sysv_sem.c revision 1.27 1 /* $NetBSD: sysv_sem.c,v 1.27 1996/10/10 22:43:22 christos Exp $ */
2
3 /*
4 * Implementation of SVID semaphores
5 *
6 * Author: Daniel Boulet
7 *
8 * This software is provided ``AS IS'' without any warranties of any kind.
9 */
10
11 #include <sys/param.h>
12 #include <sys/systm.h>
13 #include <sys/kernel.h>
14 #include <sys/proc.h>
15 #include <sys/sem.h>
16 #include <sys/malloc.h>
17
18 #include <sys/mount.h>
19 #include <sys/syscallargs.h>
20
21 int semtot = 0;
22 struct proc *semlock_holder = NULL;
23
24 #ifdef SEM_DEBUG
25 #define SEM_PRINTF(a) kprintf a
26 #else
27 #define SEM_PRINTF(a)
28 #endif
29
30 void semlock __P((struct proc *));
31 struct sem_undo *semu_alloc __P((struct proc *));
32 int semundo_adjust __P((struct proc *, struct sem_undo **, int, int, int));
33 void semundo_clear __P((int, int));
34
35 void
36 seminit()
37 {
38 register int i;
39
40 if (sema == NULL)
41 panic("sema is NULL");
42 if (semu == NULL)
43 panic("semu is NULL");
44
45 for (i = 0; i < seminfo.semmni; i++) {
46 sema[i].sem_base = 0;
47 sema[i].sem_perm.mode = 0;
48 }
49 for (i = 0; i < seminfo.semmnu; i++) {
50 register struct sem_undo *suptr = SEMU(i);
51 suptr->un_proc = NULL;
52 }
53 semu_list = NULL;
54 }
55
56 void
57 semlock(p)
58 struct proc *p;
59 {
60
61 while (semlock_holder != NULL && semlock_holder != p)
62 sleep((caddr_t)&semlock_holder, (PZERO - 4));
63 }
64
65 /*
66 * Lock or unlock the entire semaphore facility.
67 *
68 * This will probably eventually evolve into a general purpose semaphore
69 * facility status enquiry mechanism (I don't like the "read /dev/kmem"
70 * approach currently taken by ipcs and the amount of info that we want
71 * to be able to extract for ipcs is probably beyond the capability of
72 * the getkerninfo facility.
73 *
74 * At the time that the current version of semconfig was written, ipcs is
75 * the only user of the semconfig facility. It uses it to ensure that the
76 * semaphore facility data structures remain static while it fishes around
77 * in /dev/kmem.
78 */
79
80 int
81 sys_semconfig(p, v, retval)
82 struct proc *p;
83 void *v;
84 register_t *retval;
85 {
86 struct sys_semconfig_args /* {
87 syscallarg(int) flag;
88 } */ *uap = v;
89 int eval = 0;
90
91 semlock(p);
92
93 switch (SCARG(uap, flag)) {
94 case SEM_CONFIG_FREEZE:
95 semlock_holder = p;
96 break;
97
98 case SEM_CONFIG_THAW:
99 semlock_holder = NULL;
100 wakeup((caddr_t)&semlock_holder);
101 break;
102
103 default:
104 kprintf(
105 "semconfig: unknown flag parameter value (%d) - ignored\n",
106 SCARG(uap, flag));
107 eval = EINVAL;
108 break;
109 }
110
111 *retval = 0;
112 return(eval);
113 }
114
115 /*
116 * Allocate a new sem_undo structure for a process
117 * (returns ptr to structure or NULL if no more room)
118 */
119
120 struct sem_undo *
121 semu_alloc(p)
122 struct proc *p;
123 {
124 register int i;
125 register struct sem_undo *suptr;
126 register struct sem_undo **supptr;
127 int attempt;
128
129 /*
130 * Try twice to allocate something.
131 * (we'll purge any empty structures after the first pass so
132 * two passes are always enough)
133 */
134
135 for (attempt = 0; attempt < 2; attempt++) {
136 /*
137 * Look for a free structure.
