Home | History | Annotate | Line # | Download | only in kern
sys_timerfd.c revision 1.3
      1 /*	$NetBSD: sys_timerfd.c,v 1.3 2021/09/20 11:12:35 skrll Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2020 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: sys_timerfd.c,v 1.3 2021/09/20 11:12:35 skrll Exp $");
     34 
     35 /*
     36  * timerfd
     37  *
     38  * Timerfd objects are similar to POSIX timers, except they are associated
     39  * with a file descriptor rather than a process.  Timerfd objects are
     40  * created with the timerfd_create(2) system call, similar to timer_create(2).
     41  * The timerfd analogues for timer_gettime(2) and timer_settime(2) are
     42  * timerfd_gettime(2) and timerfd_settime(2), respectively.
     43  *
     44  * When a timerfd object's timer fires, an internal counter is incremented.
     45  * When this counter is non-zero, the descriptor associated with the timerfd
     46  * object is "readable".  Note that this is slightly different than the
     47  * POSIX timer "overrun" counter, which only increments if the timer fires
     48  * again while the notification signal is already pending.  Thus, we are
     49  * responsible for incrementing the "overrun" counter each time the timerfd
     50  * timer fires.
     51  *
     52  * This implementation is API compatible with the Linux timerfd interface.
     53  */
     54 
     55 #include <sys/param.h>
     56 #include <sys/types.h>
     57 #include <sys/condvar.h>
     58 #include <sys/file.h>
     59 #include <sys/filedesc.h>
     60 #include <sys/kauth.h>
     61 #include <sys/mutex.h>
     62 #include <sys/poll.h>
     63 #include <sys/proc.h>
     64 #include <sys/select.h>
     65 #include <sys/stat.h>
     66 #include <sys/syscallargs.h>
     67 #include <sys/timerfd.h>
     68 #include <sys/uio.h>
     69 
     70 /* N.B. all timerfd state is protected by itimer_lock() */
     71 struct timerfd {
     72 	struct itimer	tfd_itimer;
     73 	kcondvar_t	tfd_read_wait;
     74 	kcondvar_t	tfd_restart_wait;
     75 	struct selinfo	tfd_read_sel;
     76 	int64_t		tfd_nwaiters;
     77 	bool		tfd_cancel_on_set;
     78 	bool		tfd_cancelled;
     79 	bool		tfd_restarting;
     80 
     81 	/*
     82 	 * Information kept for stat(2).
     83 	 */
     84 	struct timespec tfd_btime;	/* time created */
     85 	struct timespec	tfd_mtime;	/* last timerfd_settime() */
     86 	struct timespec	tfd_atime;	/* last read */
     87 };
     88 
     89 static void	timerfd_wake(struct timerfd *);
     90 
     91 static inline uint64_t
     92 timerfd_fire_count(const struct timerfd * const tfd)
     93 {
     94 	return (unsigned int)tfd->tfd_itimer.it_overruns;
     95 }
     96 
     97 static inline bool
     98 timerfd_is_readable(const struct timerfd * const tfd)
     99 {
    100 	return tfd->tfd_itimer.it_overruns != 0 || tfd->tfd_cancelled;
    101 }
    102 
    103 /*
    104  * timerfd_fire:
    105  *
    106  *	Called when the timerfd's timer fires.
    107  *
    108  *	Called from a callout with itimer lock held.
    109  */
    110 static void
    111 timerfd_fire(struct itimer * const it)
    112 {
    113 	struct timerfd * const tfd =
    114 	    container_of(it, struct timerfd, tfd_itimer);
    115 
    116 	it->it_overruns++;
    117 	timerfd_wake(tfd);
    118 }
    119 
    120 /*
    121  * timerfd_realtime_changed:
    122  *
    123  *	Called when CLOCK_REALTIME is changed with clock_settime()
    124  *	or settimeofday().
    125  *
    126  *	Called with itimer lock held.
