) {
    412 		if (__predict_false(vers < 2)) {
    413 			if (p->p_flag & PK_32)
    414 				v0v1valid = true;
    415 			else if ((p->p_lflag & PL_SIGCOMPAT) == 0) {
    416 				kernconfig_lock();
    417 				(void)module_autoload("compat_16",
    418 				    MODULE_CLASS_ANY);
    419 				if (sendsig_sigcontext_16_hook.hooked) {
    420 					/*
    421 					 * We need to remember if the
    422 					 * sigcontext method may be useable,
    423 					 * because libc may use it even
    424 					 * if siginfo is available.
    425 					 */
    426 					v0v1valid = true;
    427 				}
    428 				mutex_enter(proc_lock);
    429 				/*
    430 				 * Prevent unload of compat module while
    431 				 * this process remains.
    432 				 */
    433 				p->p_lflag |= PL_SIGCOMPAT;
    434 				mutex_exit(proc_lock);
    435 				kernconfig_unlock();
    436 			}
    437 		}
    438 
    439 		switch (vers) {
    440 		case 0:
    441 			/* sigcontext, kernel supplied trampoline. */
    442 			if (tramp != NULL || !v0v1valid) {
    443 				return EINVAL;
    444 			}
    445 			break;
    446 		case 1:
    447 			/* sigcontext, user supplied trampoline. */
    448 			if (tramp == NULL || !v0v1valid) {
    449 				return EINVAL;
    450 			}
    451 			break;
    452 		case 2:
    453 		case 3:
    454 			/* siginfo, user supplied trampoline. */
    455 			if (tramp == NULL) {
    456 				return EINVAL;
    457 			}
    458 			break;
    459 		default:
    460 			return EINVAL;
    461 		}
    462 	}
    463 
    464 	mutex_enter(p->p_lock);
    465 
    466 	ps = p->p_sigacts;
    467 	if (osa)
    468 		sigaction_copy(osa, &SIGACTION_PS(ps, signum));
    469 	if (!nsa)
    470 		goto out;
    471 
    472 	prop = sigprop[signum];
    473 	if ((nsa->sa_flags & ~SA_ALLBITS) || (prop & SA_CANTMASK)) {
    474 		error = EINVAL;
    475 		goto out;
    476 	}
    477 
    478 	sigaction_copy(&SIGACTION_PS(ps, signum), nsa);
    479 	ps->sa_sigdesc[signum].sd_tramp = tramp;
    480 	ps->sa_sigdesc[signum].sd_vers = vers;
    481 	sigminusset(&sigcantmask, &SIGACTION_PS(ps, signum).sa_mask);
    482 
    483 	if ((prop & SA_NORESET) != 0)
    484 		SIGACTION_PS(ps, signum).sa_flags &= ~SA_RESETHAND;
    485 
    486 	if (signum == SIGCHLD) {
    487 		if (nsa->sa_flags & SA_NOCLDSTOP)
    488 			p->p_sflag |= PS_NOCLDSTOP;
    489 		else
    490 			p->p_sflag &= ~PS_NOCLDSTOP;
    491 		if (nsa->sa_flags & SA_NOCLDWAIT) {
    492 			/*
    493 			 * Paranoia: since SA_NOCLDWAIT is implemented by
    494 			 * reparenting the dying child to PID 1 (and trust
    495 			 * it to reap the zombie), PID 1 itself is forbidden
    496 			 * to set SA_NOCLDWAIT.
    497 			 */
    498 			if (p->p_pid == 1)
    499 				p->p_flag &= ~PK_NOCLDWAIT;
    500 			else
    501 				p->p_flag |= PK_NOCLDWAIT;
    502 		} else
    503 			p->p_flag &= ~PK_NOCLDWAIT;
    504 
    505 		if (nsa->sa_handler == SIG_IGN) {
    506 			/*
    507 			 * Paranoia: same as above.
