Home | History | Annotate | Line # | Download | only in kern
sys_timerfd.c revision 1.1.2.1
      1 /*	$NetBSD: sys_timerfd.c,v 1.1.2.1 2020/12/14 16:53:36 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2020 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: sys_timerfd.c,v 1.1.2.1 2020/12/14 16:53:36 thorpej Exp $");
     34 
     35 /*
     36  * timerfd
     37  *
     38  * Timerfd objects are similar to POSIX timers, except they are associated
     39  * with a file descriptor rather than a process.  Timerfd objects are
     40  * created with the timerfd_create(2) system call, similar to timer_create(2).
     41  * The timerfd analogues for timer_gettime(2) and timer_settime(2) are
     42  * timerfd_gettime(2) and timerfd_settime(2), respectively.
     43  *
     44  * When a timerfd object's timer fires, an internal counter is incremented.
     45  * When this timer is non-zero, the descriptor associated with the timerfd
     46  * object is "readable".  Note that this is slightly different than the
     47  * POSIX timer "overrun" counter, which only increments if the timer fires
     48  * again while the notification signal is already pending.  Thus, we are
     49  * responsible for incrementing the "overrun" counter each time the timerfd
     50  * timer fires.
     51  *
     52  * This implementation is API compatible with the Linux timerfd interface.
     53  */
     54 
     55 #include <sys/types.h>
     56 #include <sys/condvar.h>
     57 #include <sys/file.h>
     58 #include <sys/filedesc.h>
     59 #include <sys/kauth.h>
     60 #include <sys/mutex.h>
     61 #include <sys/poll.h>
     62 #include <sys/proc.h>
     63 #include <sys/select.h>
     64 #include <sys/stat.h>
     65 #include <sys/syscallargs.h>
     66 #include <sys/timerfd.h>
     67 #include <sys/uio.h>
     68 
     69 /* N.B. all timerfd state is protected by itimer_lock() */
     70 struct timerfd {
     71 	struct itimer	tfd_itimer;
     72 	kcondvar_t	tfd_read_wait;
     73 	kcondvar_t	tfd_restart_wait;
     74 	struct selinfo	tfd_read_sel;
     75 	int64_t		tfd_nwaiters;
     76 	bool		tfd_cancel_on_set;
     77 	bool		tfd_cancelled;
     78 	bool		tfd_restarting;
     79 
     80 	/*
     81 	 * Information kept for stat(2).
     82 	 */
     83 	struct timespec tfd_btime;	/* time created */
     84 	struct timespec	tfd_mtime;	/* last timerfd_settime() */
     85 	struct timespec	tfd_atime;	/* last read */
     86 };
     87 
     88 static void	timerfd_wake(struct timerfd *);
     89 
     90 static inline uint64_t
     91 timerfd_fire_count(const struct timerfd * const tfd)
     92 {
     93 	return (unsigned int)tfd->tfd_itimer.it_overruns;
     94 }
     95 
     96 static inline bool
     97 timerfd_is_readable(const struct timerfd * const tfd)
     98 {
     99 	return tfd->tfd_itimer.it_overruns != 0 || tfd->tfd_cancelled;
    100 }
    101 
    102 /*
    103  * timerfd_fire:
    104  *
    105  *	Called when the timerfd's timer fires.
    106  *
    107  *	Called from a callout with itimer lock held.
    108  */
    109 static void
    110 timerfd_fire(struct itimer * const it)
    111 {
    112 	struct timerfd * const tfd =
    113 	    container_of(it, struct timerfd, tfd_itimer);
    114 
    115 	it->it_overruns++;
    116 	timerfd_wake(tfd);
    117 }
    118 
    119 /*
    120  * timerfd_realtime_changed:
    121  *
    122  *	Called when CLOCK_REALTIME is changed with clock_settime()
    123  *	or settimeofday().
    124  *
    125  *	Called with itimer lock held.