    127  */
    128 static void
    129 timerfd_realtime_changed(struct itimer * const it)
    130 {
    131 	struct timerfd * const tfd =
    132 	    container_of(it, struct timerfd, tfd_itimer);
    133 
    134 	/* Should only be called when timer is armed. */
    135 	KASSERT(timespecisset(&it->it_time.it_value));
    136 
    137 	if (tfd->tfd_cancel_on_set) {
    138 		tfd->tfd_cancelled = true;
    139 		timerfd_wake(tfd);
    140 	}
    141 }
    142 
    143 static const struct itimer_ops timerfd_itimer_monotonic_ops = {
    144 	.ito_fire = timerfd_fire,
    145 };
    146 
    147 static const struct itimer_ops timerfd_itimer_realtime_ops = {
    148 	.ito_fire = timerfd_fire,
    149 	.ito_realtime_changed = timerfd_realtime_changed,
    150 };
    151 
    152 /*
    153  * timerfd_create:
    154  *
    155  *	Create a timerfd object.
    156  */
    157 static struct timerfd *
    158 timerfd_create(clockid_t const clock_id, int const flags)
    159 {
    160 	struct timerfd * const tfd = kmem_zalloc(sizeof(*tfd), KM_SLEEP);
    161 
    162 	KASSERT(clock_id == CLOCK_REALTIME || clock_id == CLOCK_MONOTONIC);
    163 
    164 	cv_init(&tfd->tfd_read_wait, "tfdread");
    165 	cv_init(&tfd->tfd_restart_wait, "tfdrstrt");
    166 	selinit(&tfd->tfd_read_sel);
    167 	getnanotime(&tfd->tfd_btime);
    168 
    169 	/* Caller deals with TFD_CLOEXEC and TFD_NONBLOCK. */
    170 
    171 	itimer_lock();
    172 	itimer_init(&tfd->tfd_itimer,
    173 	    clock_id == CLOCK_REALTIME ? &timerfd_itimer_realtime_ops
    174 				       : &timerfd_itimer_monotonic_ops,
    175 	    clock_id, NULL);
    176 	itimer_unlock();
    177 
    178 	return tfd;
    179 }
    180 
    181 /*
    182  * timerfd_destroy:
    183  *
    184  *	Destroy a timerfd object.
    185  */
    186 static void
    187 timerfd_destroy(struct timerfd * const tfd)
    188 {
    189 
    190 	KASSERT(tfd->tfd_nwaiters == 0);
    191 	KASSERT(tfd->tfd_restarting == false);
    192 
    193 	itimer_lock();
    194 	itimer_poison(&tfd->tfd_itimer);
    195 	itimer_fini(&tfd->tfd_itimer);	/* drops itimer lock */
    196 
    197 	cv_destroy(&tfd->tfd_read_wait);
    198 	cv_destroy(&tfd->tfd_restart_wait);
    199 
    200 	seldestroy(&tfd->tfd_read_sel);
    201 
    202 	kmem_free(tfd, sizeof(*tfd));
    203 }
    204 
    205 /*
    206  * timerfd_wait:
    207  *
    208  *	Block on a timerfd.  Handles non-blocking, as well as
    209  *	the restart cases.
    210  */
    211 static int
    212 timerfd_wait(struct timerfd * const tfd, int const fflag)
    213 {
    214 	extern kmutex_t	itimer_mutex;	/* XXX */
    215 	int error;
    216 
    217 	if (fflag & FNONBLOCK) {
    218 		return EAGAIN;
    219 	}
    220 
    221 	/*
    222 	 * We're going to block.  If there is a restart in-progress,
    223 	 * wait for that to complete first.
    224 	 */
    225 	while (tfd->tfd_restarting) {
    226 		cv_wait(&tfd->tfd_restart_wait, &itimer_mutex);
    227 	}
    228 
    229 	tfd->tfd_nwaiters++;
    230 	KASSERT(tfd->tfd_nwaiters > 0);
    231 	error = cv_wait_sig(&tfd->tfd_read_wait, &itimer_mutex);
    232 	tfd->tfd_nwaiters--;
    233 	KASSERT(tfd->tfd_nwaiters >= 0);
    234 
    235 	/*
    236 	 * If a restart was triggered while we were asleep, we need
    237 	 * to return ERESTART if no other error was returned.  If we
    238 	 * are the last waiter coming out of the restart drain, clear
    239 	 * the condition.
