sys_timerfd.c revision 1.1.2.1 1 /* $NetBSD: sys_timerfd.c,v 1.1.2.1 2020/12/14 16:53:36 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: sys_timerfd.c,v 1.1.2.1 2020/12/14 16:53:36 thorpej Exp $");
34
35 /*
36 * timerfd
37 *
38 * Timerfd objects are similar to POSIX timers, except they are associated
39 * with a file descriptor rather than a process. Timerfd objects are
40 * created with the timerfd_create(2) system call, similar to timer_create(2).
41 * The timerfd analogues for timer_gettime(2) and timer_settime(2) are
42 * timerfd_gettime(2) and timerfd_settime(2), respectively.
43 *
44 * When a timerfd object's timer fires, an internal counter is incremented.
45 * When this timer is non-zero, the descriptor associated with the timerfd
46 * object is "readable". Note that this is slightly different than the
47 * POSIX timer "overrun" counter, which only increments if the timer fires
48 * again while the notification signal is already pending. Thus, we are
49 * responsible for incrementing the "overrun" counter each time the timerfd
50 * timer fires.
51 *
52 * This implementation is API compatible with the Linux timerfd interface.
53 */
54
55 #include <sys/types.h>
56 #include <sys/condvar.h>
57 #include <sys/file.h>
58 #include <sys/filedesc.h>
59 #include <sys/kauth.h>
60 #include <sys/mutex.h>
61 #include <sys/poll.h>
62 #include <sys/proc.h>
63 #include <sys/select.h>
64 #include <sys/stat.h>
65 #include <sys/syscallargs.h>
66 #include <sys/timerfd.h>
67 #include <sys/uio.h>
68
69 /* N.B. all timerfd state is protected by itimer_lock() */
70 struct timerfd {
71 struct itimer tfd_itimer;
72 kcondvar_t tfd_read_wait;
73 kcondvar_t tfd_restart_wait;
74 struct selinfo tfd_read_sel;
75 int64_t tfd_nwaiters;
76 bool tfd_cancel_on_set;
77 bool tfd_cancelled;
78 bool tfd_restarting;
79
80 /*
81 * Information kept for stat(2).
82 */
83 struct timespec tfd_btime; /* time created */
84 struct timespec tfd_mtime; /* last timerfd_settime() */
85 struct timespec tfd_atime; /* last read */
86 };
87
88 static void timerfd_wake(struct timerfd *);
89
90 static inline uint64_t
91 timerfd_fire_count(const struct timerfd * const tfd)
92 {
93 return (unsigned int)tfd->tfd_itimer.it_overruns;
94 }
95
96 static inline bool
97 timerfd_is_readable(const struct timerfd * const tfd)
98 {
99 return tfd->tfd_itimer.it_overruns != 0 || tfd->tfd_cancelled;
100 }
101
102 /*
103 * timerfd_fire:
104 *
105 * Called when the timerfd's timer fires.
106 *
107 * Called from a callout with itimer lock held.
108 */
109 static void
110 timerfd_fire(struct itimer * const it)
111 {
112 struct timerfd * const tfd =
113 container_of(it, struct timerfd, tfd_itimer);
114
115 it->it_overruns++;
116 timerfd_wake(tfd);
117 }
118
119 /*
120 * timerfd_realtime_changed:
121 *
122 * Called when CLOCK_REALTIME is changed with clock_settime()
123 * or settimeofday().
124 *
125 * Called with itimer lock held.
126 */
127 static void
128 timerfd_realtime_changed(struct itimer * const it)
129 {
130 struct timerfd * const tfd =
131 container_of(it, struct timerfd, tfd_itimer);
132
133 /* Should only be called when timer is armed. */
134 KASSERT(timespecisset(&it->it_time.it_value));
135
136 if (tfd->tfd_cancel_on_set) {
137 tfd->tfd_cancelled = true;
138 timerfd_wake(tfd);
139 }
140 }
141
142 static const struct itimer_ops timerfd_itimer_monotonic_ops = {
143 .ito_fire = timerfd_fire,
144 };
145
146 static const struct itimer_ops timerfd_itimer_realtime_ops = {
147 .ito_fire = timerfd_fire,
148 .ito_realtime_changed = timerfd_realtime_changed,
149 };
150
151 /*
152 * timerfd_create:
153 *
154 * Create a timerfd object.
