sysv_sem.c revision 1.31 1 /* $NetBSD: sysv_sem.c,v 1.31 1998/10/19 22:19:27 tron Exp $ */
2
3 /*
4 * Implementation of SVID semaphores
5 *
6 * Author: Daniel Boulet
7 *
8 * This software is provided ``AS IS'' without any warranties of any kind.
9 */
10
11 #include "opt_sysv.h"
12
13 #include <sys/param.h>
14 #include <sys/systm.h>
15 #include <sys/kernel.h>
16 #include <sys/proc.h>
17 #include <sys/sem.h>
18 #include <sys/malloc.h>
19
20 #include <sys/mount.h>
21 #include <sys/syscallargs.h>
22
23 int semtot = 0;
24 struct proc *semlock_holder = NULL;
25
26 #ifdef SEM_DEBUG
27 #define SEM_PRINTF(a) printf a
28 #else
29 #define SEM_PRINTF(a)
30 #endif
31
32 void semlock __P((struct proc *));
33 struct sem_undo *semu_alloc __P((struct proc *));
34 int semundo_adjust __P((struct proc *, struct sem_undo **, int, int, int));
35 void semundo_clear __P((int, int));
36
37 void
38 seminit()
39 {
40 register int i;
41
42 if (sema == NULL)
43 panic("sema is NULL");
44 if (semu == NULL)
45 panic("semu is NULL");
46
47 for (i = 0; i < seminfo.semmni; i++) {
48 sema[i].sem_base = 0;
49 sema[i].sem_perm.mode = 0;
50 }
51 for (i = 0; i < seminfo.semmnu; i++) {
52 register struct sem_undo *suptr = SEMU(i);
53 suptr->un_proc = NULL;
54 }
55 semu_list = NULL;
56 }
57
58 void
59 semlock(p)
60 struct proc *p;
61 {
62
63 while (semlock_holder != NULL && semlock_holder != p)
64 sleep((caddr_t)&semlock_holder, (PZERO - 4));
65 }
66
67 /*
68 * Lock or unlock the entire semaphore facility.
69 *
70 * This will probably eventually evolve into a general purpose semaphore
71 * facility status enquiry mechanism (I don't like the "read /dev/kmem"
72 * approach currently taken by ipcs and the amount of info that we want
73 * to be able to extract for ipcs is probably beyond the capability of
74 * the getkerninfo facility.
75 *
76 * At the time that the current version of semconfig was written, ipcs is
77 * the only user of the semconfig facility. It uses it to ensure that the
78 * semaphore facility data structures remain static while it fishes around
79 * in /dev/kmem.
80 */
81
82 int
83 sys_semconfig(p, v, retval)
84 struct proc *p;
85 void *v;
86 register_t *retval;
87 {
88 struct sys_semconfig_args /* {
89 syscallarg(int) flag;
90 } */ *uap = v;
91 int eval = 0;
92
93 semlock(p);
94
95 switch (SCARG(uap, flag)) {
96 case SEM_CONFIG_FREEZE:
97 semlock_holder = p;
98 break;
99
100 case SEM_CONFIG_THAW:
101 semlock_holder = NULL;
102 wakeup((caddr_t)&semlock_holder);
103 break;
104
105 default:
106 printf(
107 "semconfig: unknown flag parameter value (%d) - ignored\n",
108 SCARG(uap, flag));
109 eval = EINVAL;
110 break;
111 }
112
113 *retval = 0;
114 return(eval);
115 }
116
117 /*
118 * Allocate a new sem_undo structure for a process
119 * (returns ptr to structure or NULL if no more room)
120 */
121
122 struct sem_undo *
123 semu_alloc(p)
124 struct proc *p;
125 {
126 register int i;
127 register struct sem_undo *suptr;
128 register struct sem_undo **supptr;
129 int attempt;
130
131 /*
132 * Try twice to allocate something.
133 * (we'll purge any empty structures after the first pass so
134 * two passes are always enough)
135 */
136
137 for (attempt = 0; attempt < 2; attempt++) {
138 /*
139 * Look for a free structure.
140 * Fill it in and return it if we find one.