    240 	 */
    241 	if (tfd->tfd_restarting) {
    242 		if (error == 0) {
    243 			error = ERESTART;
    244 		}
    245 		if (tfd->tfd_nwaiters == 0) {
    246 			tfd->tfd_restarting = false;
    247 			cv_broadcast(&tfd->tfd_restart_wait);
    248 		}
    249 	}
    250 
    251 	return error;
    252 }
    253 
    254 /*
    255  * timerfd_wake:
    256  *
    257  *	Wake LWPs blocked on a timerfd.
    258  */
    259 static void
    260 timerfd_wake(struct timerfd * const tfd)
    261 {
    262 
    263 	if (tfd->tfd_nwaiters) {
    264 		cv_broadcast(&tfd->tfd_read_wait);
    265 	}
    266 	selnotify(&tfd->tfd_read_sel, POLLIN | POLLRDNORM, NOTE_SUBMIT);
    267 }
    268 
    269 /*
    270  * timerfd file operations
    271  */
    272 
    273 static int
    274 timerfd_fop_read(file_t * const fp, off_t * const offset,
    275     struct uio * const uio, kauth_cred_t const cred, int const flags)
    276 {
    277 	struct timerfd * const tfd = fp->f_timerfd;
    278 	struct itimer * const it = &tfd->tfd_itimer;
    279 	int const fflag = fp->f_flag;
    280 	uint64_t return_value;
    281 	int error;
    282 
    283 	if (uio->uio_resid < sizeof(uint64_t)) {
    284 		return EINVAL;
    285 	}
    286 
    287 	itimer_lock();
    288 
    289 	while (!timerfd_is_readable(tfd)) {
    290 		if ((error = timerfd_wait(tfd, fflag)) != 0) {
    291 			itimer_unlock();
    292 			return error;
    293 		}
    294 	}
    295 
    296 	if (tfd->tfd_cancelled) {
    297 		itimer_unlock();
    298 		return ECANCELED;
    299 	}
    300 
    301 	return_value = timerfd_fire_count(tfd);
    302 	it->it_overruns = 0;
    303 
    304 	getnanotime(&tfd->tfd_atime);
    305 
    306 	itimer_unlock();
    307 
    308 	error = uiomove(&return_value, sizeof(return_value), uio);
    309 
    310 	return error;
    311 }
    312 
    313 static int
    314 timerfd_fop_ioctl(file_t * const fp, unsigned long const cmd, void * const data)
    315 {
    316 	struct timerfd * const tfd = fp->f_timerfd;
    317 	int error = 0;
    318 
    319 	switch (cmd) {
    320 	case TFD_IOC_SET_TICKS: {
    321 		const uint64_t * const new_ticksp = data;
    322 		if (*new_ticksp > INT_MAX) {
    323 			return EINVAL;
    324 		}
    325 		itimer_lock();
    326 		tfd->tfd_itimer.it_overruns = (int)*new_ticksp;
    327 		itimer_unlock();
    328 		break;
    329 	    }
    330 
    331 	default:
    332 		error = EPASSTHROUGH;
    333 	}
    334 
    335 	return error;
    336 }
    337 
    338 static int
    339 timerfd_fop_poll(file_t * const fp, int const events)
    340 {
    341 	struct timerfd * const tfd = fp->f_timerfd;
    342 	int revents = events & (POLLOUT | POLLWRNORM);
    343 
    344 	if (events & (POLLIN | POLLRDNORM)) {
    345 		itimer_lock();
    346 		if (timerfd_is_readable(tfd)) {
    347 			revents |= events & (POLLIN | POLLRDNORM);
    348 		} else {
    349 			selrecord(curlwp, &tfd->tfd_read_sel);
    350 		}
    351 		itimer_unlock();
    352 	}
    353 