138 * Fill it in and return it if we find one.
139 */
140
141 for (i = 0; i < seminfo.semmnu; i++) {
142 suptr = SEMU(i);
143 if (suptr->un_proc == NULL) {
144 suptr->un_next = semu_list;
145 semu_list = suptr;
146 suptr->un_cnt = 0;
147 suptr->un_proc = p;
148 return(suptr);
149 }
150 }
151
152 /*
153 * We didn't find a free one, if this is the first attempt
154 * then try to free some structures.
155 */
156
157 if (attempt == 0) {
158 /* All the structures are in use - try to free some */
159 int did_something = 0;
160
161 supptr = &semu_list;
162 while ((suptr = *supptr) != NULL) {
163 if (suptr->un_cnt == 0) {
164 suptr->un_proc = NULL;
165 *supptr = suptr->un_next;
166 did_something = 1;
167 } else
168 supptr = &(suptr->un_next);
169 }
170
171 /* If we didn't free anything then just give-up */
172 if (!did_something)
173 return(NULL);
174 } else {
175 /*
176 * The second pass failed even though we freed
177 * something after the first pass!
178 * This is IMPOSSIBLE!
179 */
180 panic("semu_alloc - second attempt failed");
181 }
182 }
183 return NULL;
184 }
185
186 /*
187 * Adjust a particular entry for a particular proc
188 */
189
190 int
191 semundo_adjust(p, supptr, semid, semnum, adjval)
192 register struct proc *p;
193 struct sem_undo **supptr;
194 int semid, semnum;
195 int adjval;
196 {
197 register struct sem_undo *suptr;
198 register struct undo *sunptr;
199 int i;
200
201 /* Look for and remember the sem_undo if the caller doesn't provide
202 it */
203
204 suptr = *supptr;
205 if (suptr == NULL) {
206 for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next) {
207 if (suptr->un_proc == p) {
208 *supptr = suptr;
209 break;
210 }
211 }
212 if (suptr == NULL) {
213 if (adjval == 0)
214 return(0);
215 suptr = semu_alloc(p);
216 if (suptr == NULL)
217 return(ENOSPC);
218 *supptr = suptr;
219 }
220 }
221
222 /*
223 * Look for the requested entry and adjust it (delete if adjval becomes
224 * 0).
225 */
226 sunptr = &suptr->un_ent[0];
227 for (i = 0; i < suptr->un_cnt; i++, sunptr++) {
228 if (sunptr->un_id != semid || sunptr->un_num != semnum)
229 continue;
230 if (adjval == 0)
231 sunptr->un_adjval = 0;
232 else
233 sunptr->un_adjval += adjval;
234 if (sunptr->un_adjval == 0) {
235 suptr->un_cnt--;
236 if (i < suptr->un_cnt)
237 suptr->un_ent[i] =
238 suptr->un_ent[suptr->un_cnt];
239 }
240 return(0);
241 }
242
243 /* Didn't find the right entry - create it */
244 if (adjval == 0)
245 return(0);
246 if (suptr->un_cnt == SEMUME)
247 return(EINVAL);
248
249 sunptr = &suptr->un_ent[suptr->un_cnt];
250 suptr->un_cnt++;
251 sunptr->un_adjval = adjval;
252 sunptr->un_id = semid;
253 sunptr->un_num = semnum;
254 return(0);
255 }
256
257 void
258 semundo_clear(semid, semnum)
259 int semid, semnum;
260 {
261 register struct sem_undo *suptr;
262
263 for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next) {
264 register struct undo *sunptr;
265 register int i;
266
267 sunptr = &suptr->un_ent[0];
268 for (i = 0; i < suptr->un_cnt; i++, sunptr++) {
269 if (sunptr->un_id == semid) {
270 if (semnum == -1 || sunptr->un_num == semnum) {
271 suptr->un_cnt--;
272 if (i < suptr->un_cnt) {