155 */
156 static struct timerfd *
157 timerfd_create(clockid_t const clock_id, int const flags)
158 {
159 struct timerfd * const tfd = kmem_zalloc(sizeof(*tfd), KM_SLEEP);
160
161 KASSERT(clock_id == CLOCK_REALTIME || clock_id == CLOCK_MONOTONIC);
162
163 cv_init(&tfd->tfd_read_wait, "tfdread");
164 cv_init(&tfd->tfd_restart_wait, "tfdrstrt");
165 selinit(&tfd->tfd_read_sel);
166 getnanotime(&tfd->tfd_btime);
167
168 /* Caller deals with TFD_CLOEXEC and TFD_NONBLOCK. */
169
170 itimer_lock();
171 itimer_init(&tfd->tfd_itimer,
172 clock_id == CLOCK_REALTIME ? &timerfd_itimer_realtime_ops
173 : &timerfd_itimer_monotonic_ops,
174 clock_id, NULL);
175 itimer_unlock();
176
177 return tfd;
178 }
179
180 /*
181 * timerfd_destroy:
182 *
183 * Destroy a timerfd object.
184 */
185 static void
186 timerfd_destroy(struct timerfd * const tfd)
187 {
188
189 KASSERT(tfd->tfd_nwaiters == 0);
190 KASSERT(tfd->tfd_restarting == false);
191
192 itimer_lock();
193 itimer_poison(&tfd->tfd_itimer);
194 itimer_fini(&tfd->tfd_itimer); /* drops itimer lock */
195
196 cv_destroy(&tfd->tfd_read_wait);
197 cv_destroy(&tfd->tfd_restart_wait);
198
199 seldestroy(&tfd->tfd_read_sel);
200
201 kmem_free(tfd, sizeof(*tfd));
202 }
203
204 /*
205 * timerfd_wait:
206 *
207 * Block on a timerfd. Handles non-blocking, as well as
208 * the restart cases.
209 */
210 static int
211 timerfd_wait(struct timerfd * const tfd, int const fflag)
212 {
213 int error;
214
215 if (fflag & FNONBLOCK) {
216 return EAGAIN;
217 }
218
219 /*
220 * We're going to block. If there is a restart in-progress,
221 * wait for that to complete first.
222 */
223 while (tfd->tfd_restarting) {
224 cv_wait(&tfd->tfd_restart_wait, &itimer_mutex);
225 }
226
227 tfd->tfd_nwaiters++;
228 KASSERT(tfd->tfd_nwaiters > 0);
229 error = cv_wait_sig(&tfd->tfd_read_wait, &itimer_mutex);
230 tfd->tfd_nwaiters--;
231 KASSERT(tfd->tfd_nwaiters >= 0);
232
233 /*
234 * If a restart was triggered while we were asleep, we need
235 * to return ERESTART if no other error was returned. If we
236 * are the last waiter coming out of the restart drain, clear
237 * the condition.
238 */
239 if (tfd->tfd_restarting) {
240 if (error == 0) {
241 error = ERESTART;
242 }
243 if (tfd->tfd_nwaiters == 0) {
244 tfd->tfd_restarting = false;
245 cv_broadcast(&tfd->tfd_restart_wait);
246 }
247 }
248
249 return error;
250 }
251
252 /*
253 * timerfd_wake:
254 *
255 * Wake LWPs blocked on a timerfd.