    508 			 */
    509 			if (p->p_pid == 1)
    510 				p->p_flag &= ~PK_CLDSIGIGN;
    511 			else
    512 				p->p_flag |= PK_CLDSIGIGN;
    513 		} else
    514 			p->p_flag &= ~PK_CLDSIGIGN;
    515 	}
    516 
    517 	if ((nsa->sa_flags & SA_NODEFER) == 0)
    518 		sigaddset(&SIGACTION_PS(ps, signum).sa_mask, signum);
    519 	else
    520 		sigdelset(&SIGACTION_PS(ps, signum).sa_mask, signum);
    521 
    522 	/*
    523 	 * Set bit in p_sigctx.ps_sigignore for signals that are set to
    524 	 * SIG_IGN, and for signals set to SIG_DFL where the default is to
    525 	 * ignore. However, don't put SIGCONT in p_sigctx.ps_sigignore, as
    526 	 * we have to restart the process.
    527 	 */
    528 	if (nsa->sa_handler == SIG_IGN ||
    529 	    (nsa->sa_handler == SIG_DFL && (prop & SA_IGNORE) != 0)) {
    530 		/* Never to be seen again. */
    531 		sigemptyset(&tset);
    532 		sigaddset(&tset, signum);
    533 		sigclearall(p, &tset, &kq);
    534 		if (signum != SIGCONT) {
    535 			/* Easier in psignal */
    536 			sigaddset(&p->p_sigctx.ps_sigignore, signum);
    537 		}
    538 		sigdelset(&p->p_sigctx.ps_sigcatch, signum);
    539 	} else {
    540 		sigdelset(&p->p_sigctx.ps_sigignore, signum);
    541 		if (nsa->sa_handler == SIG_DFL)
    542 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
    543 		else
    544 			sigaddset(&p->p_sigctx.ps_sigcatch, signum);
    545 	}
    546 
    547 	/*
    548 	 * Previously held signals may now have become visible.  Ensure that
    549 	 * we check for them before returning to userspace.
    550 	 */
    551 	if (sigispending(l, 0)) {
    552 		lwp_lock(l);
    553 		l->l_flag |= LW_PENDSIG;
    554 		lwp_unlock(l);
    555 	}
    556 out:
    557 	mutex_exit(p->p_lock);
    558 	ksiginfo_queue_drain(&kq);
    559 
    560 	return error;
    561 }
    562 
    563 int
    564 sigprocmask1(struct lwp *l, int how, const sigset_t *nss, sigset_t *oss)
    565 {
    566 	sigset_t *mask = &l->l_sigmask;
    567 	bool more;
    568 
    569 	KASSERT(mutex_owned(l->l_proc->p_lock));
    570 
    571 	if (oss) {
    572 		*oss = *mask;
    573 	}
    574 
    575 	if (nss == NULL) {
    576 		return 0;
    577 	}
    578 
    579 	switch (how) {
    580 	case SIG_BLOCK:
    581 		sigplusset(nss, mask);
    582 		more = false;
    583 		break;
    584 	case SIG_UNBLOCK:
    585 		sigminusset(nss, mask);
    586 		more = true;
    587 		break;
    588 	case SIG_SETMASK:
    589 		*mask = *nss;
    590 		more = true;
    591 		break;
    592 	default:
    593 		return EINVAL;
    594 	}
    595 	sigminusset(&sigcantmask, mask);
    596 	if (more && sigispending(l, 0)) {
    597 		/*
    598 		 * Check for pending signals on return to user.
    599 		 */
    600 		lwp_lock(l);
    601 		l->l_flag |= LW_PENDSIG;
    602 		lwp_unlock(l);
    603 	}
    604 	return 0;
    605 }
    606 
    607 void
    608 sigpending1(struct lwp *l, sigset_t *ss)
    609 {
    610 	struct proc *p = l->l_proc;
    611 
    612 	mutex_enter(p->p_lock);
    613 	*ss = l->l_sigpend.sp_set;
    614 	sigplusset(&p->p_sigpend.sp_set, ss);
    615 	mutex_exit(p->p_lock);
    616 }
    617 
    618 void
    619 sigsuspendsetup(struct lwp *l, const sigset_t *ss)
    620 {
    621 	struct proc *p = l->l_proc;
    622 
    623 	/*
    624 	 * When returning from sigsuspend/pselect/pollts, we want
    625 	 * the old mask to be restored after the
    626 	 * signal handler has finished.  Thus, we
    627 	 * save it here and mark the sigctx structure
    628 	 * to indicate this.