273 suptr->un_ent[i] =
274 suptr->un_ent[suptr->un_cnt];
275 i--, sunptr--;
276 }
277 }
278 if (semnum != -1)
279 break;
280 }
281 }
282 }
283 }
284
285 int
286 sys___semctl(p, v, retval)
287 struct proc *p;
288 register void *v;
289 register_t *retval;
290 {
291 register struct sys___semctl_args /* {
292 syscallarg(int) semid;
293 syscallarg(int) semnum;
294 syscallarg(int) cmd;
295 syscallarg(union semun *) arg;
296 } */ *uap = v;
297 int semid = SCARG(uap, semid);
298 int semnum = SCARG(uap, semnum);
299 int cmd = SCARG(uap, cmd);
300 union semun *arg = SCARG(uap, arg);
301 union semun real_arg;
302 struct ucred *cred = p->p_ucred;
303 int i, rval, eval;
304 struct semid_ds sbuf;
305 register struct semid_ds *semaptr;
306
307 SEM_PRINTF(("call to semctl(%d, %d, %d, %p)\n",
308 semid, semnum, cmd, arg));
309
310 semlock(p);
311
312 semid = IPCID_TO_IX(semid);
313 if (semid < 0 || semid >= seminfo.semmsl)
314 return(EINVAL);
315
316 semaptr = &sema[semid];
317 if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
318 semaptr->sem_perm.seq != IPCID_TO_SEQ(SCARG(uap, semid)))
319 return(EINVAL);
320
321 eval = 0;
322 rval = 0;
323
324 switch (cmd) {
325 case IPC_RMID:
326 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_M)) != 0)
327 return(eval);
328 semaptr->sem_perm.cuid = cred->cr_uid;
329 semaptr->sem_perm.uid = cred->cr_uid;
330 semtot -= semaptr->sem_nsems;
331 for (i = semaptr->sem_base - sem; i < semtot; i++)
332 sem[i] = sem[i + semaptr->sem_nsems];
333 for (i = 0; i < seminfo.semmni; i++) {
334 if ((sema[i].sem_perm.mode & SEM_ALLOC) &&
335 sema[i].sem_base > semaptr->sem_base)
336 sema[i].sem_base -= semaptr->sem_nsems;
337 }
338 semaptr->sem_perm.mode = 0;
339 semundo_clear(semid, -1);
340 wakeup((caddr_t)semaptr);
341 break;
342
343 case IPC_SET:
344 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_M)))
345 return(eval);
346 if ((eval = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
347 return(eval);
348 if ((eval = copyin(real_arg.buf, (caddr_t)&sbuf,
349 sizeof(sbuf))) != 0)
350 return(eval);
351 semaptr->sem_perm.uid = sbuf.sem_perm.uid;
352 semaptr->sem_perm.gid = sbuf.sem_perm.gid;
353 semaptr->sem_perm.mode = (semaptr->sem_perm.mode & ~0777) |
354 (sbuf.sem_perm.mode & 0777);
355 semaptr->sem_ctime = time.tv_sec;
356 break;
357
358 case IPC_STAT:
359 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
360 return(eval);
361 if ((eval = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
362 return(eval);
363 eval = copyout((caddr_t)semaptr, real_arg.buf,
364 sizeof(struct semid_ds));
365 break;
366
367 case GETNCNT:
368 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
369 return(eval);
370 if (semnum < 0 || semnum >= semaptr->sem_nsems)
371 return(EINVAL);
372 rval = semaptr->sem_base[semnum].semncnt;
373 break;
374
375 case GETPID:
376 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
377 return(eval);
378 if (semnum < 0 || semnum >= semaptr->sem_nsems)
379 return(EINVAL);
380 rval = semaptr->sem_base[semnum].sempid;
381 break;
382
383 case GETVAL:
384 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
385 return(eval);
386 if (semnum < 0 || semnum >= semaptr->sem_nsems)