141 */
142
143 for (i = 0; i < seminfo.semmnu; i++) {
144 suptr = SEMU(i);
145 if (suptr->un_proc == NULL) {
146 suptr->un_next = semu_list;
147 semu_list = suptr;
148 suptr->un_cnt = 0;
149 suptr->un_proc = p;
150 return(suptr);
151 }
152 }
153
154 /*
155 * We didn't find a free one, if this is the first attempt
156 * then try to free some structures.
157 */
158
159 if (attempt == 0) {
160 /* All the structures are in use - try to free some */
161 int did_something = 0;
162
163 supptr = &semu_list;
164 while ((suptr = *supptr) != NULL) {
165 if (suptr->un_cnt == 0) {
166 suptr->un_proc = NULL;
167 *supptr = suptr->un_next;
168 did_something = 1;
169 } else
170 supptr = &(suptr->un_next);
171 }
172
173 /* If we didn't free anything then just give-up */
174 if (!did_something)
175 return(NULL);
176 } else {
177 /*
178 * The second pass failed even though we freed
179 * something after the first pass!
180 * This is IMPOSSIBLE!
181 */
182 panic("semu_alloc - second attempt failed");
183 }
184 }
185 return NULL;
186 }
187
188 /*
189 * Adjust a particular entry for a particular proc
190 */
191
192 int
193 semundo_adjust(p, supptr, semid, semnum, adjval)
194 register struct proc *p;
195 struct sem_undo **supptr;
196 int semid, semnum;
197 int adjval;
198 {
199 register struct sem_undo *suptr;
200 register struct undo *sunptr;
201 int i;
202
203 /* Look for and remember the sem_undo if the caller doesn't provide
204 it */
205
206 suptr = *supptr;
207 if (suptr == NULL) {
208 for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next) {
209 if (suptr->un_proc == p) {
210 *supptr = suptr;
211 break;
212 }
213 }
214 if (suptr == NULL) {
215 if (adjval == 0)
216 return(0);
217 suptr = semu_alloc(p);
218 if (suptr == NULL)
219 return(ENOSPC);
220 *supptr = suptr;
221 }
222 }
223
224 /*
225 * Look for the requested entry and adjust it (delete if adjval becomes
226 * 0).
227 */
228 sunptr = &suptr->un_ent[0];
229 for (i = 0; i < suptr->un_cnt; i++, sunptr++) {
230 if (sunptr->un_id != semid || sunptr->un_num != semnum)
231 continue;
232 if (adjval == 0)
233 sunptr->un_adjval = 0;
234 else
235 sunptr->un_adjval += adjval;
236 if (sunptr->un_adjval == 0) {
237 suptr->un_cnt--;
238 if (i < suptr->un_cnt)
239 suptr->un_ent[i] =
240 suptr->un_ent[suptr->un_cnt];
241 }
242 return(0);
243 }
244
245 /* Didn't find the right entry - create it */
246 if (adjval == 0)
247 return(0);
248 if (suptr->un_cnt == SEMUME)
249 return(EINVAL);
250
251 sunptr = &suptr->un_ent[suptr->un_cnt];
252 suptr->un_cnt++;
253 sunptr->un_adjval = adjval;
254 sunptr->un_id = semid;
255 sunptr->un_num = semnum;
256 return(0);
257 }
258
259 void
260 semundo_clear(semid, semnum)
261 int semid, semnum;
262 {
263 register struct sem_undo *suptr;
264
265 for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next) {
266 register struct undo *sunptr;
267 register int i;
268
269 sunptr = &suptr->un_ent[0];
270 for (i = 0; i < suptr->un_cnt; i++, sunptr++) {
271 if (sunptr->un_id == semid) {
272 if (semnum == -1 || sunptr->un_num == semnum) {
273 suptr->un_cnt--;
274 if (i < suptr->un_cnt) {
275 suptr->un_ent[i] =
276 suptr->un_ent[suptr->un_cnt];
277 i--, sunptr--;
278 }
279 }
280 if (semnum != -1)
281 break;
282 }
283 }
284 }
285 }
286
287 int
288 sys___semctl(p, v, retval)
289 struct proc *p;
290 register void *v;
291 register_t *retval;
292 {
293 register struct sys___semctl_args /* {
294 syscallarg(int) semid;