256 */
257 static void
258 timerfd_wake(struct timerfd * const tfd)
259 {
260
261 if (tfd->tfd_nwaiters) {
262 cv_broadcast(&tfd->tfd_read_wait);
263 }
264 selnotify(&tfd->tfd_read_sel, POLLIN | POLLRDNORM, NOTE_SUBMIT);
265 }
266
267 /*
268 * timerfd file operations
269 */
270
271 static int
272 timerfd_fop_read(file_t * const fp, off_t * const offset,
273 struct uio * const uio, kauth_cred_t const cred, int const flags)
274 {
275 struct timerfd * const tfd = fp->f_timerfd;
276 struct itimer * const it = &tfd->tfd_itimer;
277 int const fflag = fp->f_flag;
278 uint64_t return_value;
279 int error;
280
281 if (uio->uio_resid < sizeof(uint64_t)) {
282 return EINVAL;
283 }
284
285 itimer_lock();
286
287 while (!timerfd_is_readable(tfd)) {
288 if ((error = timerfd_wait(tfd, fflag)) != 0) {
289 itimer_unlock();
290 return error;
291 }
292 }
293
294 if (tfd->tfd_cancelled) {
295 itimer_unlock();
296 return ECANCELED;
297 }
298
299 return_value = timerfd_fire_count(tfd);
300 it->it_overruns = 0;
301
302 getnanotime(&tfd->tfd_atime);
303
304 itimer_unlock();
305
306 error = uiomove(&return_value, sizeof(return_value), uio);
307
308 return error;
309 }
310
311 static int
312 timerfd_fop_ioctl(file_t * const fp, unsigned long const cmd, void * const data)
313 {
314 struct timerfd * const tfd = fp->f_timerfd;
315 int error = 0;
316
317 switch (cmd) {
318 case TFD_IOC_SET_TICKS: {
319 const uint64_t * const new_ticksp = data;
320 if (*new_ticksp > INT_MAX) {
321 return EINVAL;
322 }
323 itimer_lock();
324 tfd->tfd_itimer.it_overruns = (int)*new_ticksp;
325 itimer_unlock();
326 break;
327 }
328
329 default:
330 error = EPASSTHROUGH;
331 }
332
333 return error;
334 }
335
336 static int
337 timerfd_fop_poll(file_t * const fp, int const events)
338 {
339 struct timerfd * const tfd = fp->f_timerfd;
340 int revents = events & (POLLOUT | POLLWRNORM);
341
342 if (events & (POLLIN | POLLRDNORM)) {
343 itimer_lock();
344 if (timerfd_is_readable(tfd)) {
345 revents |= events & (POLLIN | POLLRDNORM);
346 } else {
347 selrecord(curlwp, &tfd->tfd_read_sel);
348 }
349 itimer_unlock();
350 }
351
352 return revents;
353 }
354
355 static int
356 timerfd_fop_stat(file_t * const fp, struct stat * const st)
357 {
358 struct timerfd * const tfd = fp->f_timerfd;
359
360 memset(st, 0, sizeof(*st));
361
362 itimer_lock();
363 st->st_size = (off_t)timerfd_fire_count(tfd);
364 st->st_atimespec = tfd->tfd_atime;
365 st->st_mtimespec = tfd->tfd_mtime;
366 itimer_unlock();
367
368 st->st_blksize = sizeof(uint64_t);
369 st->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
370 st->st_blocks = 1;
371 st->st_birthtimespec = st->st_ctimespec = tfd->tfd_btime;
372 st->st_uid = kauth_cred_geteuid(fp->f_cred);
373 st->st_gid = kauth_cred_getegid(fp->f_cred);
374
375 return 0;
376 }
377
378 static int
379 timerfd_fop_close(file_t * const fp)
380 {
381 struct timerfd * const tfd = fp->f_timerfd;
382
383 fp->f_timerfd = NULL;
384 timerfd_destroy(tfd);
385
386 return 0;
387 }
388
389 static void
390 timerfd_filt_read_detach(struct knote * const kn)
391 {
392 struct timerfd * const tfd = ((file_t *)kn->kn_obj)->f_timerfd;
393
394 itimer_lock();
395 KASSERT(kn->kn_hook == tfd);
396 selremove_knote(&tfd->tfd_read_sel, kn);
397 itimer_unlock();
398 }
399
400 static int
401 timerfd_filt_read(struct knote * const kn, long const hint)
402 {
403 struct timerfd * const tfd = ((file_t *)kn->kn_obj)->f_timerfd;
404
405 if (hint & NOTE_SUBMIT) {
406 KASSERT(itimer_lock_held());
407 } else {
408 itimer_lock();
409 }
410
411 kn->kn_data = (int64_t)timerfd_fire_count(tfd);
412
413 if ((hint & NOTE_SUBMIT) == 0) {
414 itimer_unlock();
415 }
416
417 return kn->kn_data != 0;
418 }
419
420 static const struct filterops timerfd_read_filterops = {
421 .f_isfd = 1,
422 .f_detach = timerfd_filt_read_detach,
423 .f_event = timerfd_filt_read,
424 };
425
426 static int
427 timerfd_fop_kqfilter(file_t * const fp, struct knote * const kn)
428 {
429 struct timerfd * const tfd = ((file_t *)kn->kn_obj)->f_timerfd;
430 struct selinfo *sel;
431
432 switch (kn->kn_filter) {
433 case EVFILT_READ:
434 sel = &tfd->tfd_read_sel;
435 kn->kn_fop = &timerfd_read_filterops;
436 break;
437
438 default:
439 return EINVAL;
440 }
441
442 kn->kn_hook = tfd;
443
444 itimer_lock();
445 selrecord_knote(sel, kn);
446 itimer_unlock();
447
448 return 0;
449 }
450
451 static void
452 timerfd_fop_restart(file_t * const fp)
453 {
454 struct timerfd * const tfd = fp->f_timerfd;
455
456 /*
457 * Unblock blocked reads in order to allow close() to complete.