    354 	return revents;
    355 }
    356 
    357 static int
    358 timerfd_fop_stat(file_t * const fp, struct stat * const st)
    359 {
    360 	struct timerfd * const tfd = fp->f_timerfd;
    361 
    362 	memset(st, 0, sizeof(*st));
    363 
    364 	itimer_lock();
    365 	st->st_size = (off_t)timerfd_fire_count(tfd);
    366 	st->st_atimespec = tfd->tfd_atime;
    367 	st->st_mtimespec = tfd->tfd_mtime;
    368 	itimer_unlock();
    369 
    370 	st->st_blksize = sizeof(uint64_t);
    371 	st->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
    372 	st->st_blocks = 1;
    373 	st->st_birthtimespec = tfd->tfd_btime;
    374 	st->st_ctimespec = st->st_mtimespec;
    375 	st->st_uid = kauth_cred_geteuid(fp->f_cred);
    376 	st->st_gid = kauth_cred_getegid(fp->f_cred);
    377 
    378 	return 0;
    379 }
    380 
    381 static int
    382 timerfd_fop_close(file_t * const fp)
    383 {
    384 	struct timerfd * const tfd = fp->f_timerfd;
    385 
    386 	fp->f_timerfd = NULL;
    387 	timerfd_destroy(tfd);
    388 
    389 	return 0;
    390 }
    391 
    392 static void
    393 timerfd_filt_read_detach(struct knote * const kn)
    394 {
    395 	struct timerfd * const tfd = ((file_t *)kn->kn_obj)->f_timerfd;
    396 
    397 	itimer_lock();
    398 	KASSERT(kn->kn_hook == tfd);
    399 	selremove_knote(&tfd->tfd_read_sel, kn);
    400 	itimer_unlock();
    401 }
    402 
    403 static int
    404 timerfd_filt_read(struct knote * const kn, long const hint)
    405 {
    406 	struct timerfd * const tfd = ((file_t *)kn->kn_obj)->f_timerfd;
    407 
    408 	if (hint & NOTE_SUBMIT) {
    409 		KASSERT(itimer_lock_held());
    410 	} else {
    411 		itimer_lock();
    412 	}
    413 
    414 	kn->kn_data = (int64_t)timerfd_fire_count(tfd);
    415 
    416 	if ((hint & NOTE_SUBMIT) == 0) {
    417 		itimer_unlock();
    418 	}
    419 
    420 	return kn->kn_data != 0;
    421 }
    422 
    423 static const struct filterops timerfd_read_filterops = {
    424 	.f_isfd = 1,
    425 	.f_detach = timerfd_filt_read_detach,
    426 	.f_event = timerfd_filt_read,
    427 };
    428 
    429 static int
    430 timerfd_fop_kqfilter(file_t * const fp, struct knote * const kn)
    431 {
    432 	struct timerfd * const tfd = ((file_t *)kn->kn_obj)->f_timerfd;
    433 	struct selinfo *sel;
    434 
    435 	switch (kn->kn_filter) {
    436 	case EVFILT_READ:
    437 		sel = &tfd->tfd_read_sel;
    438 		kn->kn_fop = &timerfd_read_filterops;
    439 		break;
    440 
    441 	default:
    442 		return EINVAL;
    443 	}
    444 
    445 	kn->kn_hook = tfd;
    446 
    447 	itimer_lock();
    448 	selrecord_knote(sel, kn);
    449 	itimer_unlock();
    450 
    451 	return 0;
    452 }
    453 
    454 static void
    455 timerfd_fop_restart(file_t * const fp)
    456 {
    457 	struct timerfd * const tfd = fp->f_timerfd;
    458 
    459 	/*
    460 	 * Unblock blocked reads in order to allow close() to complete.
    461 	 * System calls return ERESTART so that the fd is revalidated.