    126  */
    127 static void
    128 timerfd_realtime_changed(struct itimer * const it)
    129 {
    130 	struct timerfd * const tfd =
    131 	    container_of(it, struct timerfd, tfd_itimer);
    132 
    133 	/* Should only be called when timer is armed. */
    134 	KASSERT(timespecisset(&it->it_time.it_value));
    135 
    136 	if (tfd->tfd_cancel_on_set) {
    137 		tfd->tfd_cancelled = true;
    138 		timerfd_wake(tfd);
    139 	}
    140 }
    141 
    142 static const struct itimer_ops timerfd_itimer_monotonic_ops = {
    143 	.ito_fire = timerfd_fire,
    144 };
    145 
    146 static const struct itimer_ops timerfd_itimer_realtime_ops = {
    147 	.ito_fire = timerfd_fire,
    148 	.ito_realtime_changed = timerfd_realtime_changed,
    149 };
    150 
    151 /*
    152  * timerfd_create:
    153  *
    154  *	Create a timerfd object.
    155  */
    156 static struct timerfd *
    157 timerfd_create(clockid_t const clock_id, int const flags)
    158 {
    159 	struct timerfd * const tfd = kmem_zalloc(sizeof(*tfd), KM_SLEEP);
    160 
    161 	KASSERT(clock_id == CLOCK_REALTIME || clock_id == CLOCK_MONOTONIC);
    162 
    163 	cv_init(&tfd->tfd_read_wait, "tfdread");
    164 	cv_init(&tfd->tfd_restart_wait, "tfdrstrt");
    165 	selinit(&tfd->tfd_read_sel);
    166 	getnanotime(&tfd->tfd_btime);
    167 
    168 	/* Caller deals with TFD_CLOEXEC and TFD_NONBLOCK. */
    169 
    170 	itimer_lock();
    171 	itimer_init(&tfd->tfd_itimer,
    172 	    clock_id == CLOCK_REALTIME ? &timerfd_itimer_realtime_ops
    173 				       : &timerfd_itimer_monotonic_ops,
    174 	    clock_id, NULL);
    175 	itimer_unlock();
    176 
    177 	return tfd;
    178 }
    179 
    180 /*
    181  * timerfd_destroy:
    182  *
    183  *	Destroy a timerfd object.
    184  */
    185 static void
    186 timerfd_destroy(struct timerfd * const tfd)
    187 {
    188 
    189 	KASSERT(tfd->tfd_nwaiters == 0);
    190 	KASSERT(tfd->tfd_restarting == false);
    191 
    192 	itimer_lock();
    193 	itimer_poison(&tfd->tfd_itimer);
    194 	itimer_fini(&tfd->tfd_itimer);	/* drops itimer lock */
    195 
    196 	cv_destroy(&tfd->tfd_read_wait);
    197 	cv_destroy(&tfd->tfd_restart_wait);
    198 
    199 	seldestroy(&tfd->tfd_read_sel);
    200 
    201 	kmem_free(tfd, sizeof(*tfd));
    202 }
    203 
    204 /*
    205  * timerfd_wait:
    206  *
    207  *	Block on a timerfd.  Handles non-blocking, as well as
    208  *	the restart cases.
    209  */
    210 static int
    211 timerfd_wait(struct timerfd * const tfd, int const fflag)
    212 {
    213 	int error;
    214 
    215 	if (fflag & FNONBLOCK) {
    216 		return EAGAIN;
    217 	}
    218 
    219 	/*
    220 	 * We're going to block.  If there is a restart in-progress,
    221 	 * wait for that to complete first.
    222 	 */
    223 	while (tfd->tfd_restarting) {
    224 		cv_wait(&tfd->tfd_restart_wait, &itimer_mutex);
    225 	}
    226 
    227 	tfd->tfd_nwaiters++;
    228 	KASSERT(tfd->tfd_nwaiters > 0);
    229 	error = cv_wait_sig(&tfd->tfd_read_wait, &itimer_mutex);
    230 	tfd->tfd_nwaiters--;
    231 	KASSERT(tfd->tfd_nwaiters >= 0);
    232 
    233 	/*
    234 	 * If a restart was triggered while we were asleep, we need
    235 	 * to return ERESTART if no other error was returned.  If we
    236 	 * are the last waiter coming out of the restart drain, clear
    237 	 * the condition.