458 * System calls return ERESTART so that the fd is revalidated.
459 */
460
461 itimer_lock();
462
463 if (tfd->tfd_nwaiters != 0) {
464 tfd->tfd_restarting = true;
465 cv_broadcast(&tfd->tfd_read_wait);
466 }
467
468 itimer_unlock();
469 }
470
471 static const struct fileops timerfd_fileops = {
472 .fo_name = "timerfd",
473 .fo_read = timerfd_fop_read,
474 .fo_write = fbadop_write,
475 .fo_ioctl = timerfd_fop_ioctl,
476 .fo_fcntl = fnullop_fcntl,
477 .fo_poll = timerfd_fop_poll,
478 .fo_stat = timerfd_fop_stat,
479 .fo_close = timerfd_fop_close,
480 .fo_kqfilter = timerfd_fop_kqfilter,
481 .fo_restart = timerfd_fop_restart,
482 };
483
484 /*
485 * timerfd_create(2) system call
486 */
487 int
488 do_timerfd_create(struct lwp * const l, clockid_t const clock_id,
489 int const flags, register_t *retval)
490 {
491 file_t *fp;
492 int fd, error;
493
494 if (flags & ~(TFD_CLOEXEC | TFD_NONBLOCK)) {
495 return EINVAL;
496 }
497
498 switch (clock_id) {
499 case CLOCK_REALTIME:
500 case CLOCK_MONOTONIC:
501 /* allowed */
502 break;
503
504 default:
505 return EINVAL;
506 }
507
508 if ((error = fd_allocfile(&fp, &fd)) != 0) {
509 return error;
510 }
511
512 fp->f_flag = FREAD;
513 if (flags & TFD_NONBLOCK) {
514 fp->f_flag |= FNONBLOCK;
515 }
516 fp->f_type = DTYPE_TIMERFD;
517 fp->f_ops = &timerfd_fileops;
518 fp->f_timerfd = timerfd_create(clock_id, flags);
519 fd_set_exclose(l, fd, !!(flags & TFD_CLOEXEC));
520 fd_affix(curproc, fp, fd);
521
522 *retval = fd;
523 return 0;
524 }
525
526 int
527 sys_timerfd_create(struct lwp *l, const struct sys_timerfd_create_args *uap,
528 register_t *retval)
529 {
530 /* {
531 syscallarg(clockid_t) clock_id;
532 syscallarg(int) flags;
533 } */
534
535 return do_timerfd_create(l, SCARG(uap, clock_id), SCARG(uap, flags),
536 retval);
537 }
538
539 /*
540 * timerfd_gettime(2) system call.