295 syscallarg(int) semnum;
296 syscallarg(int) cmd;
297 syscallarg(union semun *) arg;
298 } */ *uap = v;
299 int semid = SCARG(uap, semid);
300 int semnum = SCARG(uap, semnum);
301 int cmd = SCARG(uap, cmd);
302 union semun *arg = SCARG(uap, arg);
303 union semun real_arg;
304 struct ucred *cred = p->p_ucred;
305 int i, rval, eval;
306 struct semid_ds sbuf;
307 register struct semid_ds *semaptr;
308
309 SEM_PRINTF(("call to semctl(%d, %d, %d, %p)\n",
310 semid, semnum, cmd, arg));
311
312 semlock(p);
313
314 semid = IPCID_TO_IX(semid);
315 if (semid < 0 || semid >= seminfo.semmsl)
316 return(EINVAL);
317
318 semaptr = &sema[semid];
319 if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
320 semaptr->sem_perm.seq != IPCID_TO_SEQ(SCARG(uap, semid)))
321 return(EINVAL);
322
323 eval = 0;
324 rval = 0;
325
326 switch (cmd) {
327 case IPC_RMID:
328 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_M)) != 0)
329 return(eval);
330 semaptr->sem_perm.cuid = cred->cr_uid;
331 semaptr->sem_perm.uid = cred->cr_uid;
332 semtot -= semaptr->sem_nsems;
333 for (i = semaptr->sem_base - sem; i < semtot; i++)
334 sem[i] = sem[i + semaptr->sem_nsems];
335 for (i = 0; i < seminfo.semmni; i++) {
336 if ((sema[i].sem_perm.mode & SEM_ALLOC) &&
337 sema[i].sem_base > semaptr->sem_base)
338 sema[i].sem_base -= semaptr->sem_nsems;
339 }
340 semaptr->sem_perm.mode = 0;
341 semundo_clear(semid, -1);
342 wakeup((caddr_t)semaptr);
343 break;
344
345 case IPC_SET:
346 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_M)))
347 return(eval);
348 if ((eval = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
349 return(eval);
350 if ((eval = copyin(real_arg.buf, (caddr_t)&sbuf,
351 sizeof(sbuf))) != 0)
352 return(eval);
353 semaptr->sem_perm.uid = sbuf.sem_perm.uid;
354 semaptr->sem_perm.gid = sbuf.sem_perm.gid;
355 semaptr->sem_perm.mode = (semaptr->sem_perm.mode & ~0777) |
356 (sbuf.sem_perm.mode & 0777);
357 semaptr->sem_ctime = time.tv_sec;
358 break;
359
360 case IPC_STAT:
361 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
362 return(eval);
363 if ((eval = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
364 return(eval);
365 eval = copyout((caddr_t)semaptr, real_arg.buf,
366 sizeof(struct semid_ds));
367 break;
368
369 case GETNCNT:
370 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
371 return(eval);
372 if (semnum < 0 || semnum >= semaptr->sem_nsems)
373 return(EINVAL);
374 rval = semaptr->sem_base[semnum].semncnt;
375 break;
376
377 case GETPID:
378 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
379 return(eval);
380 if (semnum < 0 || semnum >= semaptr->sem_nsems)
381 return(EINVAL);
382 rval = semaptr->sem_base[semnum].sempid;
383 break;
384
385 case GETVAL:
386 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
387 return(eval);
388 if (semnum < 0 || semnum >= semaptr->sem_nsems)
389 return(EINVAL);
390 rval = semaptr->sem_base[semnum].semval;
391 break;
392
393 case GETALL:
394 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
395 return(eval);
396 if ((eval = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
397 return(eval);
398 for (i = 0; i < semaptr->sem_nsems; i++) {
399 eval = copyout((caddr_t)&semaptr->sem_base[i].semval,
400 &real_arg.array[i], sizeof(real_arg.array[0]));
401 if (eval != 0)
402 break;
403 }
404 break;
405
406 case GETZCNT:
407 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
408 return(eval);
409 if (semnum < 0 || semnum >= semaptr->sem_nsems)