    238 	 */
    239 	if (tfd->tfd_restarting) {
    240 		if (error == 0) {
    241 			error = ERESTART;
    242 		}
    243 		if (tfd->tfd_nwaiters == 0) {
    244 			tfd->tfd_restarting = false;
    245 			cv_broadcast(&tfd->tfd_restart_wait);
    246 		}
    247 	}
    248 
    249 	return error;
    250 }
    251 
    252 /*
    253  * timerfd_wake:
    254  *
    255  *	Wake LWPs blocked on a timerfd.
    256  */
    257 static void
    258 timerfd_wake(struct timerfd * const tfd)
    259 {
    260 
    261 	if (tfd->tfd_nwaiters) {
    262 		cv_broadcast(&tfd->tfd_read_wait);
    263 	}
    264 	selnotify(&tfd->tfd_read_sel, POLLIN | POLLRDNORM, NOTE_SUBMIT);
    265 }
    266 
    267 /*
    268  * timerfd file operations
    269  */
    270 
    271 static int
    272 timerfd_fop_read(file_t * const fp, off_t * const offset,
    273     struct uio * const uio, kauth_cred_t const cred, int const flags)
    274 {
    275 	struct timerfd * const tfd = fp->f_timerfd;
    276 	struct itimer * const it = &tfd->tfd_itimer;
    277 	int const fflag = fp->f_flag;
    278 	uint64_t return_value;
    279 	int error;
    280 
    281 	if (uio->uio_resid < sizeof(uint64_t)) {
    282 		return EINVAL;
    283 	}
    284 
    285 	itimer_lock();
    286 
    287 	while (!timerfd_is_readable(tfd)) {
    288 		if ((error = timerfd_wait(tfd, fflag)) != 0) {
    289 			itimer_unlock();
    290 			return error;
    291 		}
    292 	}
    293 
    294 	if (tfd->tfd_cancelled) {
    295 		itimer_unlock();
    296 		return ECANCELED;
    297 	}
    298 
    299 	return_value = timerfd_fire_count(tfd);
    300 	it->it_overruns = 0;
    301 
    302 	getnanotime(&tfd->tfd_atime);
    303 
    304 	itimer_unlock();
    305 
    306 	error = uiomove(&return_value, sizeof(return_value), uio);
    307 
    308 	return error;
    309 }
    310 
    311 static int
    312 timerfd_fop_ioctl(file_t * const fp, unsigned long const cmd, void * const data)
    313 {
    314 	struct timerfd * const tfd = fp->f_timerfd;
    315 	int error = 0;
    316 
    317 	switch (cmd) {
    318 	case TFD_IOC_SET_TICKS: {
    319 		const uint64_t * const new_ticksp = data;
    320 		if (*new_ticksp > INT_MAX) {
    321 			return EINVAL;
    322 		}
    323 		itimer_lock();
    324 		tfd->tfd_itimer.it_overruns = (int)*new_ticksp;
    325 		itimer_unlock();
    326 		break;
    327 	    }
    328 
    329 	default:
    330 		error = EPASSTHROUGH;
    331 	}
    332 
    333 	return error;
    334 }
    335 
    336 static int
    337 timerfd_fop_poll(file_t * const fp, int const events)
    338 {
    339 	struct timerfd * const tfd = fp->f_timerfd;
    340 	int revents = events & (POLLOUT | POLLWRNORM);
    341 
    342 	if (events & (POLLIN | POLLRDNORM)) {
    343 		itimer_lock();
    344 		if (timerfd_is_readable(tfd)) {
    345 			revents |= events & (POLLIN | POLLRDNORM);
    346 		} else {
    347 			selrecord(curlwp, &tfd->tfd_read_sel);
    348 		}
    349 		itimer_unlock();
    350 	}
    351 