    462 	 */
    463 
    464 	itimer_lock();
    465 
    466 	if (tfd->tfd_nwaiters != 0) {
    467 		tfd->tfd_restarting = true;
    468 		cv_broadcast(&tfd->tfd_read_wait);
    469 	}
    470 
    471 	itimer_unlock();
    472 }
    473 
    474 static const struct fileops timerfd_fileops = {
    475 	.fo_name = "timerfd",
    476 	.fo_read = timerfd_fop_read,
    477 	.fo_write = fbadop_write,
    478 	.fo_ioctl = timerfd_fop_ioctl,
    479 	.fo_fcntl = fnullop_fcntl,
    480 	.fo_poll = timerfd_fop_poll,
    481 	.fo_stat = timerfd_fop_stat,
    482 	.fo_close = timerfd_fop_close,
    483 	.fo_kqfilter = timerfd_fop_kqfilter,
    484 	.fo_restart = timerfd_fop_restart,
    485 };
    486 
    487 /*
    488  * timerfd_create(2) system call
    489  */
    490 int
    491 do_timerfd_create(struct lwp * const l, clockid_t const clock_id,
    492     int const flags, register_t *retval)
    493 {
    494 	file_t *fp;
    495 	int fd, error;
    496 
    497 	if (flags & ~(TFD_CLOEXEC | TFD_NONBLOCK)) {
    498 		return EINVAL;
    499 	}
    500 
    501 	switch (clock_id) {
    502 	case CLOCK_REALTIME:
    503 	case CLOCK_MONOTONIC:
    504 		/* allowed */
    505 		break;
    506 
    507 	default:
    508 		return EINVAL;
    509 	}
    510 
    511 	if ((error = fd_allocfile(&fp, &fd)) != 0) {
    512 		return error;
    513 	}
    514 
    515 	fp->f_flag = FREAD;
    516 	if (flags & TFD_NONBLOCK) {
    517 		fp->f_flag |= FNONBLOCK;
    518 	}
    519 	fp->f_type = DTYPE_TIMERFD;
    520 	fp->f_ops = &timerfd_fileops;
    521 	fp->f_timerfd = timerfd_create(clock_id, flags);
    522 	fd_set_exclose(l, fd, !!(flags & TFD_CLOEXEC));
    523 	fd_affix(curproc, fp, fd);
    524 
    525 	*retval = fd;
    526 	return 0;
    527 }
    528 
    529 int
    530 sys_timerfd_create(struct lwp *l, const struct sys_timerfd_create_args *uap,
    531     register_t *retval)
    532 {
    533 	/* {
    534 		syscallarg(clockid_t) clock_id;
    535 		syscallarg(int) flags;
    536 	} */
    537 
    538 	return do_timerfd_create(l, SCARG(uap, clock_id), SCARG(uap, flags),
    539 	    retval);
    540 }
    541 
    542 /*
    543  * timerfd_gettime(2) system call.
    544  */
    545 int
    546 do_timerfd_gettime(struct lwp *l, int fd, struct itimerspec *curr_value,
    547     register_t *retval)
    548 {
    549 	file_t *fp;
    550 
    551 	if ((fp = fd_getfile(fd)) == NULL) {
    552 		return EBADF;
    553 	}
    554 
    555 	if (fp->f_ops != &timerfd_fileops) {
    556 		fd_putfile(fd);
    557 		return EINVAL;
    558 	}
    559 
    560 	struct timerfd * const tfd = fp->f_timerfd;
    561 	itimer_lock();
    562 	itimer_gettime(&tfd->tfd_itimer, curr_value);
    563 	itimer_unlock();
    564 
    565 	fd_putfile(fd);
    566 	return 0;
    567 }
    568 
    569 int
    570 sys_timerfd_gettime(struct lwp *l, const struct sys_timerfd_gettime_args *uap,
    571     register_t *retval)
    572 {
    573 	/* {
    574 		syscallarg(int) fd;
    575 		syscallarg(struct itimerspec *) curr_value;
    576 	} */
    577 
    578 	struct itimerspec oits;
    579 	int error;
    580 
    581 	error = do_timerfd_gettime(l, SCARG(uap, fd), &oits, retval);
    582 	if (error == 0) {
    583 		error = copyout(&oits, SCARG(uap, curr_value), sizeof(oits));
    584 	}
    585 	return error;
    586 }
    587 
    588 /*
    589  * timerfd_settime(2) system call.