387 return(EINVAL);
388 rval = semaptr->sem_base[semnum].semval;
389 break;
390
391 case GETALL:
392 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
393 return(eval);
394 if ((eval = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
395 return(eval);
396 for (i = 0; i < semaptr->sem_nsems; i++) {
397 eval = copyout((caddr_t)&semaptr->sem_base[i].semval,
398 &real_arg.array[i], sizeof(real_arg.array[0]));
399 if (eval != 0)
400 break;
401 }
402 break;
403
404 case GETZCNT:
405 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
406 return(eval);
407 if (semnum < 0 || semnum >= semaptr->sem_nsems)
408 return(EINVAL);
409 rval = semaptr->sem_base[semnum].semzcnt;
410 break;
411
412 case SETVAL:
413 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_W)))
414 return(eval);
415 if (semnum < 0 || semnum >= semaptr->sem_nsems)
416 return(EINVAL);
417 if ((eval = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
418 return(eval);
419 semaptr->sem_base[semnum].semval = real_arg.val;
420 semundo_clear(semid, semnum);
421 wakeup((caddr_t)semaptr);
422 break;
423
424 case SETALL:
425 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_W)))
426 return(eval);
427 if ((eval = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
428 return(eval);
429 for (i = 0; i < semaptr->sem_nsems; i++) {
430 eval = copyin(&real_arg.array[i],
431 (caddr_t)&semaptr->sem_base[i].semval,
432 sizeof(real_arg.array[0]));
433 if (eval != 0)
434 break;
435 }
436 semundo_clear(semid, -1);
437 wakeup((caddr_t)semaptr);
438 break;
439
440 default:
441 return(EINVAL);
442 }
443
444 if (eval == 0)
445 *retval = rval;
446 return(eval);
447 }
448
449 int
450 sys_semget(p, v, retval)
451 struct proc *p;
452 void *v;
453 register_t *retval;
454 {
455 register struct sys_semget_args /* {
456 syscallarg(key_t) key;
457 syscallarg(int) nsems;
458 syscallarg(int) semflg;
459 } */ *uap = v;
460 int semid, eval;
461 int key = SCARG(uap, key);
462 int nsems = SCARG(uap, nsems);
463 int semflg = SCARG(uap, semflg);
464 struct ucred *cred = p->p_ucred;
465
466 SEM_PRINTF(("semget(0x%x, %d, 0%o)\n", key, nsems, semflg));
467
468 semlock(p);
469
470 if (key != IPC_PRIVATE) {
471 for (semid = 0; semid < seminfo.semmni; semid++) {
472 if ((sema[semid].sem_perm.mode & SEM_ALLOC) &&
473 sema[semid].sem_perm.key == key)
474 break;
475 }
476 if (semid < seminfo.semmni) {
477 SEM_PRINTF(("found public key\n"));
478 if ((eval = ipcperm(cred, &sema[semid].sem_perm,
479 semflg & 0700)))
480 return(eval);
481 if (nsems > 0 && sema[semid].sem_nsems < nsems) {
482 SEM_PRINTF(("too small\n"));
483 return(EINVAL);
484 }
485 if ((semflg & IPC_CREAT) && (semflg & IPC_EXCL)) {
486 SEM_PRINTF(("not exclusive\n"));
487 return(EEXIST);
488 }
489 goto found;
490 }
491 }
492
493 SEM_PRINTF(("need to allocate the semid_ds\n"));
494 if (key == IPC_PRIVATE || (semflg & IPC_CREAT)) {
495 if (nsems <= 0 || nsems > seminfo.semmsl) {
496 SEM_PRINTF(("nsems out of range (0<%d<=%d)\n", nsems,
497 seminfo.semmsl));
498 return(EINVAL);
499 }
500 if (nsems > seminfo.semmns - semtot) {
501 SEM_PRINTF(("not enough semaphores left (need %d, got %d)\n",