    629 	 */
    630 	mutex_enter(p->p_lock);
    631 	l->l_sigrestore = 1;
    632 	l->l_sigoldmask = l->l_sigmask;
    633 	l->l_sigmask = *ss;
    634 	sigminusset(&sigcantmask, &l->l_sigmask);
    635 
    636 	/* Check for pending signals when sleeping. */
    637 	if (sigispending(l, 0)) {
    638 		lwp_lock(l);
    639 		l->l_flag |= LW_PENDSIG;
    640 		lwp_unlock(l);
    641 	}
    642 	mutex_exit(p->p_lock);
    643 }
    644 
    645 void
    646 sigsuspendteardown(struct lwp *l)
    647 {
    648 	struct proc *p = l->l_proc;
    649 
    650 	mutex_enter(p->p_lock);
    651 	/* Check for pending signals when sleeping. */
    652 	if (l->l_sigrestore) {
    653 		if (sigispending(l, 0)) {
    654 			lwp_lock(l);
    655 			l->l_flag |= LW_PENDSIG;
    656 			lwp_unlock(l);
    657 		} else {
    658 			l->l_sigrestore = 0;
    659 			l->l_sigmask = l->l_sigoldmask;
    660 		}
    661 	}
    662 	mutex_exit(p->p_lock);
    663 }
    664 
    665 int
    666 sigsuspend1(struct lwp *l, const sigset_t *ss)
    667 {
    668 
    669 	if (ss)
    670 		sigsuspendsetup(l, ss);
    671 
    672 	while (kpause("pause", true, 0, NULL) == 0)
    673 		;
    674 
    675 	/* always return EINTR rather than ERESTART... */
    676 	return EINTR;
    677 }
    678 
    679 int
    680 sigaltstack1(struct lwp *l, const struct sigaltstack *nss,
    681     struct sigaltstack *oss)
    682 {
    683 	struct proc *p = l->l_proc;
    684 	int error = 0;
    685 
    686 	mutex_enter(p->p_lock);
    687 
    688 	if (oss)
    689 		*oss = l->l_sigstk;
    690 
    691 	if (nss) {
    692 		if (nss->ss_flags & ~SS_ALLBITS)
    693 			error = EINVAL;
    694 		else if (nss->ss_flags & SS_DISABLE) {
    695 			if (l->l_sigstk.ss_flags & SS_ONSTACK)
    696 				error = EINVAL;
    697 		} else if (nss->ss_size < MINSIGSTKSZ)
    698 			error = ENOMEM;
    699 
    700 		if (!error)
    701 			l->l_sigstk = *nss;
    702 	}
    703 
    704 	mutex_exit(p->p_lock);
    705 
    706 	return error;
    707 }
    708 
    709 int
    710 sigtimedwait1(struct lwp *l, const struct sys_____sigtimedwait50_args *uap,
    711     register_t *retval, copyin_t fetchss, copyout_t storeinf, copyin_t fetchts,
    712     copyout_t storets)
    713 {
    714 	/* {
    715 		syscallarg(const sigset_t *) set;
    716 		syscallarg(siginfo_t *) info;
    717 		syscallarg(struct timespec *) timeout;
    718 	} */
    719 	struct proc *p = l->l_proc;
    720 	int error, signum, timo;
    721 	struct timespec ts, tsstart, tsnow;
    722 	ksiginfo_t ksi;
    723 
    724 	/*
    725 	 * Calculate timeout, if it was specified.
    726 	 *
    727 	 * NULL pointer means an infinite timeout.
    728 	 * {.tv_sec = 0, .tv_nsec = 0} means do not block.
    729 	 */
    730 	if (SCARG(uap, timeout)) {
    731 		error = (*fetchts)(SCARG(uap, timeout), &ts, sizeof(ts));
    732 		if (error)
    733 			return error;
    734 
    735 		if ((error = itimespecfix(&ts)) != 0)
    736 			return error;
    737 
    738 		timo = tstohz(&ts);
    739 		if (timo == 0) {
    740 			if (ts.tv_sec == 0 && ts.tv_nsec == 0)
    741 				timo = -1; /* do not block */
    742 			else
    743 				timo = 1; /* the shortest possible timeout */
    744 		}
    745 
    746 		/*
    747 		 * Remember current uptime, it would be used in
    748 		 * ECANCELED/ERESTART case.