    352 	return revents;
    353 }
    354 
    355 static int
    356 timerfd_fop_stat(file_t * const fp, struct stat * const st)
    357 {
    358 	struct timerfd * const tfd = fp->f_timerfd;
    359 
    360 	memset(st, 0, sizeof(*st));
    361 
    362 	itimer_lock();
    363 	st->st_size = (off_t)timerfd_fire_count(tfd);
    364 	st->st_atimespec = tfd->tfd_atime;
    365 	st->st_mtimespec = tfd->tfd_mtime;
    366 	itimer_unlock();
    367 
    368 	st->st_blksize = sizeof(uint64_t);
    369 	st->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
    370 	st->st_blocks = 1;
    371 	st->st_birthtimespec = st->st_ctimespec = tfd->tfd_btime;
    372 	st->st_uid = kauth_cred_geteuid(fp->f_cred);
    373 	st->st_gid = kauth_cred_getegid(fp->f_cred);
    374 
    375 	return 0;
    376 }
    377 
    378 static int
    379 timerfd_fop_close(file_t * const fp)
    380 {
    381 	struct timerfd * const tfd = fp->f_timerfd;
    382 
    383 	fp->f_timerfd = NULL;
    384 	timerfd_destroy(tfd);
    385 
    386 	return 0;
    387 }
    388 
    389 static void
    390 timerfd_filt_read_detach(struct knote * const kn)
    391 {
    392 	struct timerfd * const tfd = ((file_t *)kn->kn_obj)->f_timerfd;
    393 
    394 	itimer_lock();
    395 	KASSERT(kn->kn_hook == tfd);
    396 	selremove_knote(&tfd->tfd_read_sel, kn);
    397 	itimer_unlock();
    398 }
    399 
    400 static int
    401 timerfd_filt_read(struct knote * const kn, long const hint)
    402 {
    403 	struct timerfd * const tfd = ((file_t *)kn->kn_obj)->f_timerfd;
    404 
    405 	if (hint & NOTE_SUBMIT) {
    406 		KASSERT(itimer_lock_held());
    407 	} else {
    408 		itimer_lock();
    409 	}
    410 
    411 	kn->kn_data = (int64_t)timerfd_fire_count(tfd);
    412 
    413 	if ((hint & NOTE_SUBMIT) == 0) {
    414 		itimer_unlock();
    415 	}
    416 
    417 	return kn->kn_data != 0;
    418 }
    419 
    420 static const struct filterops timerfd_read_filterops = {
    421 	.f_isfd = 1,
    422 	.f_detach = timerfd_filt_read_detach,
    423 	.f_event = timerfd_filt_read,
    424 };
    425 
    426 static int
    427 timerfd_fop_kqfilter(file_t * const fp, struct knote * const kn)
    428 {
    429 	struct timerfd * const tfd = ((file_t *)kn->kn_obj)->f_timerfd;
    430 	struct selinfo *sel;
    431 
    432 	switch (kn->kn_filter) {
    433 	case EVFILT_READ:
    434 		sel = &tfd->tfd_read_sel;
    435 		kn->kn_fop = &timerfd_read_filterops;
    436 		break;
    437 
    438 	default:
    439 		return EINVAL;
    440 	}
    441 
    442 	kn->kn_hook = tfd;
    443 
    444 	itimer_lock();
    445 	selrecord_knote(sel, kn);
    446 	itimer_unlock();
    447 
    448 	return 0;
    449 }
    450 
    451 static void
    452 timerfd_fop_restart(file_t * const fp)
    453 {
    454 	struct timerfd * const tfd = fp->f_timerfd;
    455 
    456 	/*
    457 	 * Unblock blocked reads in order to allow close() to complete.
    458 	 * System calls return ERESTART so that the fd is revalidated.