502 nsems, seminfo.semmns - semtot));
503 return(ENOSPC);
504 }
505 for (semid = 0; semid < seminfo.semmni; semid++) {
506 if ((sema[semid].sem_perm.mode & SEM_ALLOC) == 0)
507 break;
508 }
509 if (semid == seminfo.semmni) {
510 SEM_PRINTF(("no more semid_ds's available\n"));
511 return(ENOSPC);
512 }
513 SEM_PRINTF(("semid %d is available\n", semid));
514 sema[semid].sem_perm.key = key;
515 sema[semid].sem_perm.cuid = cred->cr_uid;
516 sema[semid].sem_perm.uid = cred->cr_uid;
517 sema[semid].sem_perm.cgid = cred->cr_gid;
518 sema[semid].sem_perm.gid = cred->cr_gid;
519 sema[semid].sem_perm.mode = (semflg & 0777) | SEM_ALLOC;
520 sema[semid].sem_perm.seq =
521 (sema[semid].sem_perm.seq + 1) & 0x7fff;
522 sema[semid].sem_nsems = nsems;
523 sema[semid].sem_otime = 0;
524 sema[semid].sem_ctime = time.tv_sec;
525 sema[semid].sem_base = &sem[semtot];
526 semtot += nsems;
527 bzero(sema[semid].sem_base,
528 sizeof(sema[semid].sem_base[0])*nsems);
529 SEM_PRINTF(("sembase = %p, next = %p\n", sema[semid].sem_base,
530 &sem[semtot]));
531 } else {
532 SEM_PRINTF(("didn't find it and wasn't asked to create it\n"));
533 return(ENOENT);
534 }
535
536 found:
537 *retval = IXSEQ_TO_IPCID(semid, sema[semid].sem_perm);
538 return(0);
539 }
540
541 int
542 sys_semop(p, v, retval)
543 struct proc *p;
544 void *v;
545 register_t *retval;
546 {
547 register struct sys_semop_args /* {
548 syscallarg(int) semid;
549 syscallarg(struct sembuf *) sops;
550 syscallarg(u_int) nsops;
551 } */ *uap = v;
552 int semid = SCARG(uap, semid);
553 int nsops = SCARG(uap, nsops);
554 struct sembuf sops[MAX_SOPS];
555 register struct semid_ds *semaptr;
556 register struct sembuf *sopptr = NULL;
557 register struct sem *semptr = NULL;
558 struct sem_undo *suptr = NULL;
559 struct ucred *cred = p->p_ucred;
560 int i, j, eval;
561 int do_wakeup, do_undos;
562
563 SEM_PRINTF(("call to semop(%d, %p, %d)\n", semid, sops, nsops));
564
565 semlock(p);
566
567 semid = IPCID_TO_IX(semid); /* Convert back to zero origin */
568
569 if (semid < 0 || semid >= seminfo.semmsl)
570 return(EINVAL);
571
572 semaptr = &sema[semid];
573 if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
574 semaptr->sem_perm.seq != IPCID_TO_SEQ(SCARG(uap, semid)))
575 return(EINVAL);
576
577 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_W))) {
578 SEM_PRINTF(("eval = %d from ipaccess\n", eval));
579 return(eval);
580 }
581
582 if (nsops > MAX_SOPS) {
583 SEM_PRINTF(("too many sops (max=%d, nsops=%d)\n", MAX_SOPS, nsops));
584 return(E2BIG);
585 }
586
587 if ((eval = copyin(SCARG(uap, sops), sops, nsops * sizeof(sops[0])))
588 != 0) {
589 SEM_PRINTF(("eval = %d from copyin(%p, %p, %d)\n", eval,
590 SCARG(uap, sops), &sops, nsops * sizeof(sops[0])));
591 return(eval);
592 }
593
594 /*
595 * Loop trying to satisfy the vector of requests.
596 * If we reach a point where we must wait, any requests already
597 * performed are rolled back and we go to sleep until some other
598 * process wakes us up. At this point, we start all over again.
599 *
600 * This ensures that from the perspective of other tasks, a set
601 * of requests is atomic (never partially satisfied).