    749 		 */
    750 		getnanouptime(&tsstart);
    751 	} else {
    752 		memset(&tsstart, 0, sizeof(tsstart)); /* XXXgcc */
    753 		timo = 0; /* infinite timeout */
    754 	}
    755 
    756 	error = (*fetchss)(SCARG(uap, set), &l->l_sigwaitset,
    757 	    sizeof(l->l_sigwaitset));
    758 	if (error)
    759 		return error;
    760 
    761 	/*
    762 	 * Silently ignore SA_CANTMASK signals. psignal1() would ignore
    763 	 * SA_CANTMASK signals in waitset, we do this only for the below
    764 	 * siglist check.
    765 	 */
    766 	sigminusset(&sigcantmask, &l->l_sigwaitset);
    767 
    768 	memset(&ksi.ksi_info, 0, sizeof(ksi.ksi_info));
    769 
    770 	mutex_enter(p->p_lock);
    771 
    772 	/* Check for pending signals in the process, if no - then in LWP. */
    773 	if ((signum = sigget(&p->p_sigpend, &ksi, 0, &l->l_sigwaitset)) == 0)
    774 		signum = sigget(&l->l_sigpend, &ksi, 0, &l->l_sigwaitset);
    775 
    776 	if (signum != 0) {
    777 		/* If found a pending signal, just copy it out to the user. */
    778 		mutex_exit(p->p_lock);
    779 		goto out;
    780 	}
    781 
    782 	if (timo < 0) {
    783 		/* If not allowed to block, return an error */
    784 		mutex_exit(p->p_lock);
    785 		return EAGAIN;
    786 	}
    787 
    788 	/*
    789 	 * Set up the sigwait list and wait for signal to arrive.
    790 	 * We can either be woken up or time out.
    791 	 */
    792 	l->l_sigwaited = &ksi;
    793 	LIST_INSERT_HEAD(&p->p_sigwaiters, l, l_sigwaiter);
    794 	error = cv_timedwait_sig(&l->l_sigcv, p->p_lock, timo);
    795 
    796 	/*
    797 	 * Need to find out if we woke as a result of _lwp_wakeup() or a
    798 	 * signal outside our wait set.
    799 	 */
    800 	if (l->l_sigwaited != NULL) {
    801 		if (error == EINTR) {
    802 			/* Wakeup via _lwp_wakeup(). */
    803 			error = ECANCELED;
    804 		} else if (!error) {
    805 			/* Spurious wakeup - arrange for syscall restart. */
    806 			error = ERESTART;
    807 		}
    808 		l->l_sigwaited = NULL;
    809 		LIST_REMOVE(l, l_sigwaiter);
    810 	}
    811 	mutex_exit(p->p_lock);
    812 
    813 	/*
    814 	 * If the sleep was interrupted (either by signal or wakeup), update
    815 	 * the timeout and copyout new value back.  It would be used when
    816 	 * the syscall would be restarted or called again.
    817 	 */
    818 	if (timo && (error == ERESTART || error == ECANCELED)) {
    819 		getnanouptime(&tsnow);
    820 
    821 		/* Compute how much time has passed since start. */
    822 		timespecsub(&tsnow, &tsstart, &tsnow);
    823 
    824 		/* Substract passed time from timeout. */
    825 		timespecsub(&ts, &tsnow, &ts);
    826 
    827 		if (ts.tv_sec < 0)
    828 			error = EAGAIN;
    829 		else {
    830 			/* Copy updated timeout to userland. */
    831 			error = (*storets)(&ts, SCARG(uap, timeout),
    832 			    sizeof(ts));
    833 		}
    834 	}
    835 out:
    836 	/*
    837 	 * If a signal from the wait set arrived, copy it to userland.
    838 	 * Copy only the used part of siginfo, the padding part is
    839 	 * left unchanged (userland is not supposed to touch it anyway).
    840 	 */
    841 	if (error == 0 && SCARG(uap, info)) {
    842 		error = (*storeinf)(&ksi.ksi_info, SCARG(uap, info),
    843 		    sizeof(ksi.ksi_info));
    844 	}
    845 	if (error == 0) {
    846 		*retval = ksi.ksi_info._signo;
    847 		SDT_PROBE(proc, kernel, , signal__clear, *retval,
    848 		    &ksi, 0, 0, 0);
    849 	}
    850 	return error;
    851 }
    852