    459 	 */
    460 
    461 	itimer_lock();
    462 
    463 	if (tfd->tfd_nwaiters != 0) {
    464 		tfd->tfd_restarting = true;
    465 		cv_broadcast(&tfd->tfd_read_wait);
    466 	}
    467 
    468 	itimer_unlock();
    469 }
    470 
    471 static const struct fileops timerfd_fileops = {
    472 	.fo_name = "timerfd",
    473 	.fo_read = timerfd_fop_read,
    474 	.fo_write = fbadop_write,
    475 	.fo_ioctl = timerfd_fop_ioctl,
    476 	.fo_fcntl = fnullop_fcntl,
    477 	.fo_poll = timerfd_fop_poll,
    478 	.fo_stat = timerfd_fop_stat,
    479 	.fo_close = timerfd_fop_close,
    480 	.fo_kqfilter = timerfd_fop_kqfilter,
    481 	.fo_restart = timerfd_fop_restart,
    482 };
    483 
    484 /*
    485  * timerfd_create(2) system call
    486  */
    487 int
    488 do_timerfd_create(struct lwp * const l, clockid_t const clock_id,
    489     int const flags, register_t *retval)
    490 {
    491 	file_t *fp;
    492 	int fd, error;
    493 
    494 	if (flags & ~(TFD_CLOEXEC | TFD_NONBLOCK)) {
    495 		return EINVAL;
    496 	}
    497 
    498 	switch (clock_id) {
    499 	case CLOCK_REALTIME:
    500 	case CLOCK_MONOTONIC:
    501 		/* allowed */
    502 		break;
    503 
    504 	default:
    505 		return EINVAL;
    506 	}
    507 
    508 	if ((error = fd_allocfile(&fp, &fd)) != 0) {
    509 		return error;
    510 	}
    511 
    512 	fp->f_flag = FREAD;
    513 	if (flags & TFD_NONBLOCK) {
    514 		fp->f_flag |= FNONBLOCK;
    515 	}
    516 	fp->f_type = DTYPE_TIMERFD;
    517 	fp->f_ops = &timerfd_fileops;
    518 	fp->f_timerfd = timerfd_create(clock_id, flags);
    519 	fd_set_exclose(l, fd, !!(flags & TFD_CLOEXEC));
    520 	fd_affix(curproc, fp, fd);
    521 
    522 	*retval = fd;
    523 	return 0;
    524 }
    525 
    526 int
    527 sys_timerfd_create(struct lwp *l, const struct sys_timerfd_create_args *uap,
    528     register_t *retval)
    529 {
    530 	/* {
    531 		syscallarg(clockid_t) clock_id;
    532 		syscallarg(int) flags;
    533 	} */
    534 
    535 	return do_timerfd_create(l, SCARG(uap, clock_id), SCARG(uap, flags),
    536 	    retval);
    537 }
    538 
    539 /*
    540  * timerfd_gettime(2) system call.
    541  */
    542 int
    543 do_timerfd_gettime(struct lwp *l, int fd, struct itimerspec *curr_value,
    544     register_t *retval)
    545 {
    546 	file_t *fp;
    547 
    548 	if ((fp = fd_getfile(fd)) == NULL) {
    549 		return EBADF;
    550 	}
    551 
    552 	if (fp->f_ops != &timerfd_fileops) {
    553 		fd_putfile(fd);
    554 		return EINVAL;
    555 	}
    556 
    557 	struct timerfd * const tfd = fp->f_timerfd;
    558 	itimer_lock();
    559 	itimer_gettime(&tfd->tfd_itimer, curr_value);
    560 	itimer_unlock();
    561 
    562 	fd_putfile(fd);
    563 	return 0;
    564 }
    565 
    566 int
    567 sys_timerfd_gettime(struct lwp *l, const struct sys_timerfd_gettime_args *uap,
    568     register_t *retval)
    569 {
    570 	/* {
    571 		syscallarg(int) fd;
    572 		syscallarg(struct itimerspec *) curr_value;
    573 	} */
    574 
    575 	struct itimerspec oits;
    576 	int error;
    577 
    578 	error = do_timerfd_gettime(l, SCARG(uap, fd), &oits, retval);
    579 	if (error == 0) {
    580 		error = copyout(&oits, SCARG(uap, curr_value), sizeof(oits));
    581 	}
    582 	return error;
    583 }
    584 
    585 /*
    586  * timerfd_settime(2) system call.