602 */
603 do_undos = 0;
604
605 for (;;) {
606 do_wakeup = 0;
607
608 for (i = 0; i < nsops; i++) {
609 sopptr = &sops[i];
610
611 if (sopptr->sem_num >= semaptr->sem_nsems)
612 return(EFBIG);
613
614 semptr = &semaptr->sem_base[sopptr->sem_num];
615
616 SEM_PRINTF(("semop: semaptr=%x, sem_base=%x, semptr=%x, sem[%d]=%d : op=%d, flag=%s\n",
617 semaptr, semaptr->sem_base, semptr,
618 sopptr->sem_num, semptr->semval, sopptr->sem_op,
619 (sopptr->sem_flg & IPC_NOWAIT) ? "nowait" : "wait"));
620
621 if (sopptr->sem_op < 0) {
622 if ((int)(semptr->semval +
623 sopptr->sem_op) < 0) {
624 SEM_PRINTF(("semop: can't do it now\n"));
625 break;
626 } else {
627 semptr->semval += sopptr->sem_op;
628 if (semptr->semval == 0 &&
629 semptr->semzcnt > 0)
630 do_wakeup = 1;
631 }
632 if (sopptr->sem_flg & SEM_UNDO)
633 do_undos = 1;
634 } else if (sopptr->sem_op == 0) {
635 if (semptr->semval > 0) {
636 SEM_PRINTF(("semop: not zero now\n"));
637 break;
638 }
639 } else {
640 if (semptr->semncnt > 0)
641 do_wakeup = 1;
642 semptr->semval += sopptr->sem_op;
643 if (sopptr->sem_flg & SEM_UNDO)
644 do_undos = 1;
645 }
646 }
647
648 /*
649 * Did we get through the entire vector?
650 */
651 if (i >= nsops)
652 goto done;
653
654 /*
655 * No ... rollback anything that we've already done
656 */
657 SEM_PRINTF(("semop: rollback 0 through %d\n", i-1));
658 for (j = 0; j < i; j++)
659 semaptr->sem_base[sops[j].sem_num].semval -=
660 sops[j].sem_op;
661
662 /*
663 * If the request that we couldn't satisfy has the
664 * NOWAIT flag set then return with EAGAIN.
665 */
666 if (sopptr->sem_flg & IPC_NOWAIT)
667 return(EAGAIN);
668
669 if (sopptr->sem_op == 0)
670 semptr->semzcnt++;
671 else
672 semptr->semncnt++;
673
674 SEM_PRINTF(("semop: good night!\n"));
675 eval = tsleep((caddr_t)semaptr, (PZERO - 4) | PCATCH,
676 "semwait", 0);
677 SEM_PRINTF(("semop: good morning (eval=%d)!\n", eval));
678
679 suptr = NULL; /* sem_undo may have been reallocated */
680
681 if (eval != 0)
682 return(EINTR);
683 SEM_PRINTF(("semop: good morning!\n"));
684
685 /*
686 * Make sure that the semaphore still exists
687 */
688 if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
689 semaptr->sem_perm.seq != IPCID_TO_SEQ(SCARG(uap, semid))) {
690 /* The man page says to return EIDRM. */
691 /* Unfortunately, BSD doesn't define that code! */
692 #ifdef EIDRM
693 return(EIDRM);
694 #else
695 return(EINVAL);
696 #endif
697 }
698
699 /*
700 * The semaphore is still alive. Readjust the count of
701 * waiting processes.
702 */
703 if (sopptr->sem_op == 0)
704 semptr->semzcnt--;
705 else
706 semptr->semncnt--;
707 }
708
709 done:
710 /*
711 * Process any SEM_UNDO requests.
712 */
713 if (do_undos) {
714 for (i = 0; i < nsops; i++) {
715 /*
716 * We only need to deal with SEM_UNDO's for non-zero
717 * op's.