410 return(EINVAL);
411 rval = semaptr->sem_base[semnum].semzcnt;
412 break;
413
414 case SETVAL:
415 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_W)))
416 return(eval);
417 if (semnum < 0 || semnum >= semaptr->sem_nsems)
418 return(EINVAL);
419 if ((eval = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
420 return(eval);
421 semaptr->sem_base[semnum].semval = real_arg.val;
422 semundo_clear(semid, semnum);
423 wakeup((caddr_t)semaptr);
424 break;
425
426 case SETALL:
427 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_W)))
428 return(eval);
429 if ((eval = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
430 return(eval);
431 for (i = 0; i < semaptr->sem_nsems; i++) {
432 eval = copyin(&real_arg.array[i],
433 (caddr_t)&semaptr->sem_base[i].semval,
434 sizeof(real_arg.array[0]));
435 if (eval != 0)
436 break;
437 }
438 semundo_clear(semid, -1);
439 wakeup((caddr_t)semaptr);
440 break;
441
442 default:
443 return(EINVAL);
444 }
445
446 if (eval == 0)
447 *retval = rval;
448 return(eval);
449 }
450
451 int
452 sys_semget(p, v, retval)
453 struct proc *p;
454 void *v;
455 register_t *retval;
456 {
457 register struct sys_semget_args /* {
458 syscallarg(key_t) key;
459 syscallarg(int) nsems;
460 syscallarg(int) semflg;
461 } */ *uap = v;
462 int semid, eval;
463 int key = SCARG(uap, key);
464 int nsems = SCARG(uap, nsems);
465 int semflg = SCARG(uap, semflg);
466 struct ucred *cred = p->p_ucred;
467
468 SEM_PRINTF(("semget(0x%x, %d, 0%o)\n", key, nsems, semflg));
469
470 semlock(p);
471
472 if (key != IPC_PRIVATE) {
473 for (semid = 0; semid < seminfo.semmni; semid++) {
474 if ((sema[semid].sem_perm.mode & SEM_ALLOC) &&
475 sema[semid].sem_perm.key == key)
476 break;
477 }
478 if (semid < seminfo.semmni) {
479 SEM_PRINTF(("found public key\n"));
480 if ((eval = ipcperm(cred, &sema[semid].sem_perm,
481 semflg & 0700)))
482 return(eval);
483 if (nsems > 0 && sema[semid].sem_nsems < nsems) {
484 SEM_PRINTF(("too small\n"));
485 return(EINVAL);
486 }
487 if ((semflg & IPC_CREAT) && (semflg & IPC_EXCL)) {
488 SEM_PRINTF(("not exclusive\n"));
489 return(EEXIST);
490 }
491 goto found;
492 }
493 }
494
495 SEM_PRINTF(("need to allocate the semid_ds\n"));
496 if (key == IPC_PRIVATE || (semflg & IPC_CREAT)) {
497 if (nsems <= 0 || nsems > seminfo.semmsl) {
498 SEM_PRINTF(("nsems out of range (0<%d<=%d)\n", nsems,
499 seminfo.semmsl));
500 return(EINVAL);
501 }
502 if (nsems > seminfo.semmns - semtot) {
503 SEM_PRINTF(("not enough semaphores left (need %d, got %d)\n",
504 nsems, seminfo.semmns - semtot));
505 return(ENOSPC);
506 }
507 for (semid = 0; semid < seminfo.semmni; semid++) {
508 if ((sema[semid].sem_perm.mode & SEM_ALLOC) == 0)
509 break;
510 }
511 if (semid == seminfo.semmni) {
512 SEM_PRINTF(("no more semid_ds's available\n"));
513 return(ENOSPC);
514 }
515 SEM_PRINTF(("semid %d is available\n", semid));
516 sema[semid].sem_perm.key = key;
517 sema[semid].sem_perm.cuid = cred->cr_uid;
518 sema[semid].sem_perm.uid = cred->cr_uid;
519 sema[semid].sem_perm.cgid = cred->cr_gid;
520 sema[semid].sem_perm.gid = cred->cr_gid;
521 sema[semid].sem_perm.mode = (semflg & 0777) | SEM_ALLOC;
522 sema[semid].sem_perm.seq =
523 (sema[semid].sem_perm.seq + 1) & 0x7fff;
524 sema[semid].sem_nsems = nsems;
525 sema[semid].sem_otime = 0;
526 sema[semid].sem_ctime = time.tv_sec;
527 sema[semid].sem_base = &sem[semtot];
528 semtot += nsems;
529 memset(sema[semid].sem_base, 0,