    590  */
    591 int
    592 do_timerfd_settime(struct lwp *l, int fd, int flags,
    593     const struct itimerspec *new_value, struct itimerspec *old_value,
    594     register_t *retval)
    595 {
    596 	file_t *fp;
    597 	int error;
    598 
    599 	if (flags & ~(TFD_TIMER_ABSTIME | TFD_TIMER_CANCEL_ON_SET)) {
    600 		return EINVAL;
    601 	}
    602 
    603 	if ((fp = fd_getfile(fd)) == NULL) {
    604 		return EBADF;
    605 	}
    606 
    607 	if (fp->f_ops != &timerfd_fileops) {
    608 		fd_putfile(fd);
    609 		return EINVAL;
    610 	}
    611 
    612 	struct timerfd * const tfd = fp->f_timerfd;
    613 	struct itimer * const it = &tfd->tfd_itimer;
    614 
    615 	itimer_lock();
    616 
    617  restart:
    618 	if (old_value != NULL) {
    619 		*old_value = it->it_time;
    620 	}
    621 	it->it_time = *new_value;
    622 
    623 	/*
    624 	 * If we've been passed a relative value, convert it to an
    625 	 * absolute, as that's what the itimer facility expects for
    626 	 * non-virtual timers.  Also ensure that this doesn't set it
    627 	 * to zero or lets it go negative.
    628 	 * XXXJRT re-factor.
    629 	 */
    630 	if (timespecisset(&it->it_time.it_value) &&
    631 	    (flags & TFD_TIMER_ABSTIME) == 0) {
    632 		struct timespec now;
    633 		if (it->it_clockid == CLOCK_REALTIME) {
    634 			getnanotime(&now);
    635 		} else { /* CLOCK_MONOTONIC */
    636 			getnanouptime(&now);
    637 		}
    638 		timespecadd(&it->it_time.it_value, &now,
    639 		    &it->it_time.it_value);
    640 	}
    641 
    642 	error = itimer_settime(it);
    643 	if (error == ERESTART) {
    644 		goto restart;
    645 	}
    646 	KASSERT(error == 0);
    647 
    648 	/* Reset the expirations counter. */
    649 	it->it_overruns = 0;
    650 
    651 	if (it->it_clockid == CLOCK_REALTIME) {
    652 		tfd->tfd_cancelled = false;
    653 		tfd->tfd_cancel_on_set = !!(flags & TFD_TIMER_CANCEL_ON_SET);
    654 	}
    655 
    656 	getnanotime(&tfd->tfd_mtime);
    657 	itimer_unlock();
    658 
    659 	fd_putfile(fd);
    660 	return error;
    661 }
    662 
    663 int
    664 sys_timerfd_settime(struct lwp *l, const struct sys_timerfd_settime_args *uap,
    665     register_t *retval)
    666 {
    667 	/* {
    668 		syscallarg(int) fd;
    669 		syscallarg(int) flags;
    670 		syscallarg(const struct itimerspec *) new_value;
    671 		syscallarg(struct itimerspec *) old_value;
    672 	} */
    673 
    674 	struct itimerspec nits, oits, *oitsp = NULL;
    675 	int error;
    676 
    677 	error = copyin(SCARG(uap, new_value), &nits, sizeof(nits));
    678 	if (error) {
    679 		return error;
    680 	}
    681 
    682 	if (SCARG(uap, old_value) != NULL) {
    683 		oitsp = &oits;
    684 	}
    685 
    686 	error = do_timerfd_settime(l, SCARG(uap, fd), SCARG(uap, flags),
    687 	    &nits, oitsp, retval);
    688 	if (error == 0 && oitsp != NULL) {
    689 		error = copyout(oitsp, SCARG(uap, old_value), sizeof(*oitsp));
    690 	}
    691 	return error;
    692 }
    693