718 */
719 int adjval;
720
721 if ((sops[i].sem_flg & SEM_UNDO) == 0)
722 continue;
723 adjval = sops[i].sem_op;
724 if (adjval == 0)
725 continue;
726 eval = semundo_adjust(p, &suptr, semid,
727 sops[i].sem_num, -adjval);
728 if (eval == 0)
729 continue;
730
731 /*
732 * Oh-Oh! We ran out of either sem_undo's or undo's.
733 * Rollback the adjustments to this point and then
734 * rollback the semaphore ups and down so we can return
735 * with an error with all structures restored. We
736 * rollback the undo's in the exact reverse order that
737 * we applied them. This guarantees that we won't run
738 * out of space as we roll things back out.
739 */
740 for (j = i - 1; j >= 0; j--) {
741 if ((sops[j].sem_flg & SEM_UNDO) == 0)
742 continue;
743 adjval = sops[j].sem_op;
744 if (adjval == 0)
745 continue;
746 if (semundo_adjust(p, &suptr, semid,
747 sops[j].sem_num, adjval) != 0)
748 panic("semop - can't undo undos");
749 }
750
751 for (j = 0; j < nsops; j++)
752 semaptr->sem_base[sops[j].sem_num].semval -=
753 sops[j].sem_op;
754
755 SEM_PRINTF(("eval = %d from semundo_adjust\n", eval));
756 return(eval);
757 } /* loop through the sops */
758 } /* if (do_undos) */
759
760 /* We're definitely done - set the sempid's */
761 for (i = 0; i < nsops; i++) {
762 sopptr = &sops[i];
763 semptr = &semaptr->sem_base[sopptr->sem_num];
764 semptr->sempid = p->p_pid;
765 }
766
767 /* Do a wakeup if any semaphore was up'd. */
768 if (do_wakeup) {
769 SEM_PRINTF(("semop: doing wakeup\n"));
770 #ifdef SEM_WAKEUP
771 sem_wakeup((caddr_t)semaptr);
772 #else
773 wakeup((caddr_t)semaptr);
774 #endif
775 SEM_PRINTF(("semop: back from wakeup\n"));
776 }
777 SEM_PRINTF(("semop: done\n"));
778 *retval = 0;
779 return(0);
780 }
781
782 /*
783 * Go through the undo structures for this process and apply the adjustments to
784 * semaphores.
785 */
786 void
787 semexit(p)
788 struct proc *p;
789 {
790 register struct sem_undo *suptr;
791 register struct sem_undo **supptr;
792
793 /*
794 * Go through the chain of undo vectors looking for one associated with
795 * this process.
796 */
797
798 for (supptr = &semu_list; (suptr = *supptr) != NULL;
799 supptr = &suptr->un_next) {
800 if (suptr->un_proc == p)
801 break;
802 }
803
804 /*
805 * There are a few possibilities to consider here ...
806 *
807 * 1) The semaphore facility isn't currently locked. In this case,
808 * this call should proceed normally.
809 * 2) The semaphore facility is locked by this process (i.e. the one
810 * that is exiting). In this case, this call should proceed as
811 * usual and the facility should be unlocked at the end of this
812 * routine (since the locker is exiting).
813 * 3) The semaphore facility is locked by some other process and this
814 * process doesn't have an undo structure allocated for it. In this
815 * case, this call should proceed normally (i.e. not accomplish
816 * anything and, most importantly, not block since that is
817 * unnecessary and could result in a LOT of processes blocking in
818 * here if the facility is locked for a long time).
819 * 4) The semaphore facility is locked by some other process and this
820 * process has an undo structure allocated for it. In this case,
821 * this call should block until the facility has been unlocked since
822 * the holder of the lock may be examining this process's proc entry
823 * (the ipcs utility does this when printing out the information
824 * from the allocated sem undo elements).
825 *
826 * This leads to the conclusion that we should not block unless we
827 * discover that the someone else has the semaphore facility locked and
828 * this process has an undo structure. Let's do that...
829 *
830 * Note that we do this in a separate pass from the one that processes
831 * any existing undo structure since we don't want to risk blocking at
832 * that time (it would make the actual unlinking of the element from
833 * the chain of allocated undo structures rather messy).