530 sizeof(sema[semid].sem_base[0])*nsems);
531 SEM_PRINTF(("sembase = %p, next = %p\n", sema[semid].sem_base,
532 &sem[semtot]));
533 } else {
534 SEM_PRINTF(("didn't find it and wasn't asked to create it\n"));
535 return(ENOENT);
536 }
537
538 found:
539 *retval = IXSEQ_TO_IPCID(semid, sema[semid].sem_perm);
540 return(0);
541 }
542
543 int
544 sys_semop(p, v, retval)
545 struct proc *p;
546 void *v;
547 register_t *retval;
548 {
549 register struct sys_semop_args /* {
550 syscallarg(int) semid;
551 syscallarg(struct sembuf *) sops;
552 syscallarg(size_t) nsops;
553 } */ *uap = v;
554 int semid = SCARG(uap, semid);
555 int nsops = SCARG(uap, nsops);
556 struct sembuf sops[MAX_SOPS];
557 register struct semid_ds *semaptr;
558 register struct sembuf *sopptr = NULL;
559 register struct sem *semptr = NULL;
560 struct sem_undo *suptr = NULL;
561 struct ucred *cred = p->p_ucred;
562 int i, j, eval;
563 int do_wakeup, do_undos;
564
565 SEM_PRINTF(("call to semop(%d, %p, %d)\n", semid, sops, nsops));
566
567 semlock(p);
568
569 semid = IPCID_TO_IX(semid); /* Convert back to zero origin */
570
571 if (semid < 0 || semid >= seminfo.semmsl)
572 return(EINVAL);
573
574 semaptr = &sema[semid];
575 if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
576 semaptr->sem_perm.seq != IPCID_TO_SEQ(SCARG(uap, semid)))
577 return(EINVAL);
578
579 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_W))) {
580 SEM_PRINTF(("eval = %d from ipaccess\n", eval));
581 return(eval);
582 }
583
584 if (nsops > MAX_SOPS) {
585 SEM_PRINTF(("too many sops (max=%d, nsops=%d)\n", MAX_SOPS, nsops));
586 return(E2BIG);
587 }
588
589 if ((eval = copyin(SCARG(uap, sops), sops, nsops * sizeof(sops[0])))
590 != 0) {
591 SEM_PRINTF(("eval = %d from copyin(%p, %p, %d)\n", eval,
592 SCARG(uap, sops), &sops, nsops * sizeof(sops[0])));
593 return(eval);
594 }
595
596 /*
597 * Loop trying to satisfy the vector of requests.
598 * If we reach a point where we must wait, any requests already
599 * performed are rolled back and we go to sleep until some other
600 * process wakes us up. At this point, we start all over again.
601 *
602 * This ensures that from the perspective of other tasks, a set
603 * of requests is atomic (never partially satisfied).
604 */
605 do_undos = 0;
606
607 for (;;) {
608 do_wakeup = 0;
609
610 for (i = 0; i < nsops; i++) {
611 sopptr = &sops[i];
612
613 if (sopptr->sem_num >= semaptr->sem_nsems)
614 return(EFBIG);
615
616 semptr = &semaptr->sem_base[sopptr->sem_num];
617
618 SEM_PRINTF(("semop: semaptr=%x, sem_base=%x, semptr=%x, sem[%d]=%d : op=%d, flag=%s\n",
619 semaptr, semaptr->sem_base, semptr,
620 sopptr->sem_num, semptr->semval, sopptr->sem_op,
621 (sopptr->sem_flg & IPC_NOWAIT) ? "nowait" : "wait"));
622
623 if (sopptr->sem_op < 0) {
624 if ((int)(semptr->semval +
625 sopptr->sem_op) < 0) {
626 SEM_PRINTF(("semop: can't do it now\n"));
627 break;
628 } else {
629 semptr->semval += sopptr->sem_op;
630 if (semptr->semval == 0 &&
631 semptr->semzcnt > 0)
632 do_wakeup = 1;
633 }
634 if (sopptr->sem_flg & SEM_UNDO)
635 do_undos = 1;
636 } else if (sopptr->sem_op == 0) {
637 if (semptr->semval > 0) {
638 SEM_PRINTF(("semop: not zero now\n"));
639 break;
640 }
641 } else {
642 if (semptr->semncnt > 0)
643 do_wakeup = 1;
644 semptr->semval += sopptr->sem_op;
645 if (sopptr->sem_flg & SEM_UNDO)
646 do_undos = 1;
647 }
648 }
649
650 /*
651 * Did we get through the entire vector?