541 */
542 int
543 do_timerfd_gettime(struct lwp *l, int fd, struct itimerspec *curr_value,
544 register_t *retval)
545 {
546 file_t *fp;
547
548 if ((fp = fd_getfile(fd)) == NULL) {
549 return EBADF;
550 }
551
552 if (fp->f_ops != &timerfd_fileops) {
553 fd_putfile(fd);
554 return EINVAL;
555 }
556
557 struct timerfd * const tfd = fp->f_timerfd;
558 itimer_lock();
559 itimer_gettime(&tfd->tfd_itimer, curr_value);
560 itimer_unlock();
561
562 fd_putfile(fd);
563 return 0;
564 }
565
566 int
567 sys_timerfd_gettime(struct lwp *l, const struct sys_timerfd_gettime_args *uap,
568 register_t *retval)
569 {
570 /* {
571 syscallarg(int) fd;
572 syscallarg(struct itimerspec *) curr_value;
573 } */
574
575 struct itimerspec oits;
576 int error;
577
578 error = do_timerfd_gettime(l, SCARG(uap, fd), &oits, retval);
579 if (error == 0) {
580 error = copyout(&oits, SCARG(uap, curr_value), sizeof(oits));
581 }
582 return error;
583 }
584
585 /*
586 * timerfd_settime(2) system call.
587 */
588 int
589 do_timerfd_settime(struct lwp *l, int fd, int flags,
590 const struct itimerspec *new_value, struct itimerspec *old_value,
591 register_t *retval)
592 {
593 file_t *fp;
594 int error;
595
596 if (flags & ~(TFD_TIMER_ABSTIME | TFD_TIMER_CANCEL_ON_SET)) {
597 return EINVAL;
598 }
599
600 if ((fp = fd_getfile(fd)) == NULL) {
601 return EBADF;
602 }
603
604 if (fp->f_ops != &timerfd_fileops) {
605 fd_putfile(fd);
606 return EINVAL;
607 }
608
609 struct timerfd * const tfd = fp->f_timerfd;
610 struct itimer * const it = &tfd->tfd_itimer;
611
612 itimer_lock();
613
614 restart:
615 if (old_value != NULL) {
616 *old_value = it->it_time;
617 }
618 it->it_time = *new_value;
619
620 /*
621 * If we've been passed a relative value, convert it to an
622 * absolute, as that's what the itimer facility expects for
623 * non-virtual timers. Also ensure that this doesn't set it
624 * to zero or lets it go negative.
625 * XXXJRT re-factor.
626 */
627 if (timespecisset(&it->it_time.it_value) &&
628 (flags & TFD_TIMER_ABSTIME) == 0) {
629 struct timespec now;
630 if (it->it_clockid == CLOCK_REALTIME) {
631 getnanotime(&now);
632 } else { /* CLOCK_MONOTONIC */
633 getnanouptime(&now);
634 }
635 timespecadd(&it->it_time.it_value, &now,
636 &it->it_time.it_value);
637 }
638
639 error = itimer_settime(it);
640 if (error == ERESTART) {
641 goto restart;
642 }
643 KASSERT(error == 0);
644
645 /* Reset the expirations counter. */
646 it->it_overruns = 0;
647
648 if (it->it_clockid == CLOCK_REALTIME) {
649 tfd->tfd_cancelled = false;
650 tfd->tfd_cancel_on_set = !!(flags & TFD_TIMER_CANCEL_ON_SET);
651 }
652
653 getnanotime(&tfd->tfd_mtime);
654 itimer_unlock();
655
656 fd_putfile(fd);
657 return error;
658 }
659
660 int
661 sys_timerfd_settime(struct lwp *l, const struct sys_timerfd_settime_args *uap,
662 register_t *retval)
663 {
664 /* {
665 syscallarg(int) fd;
666 syscallarg(int) flags;
667 syscallarg(const struct itimerspec *) new_value;
668 syscallarg(struct itimerspec *) old_value;
669 } */
670
671 struct itimerspec nits, oits, *oitsp = NULL;
672 int error;
673
674 error = copyin(SCARG(uap, new_value), &nits, sizeof(nits));
675 if (error) {
676 return error;
677 }
678
679 if (SCARG(uap, old_value) != NULL) {
680 oitsp = &oits;
681 }
682
683 error = do_timerfd_settime(l, SCARG(uap, fd), SCARG(uap, flags),
684 &nits, oitsp, retval);
685 if (error == 0 && oitsp != NULL) {
686 error = copyout(oitsp, SCARG(uap, old_value), sizeof(*oitsp));
687 }
688 return error;
689 }
690