    587  */
    588 int
    589 do_timerfd_settime(struct lwp *l, int fd, int flags,
    590     const struct itimerspec *new_value, struct itimerspec *old_value,
    591     register_t *retval)
    592 {
    593 	file_t *fp;
    594 	int error;
    595 
    596 	if (flags & ~(TFD_TIMER_ABSTIME | TFD_TIMER_CANCEL_ON_SET)) {
    597 		return EINVAL;
    598 	}
    599 
    600 	if ((fp = fd_getfile(fd)) == NULL) {
    601 		return EBADF;
    602 	}
    603 
    604 	if (fp->f_ops != &timerfd_fileops) {
    605 		fd_putfile(fd);
    606 		return EINVAL;
    607 	}
    608 
    609 	struct timerfd * const tfd = fp->f_timerfd;
    610 	struct itimer * const it = &tfd->tfd_itimer;
    611 
    612 	itimer_lock();
    613 
    614  restart:
    615 	if (old_value != NULL) {
    616 		*old_value = it->it_time;
    617 	}
    618 	it->it_time = *new_value;
    619 
    620 	/*
    621 	 * If we've been passed a relative value, convert it to an
    622 	 * absolute, as that's what the itimer facility expects for
    623 	 * non-virtual timers.  Also ensure that this doesn't set it
    624 	 * to zero or lets it go negative.
    625 	 * XXXJRT re-factor.
    626 	 */
    627 	if (timespecisset(&it->it_time.it_value) &&
    628 	    (flags & TFD_TIMER_ABSTIME) == 0) {
    629 		struct timespec now;
    630 		if (it->it_clockid == CLOCK_REALTIME) {
    631 			getnanotime(&now);
    632 		} else { /* CLOCK_MONOTONIC */
    633 			getnanouptime(&now);
    634 		}
    635 		timespecadd(&it->it_time.it_value, &now,
    636 		    &it->it_time.it_value);
    637 	}
    638 
    639 	error = itimer_settime(it);
    640 	if (error == ERESTART) {
    641 		goto restart;
    642 	}
    643 	KASSERT(error == 0);
    644 
    645 	/* Reset the expirations counter. */
    646 	it->it_overruns = 0;
    647 
    648 	if (it->it_clockid == CLOCK_REALTIME) {
    649 		tfd->tfd_cancelled = false;
    650 		tfd->tfd_cancel_on_set = !!(flags & TFD_TIMER_CANCEL_ON_SET);
    651 	}
    652 
    653 	getnanotime(&tfd->tfd_mtime);
    654 	itimer_unlock();
    655 
    656 	fd_putfile(fd);
    657 	return error;
    658 }
    659 
    660 int
    661 sys_timerfd_settime(struct lwp *l, const struct sys_timerfd_settime_args *uap,
    662     register_t *retval)
    663 {
    664 	/* {
    665 		syscallarg(int) fd;
    666 		syscallarg(int) flags;
    667 		syscallarg(const struct itimerspec *) new_value;
    668 		syscallarg(struct itimerspec *) old_value;
    669 	} */
    670 
    671 	struct itimerspec nits, oits, *oitsp = NULL;
    672 	int error;
    673 
    674 	error = copyin(SCARG(uap, new_value), &nits, sizeof(nits));
    675 	if (error) {
    676 		return error;
    677 	}
    678 
    679 	if (SCARG(uap, old_value) != NULL) {
    680 		oitsp = &oits;
    681 	}
    682 
    683 	error = do_timerfd_settime(l, SCARG(uap, fd), SCARG(uap, flags),
    684 	    &nits, oitsp, retval);
    685 	if (error == 0 && oitsp != NULL) {
    686 		error = copyout(oitsp, SCARG(uap, old_value), sizeof(*oitsp));
    687 	}
    688 	return error;
    689 }
    690