834 */
835
836 /*
837 * Does someone else hold the semaphore facility's lock?
838 */
839
840 if (semlock_holder != NULL && semlock_holder != p) {
841 /*
842 * Yes (i.e. we are in case 3 or 4).
843 *
844 * If we didn't find an undo vector associated with this
845 * process than we can just return (i.e. we are in case 3).
846 *
847 * Note that we know that someone else is holding the lock so
848 * we don't even have to see if we're holding it...
849 */
850
851 if (suptr == NULL)
852 return;
853
854 /*
855 * We are in case 4.
856 *
857 * Go to sleep as long as someone else is locking the semaphore
858 * facility (note that we won't get here if we are holding the
859 * lock so we don't need to check for that possibility).
860 */
861
862 while (semlock_holder != NULL)
863 sleep((caddr_t)&semlock_holder, (PZERO - 4));
864
865 /*
866 * Nobody is holding the facility (i.e. we are now in case 1).
867 * We can proceed safely according to the argument outlined
868 * above.
869 *
870 * We look up the undo vector again, in case the list changed
871 * while we were asleep, and the parent is now different.
872 */
873
874 for (supptr = &semu_list; (suptr = *supptr) != NULL;
875 supptr = &suptr->un_next) {
876 if (suptr->un_proc == p)
877 break;
878 }
879
880 if (suptr == NULL)
881 panic("semexit: undo vector disappeared");
882 } else {
883 /*
884 * No (i.e. we are in case 1 or 2).
885 *
886 * If there is no undo vector, skip to the end and unlock the
887 * semaphore facility if necessary.
888 */
889
890 if (suptr == NULL)
891 goto unlock;
892 }
893
894 /*
895 * We are now in case 1 or 2, and we have an undo vector for this
896 * process.
897 */
898
899 SEM_PRINTF(("proc @%p has undo structure with %d entries\n", p,
900 suptr->un_cnt));
901
902 /*
903 * If there are any active undo elements then process them.
904 */
905 if (suptr->un_cnt > 0) {
906 int ix;
907
908 for (ix = 0; ix < suptr->un_cnt; ix++) {
909 int semid = suptr->un_ent[ix].un_id;
910 int semnum = suptr->un_ent[ix].un_num;
911 int adjval = suptr->un_ent[ix].un_adjval;
912 struct semid_ds *semaptr;
913
914 semaptr = &sema[semid];
915 if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0)
916 panic("semexit - semid not allocated");
917 if (semnum >= semaptr->sem_nsems)
918 panic("semexit - semnum out of range");
919
920 SEM_PRINTF(("semexit: %p id=%d num=%d(adj=%d) ; sem=%d\n",
921 suptr->un_proc, suptr->un_ent[ix].un_id,
922 suptr->un_ent[ix].un_num,
923 suptr->un_ent[ix].un_adjval,
924 semaptr->sem_base[semnum].semval));
925
926 if (adjval < 0 &&
927 semaptr->sem_base[semnum].semval < -adjval)
928 semaptr->sem_base[semnum].semval = 0;
929 else
930 semaptr->sem_base[semnum].semval += adjval;
931
932 #ifdef SEM_WAKEUP
933 sem_wakeup((caddr_t)semaptr);
934 #else
935 wakeup((caddr_t)semaptr);
936 #endif
937 SEM_PRINTF(("semexit: back from wakeup\n"));
938 }
939 }
940
941 /*
942 * Deallocate the undo vector.
943 */
944 SEM_PRINTF(("removing vector\n"));
945 suptr->un_proc = NULL;
946 *supptr = suptr->un_next;
947
948 unlock:
949 /*
950 * If the exiting process is holding the global semaphore facility
951 * lock (i.e. we are in case 2) then release it.
952 */
953 if (semlock_holder == p) {
954 semlock_holder = NULL;
955 wakeup((caddr_t)&semlock_holder);
956 }
957 }
958