652 */
653 if (i >= nsops)
654 goto done;
655
656 /*
657 * No ... rollback anything that we've already done
658 */
659 SEM_PRINTF(("semop: rollback 0 through %d\n", i-1));
660 for (j = 0; j < i; j++)
661 semaptr->sem_base[sops[j].sem_num].semval -=
662 sops[j].sem_op;
663
664 /*
665 * If the request that we couldn't satisfy has the
666 * NOWAIT flag set then return with EAGAIN.
667 */
668 if (sopptr->sem_flg & IPC_NOWAIT)
669 return(EAGAIN);
670
671 if (sopptr->sem_op == 0)
672 semptr->semzcnt++;
673 else
674 semptr->semncnt++;
675
676 SEM_PRINTF(("semop: good night!\n"));
677 eval = tsleep((caddr_t)semaptr, (PZERO - 4) | PCATCH,
678 "semwait", 0);
679 SEM_PRINTF(("semop: good morning (eval=%d)!\n", eval));
680
681 suptr = NULL; /* sem_undo may have been reallocated */
682
683 if (eval != 0)
684 return(EINTR);
685 SEM_PRINTF(("semop: good morning!\n"));
686
687 /*
688 * Make sure that the semaphore still exists
689 */
690 if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
691 semaptr->sem_perm.seq != IPCID_TO_SEQ(SCARG(uap, semid))) {
692 /* The man page says to return EIDRM. */
693 /* Unfortunately, BSD doesn't define that code! */
694 #ifdef EIDRM
695 return(EIDRM);
696 #else
697 return(EINVAL);
698 #endif
699 }
700
701 /*
702 * The semaphore is still alive. Readjust the count of
703 * waiting processes.
704 */
705 if (sopptr->sem_op == 0)
706 semptr->semzcnt--;
707 else
708 semptr->semncnt--;
709 }
710
711 done:
712 /*
713 * Process any SEM_UNDO requests.
714 */
715 if (do_undos) {
716 for (i = 0; i < nsops; i++) {
717 /*
718 * We only need to deal with SEM_UNDO's for non-zero
719 * op's.
720 */
721 int adjval;
722
723 if ((sops[i].sem_flg & SEM_UNDO) == 0)
724 continue;
725 adjval = sops[i].sem_op;
726 if (adjval == 0)
727 continue;
728 eval = semundo_adjust(p, &suptr, semid,
729 sops[i].sem_num, -adjval);
730 if (eval == 0)
731 continue;
732
733 /*
734 * Oh-Oh! We ran out of either sem_undo's or undo's.
735 * Rollback the adjustments to this point and then
736 * rollback the semaphore ups and down so we can return
737 * with an error with all structures restored. We
738 * rollback the undo's in the exact reverse order that
739 * we applied them. This guarantees that we won't run
740 * out of space as we roll things back out.
741 */
742 for (j = i - 1; j >= 0; j--) {
743 if ((sops[j].sem_flg & SEM_UNDO) == 0)
744 continue;
745 adjval = sops[j].sem_op;
746 if (adjval == 0)
747 continue;
748 if (semundo_adjust(p, &suptr, semid,
749 sops[j].sem_num, adjval) != 0)
750 panic("semop - can't undo undos");
751 }
752
753 for (j = 0; j < nsops; j++)
754 semaptr->sem_base[sops[j].sem_num].semval -=
755 sops[j].sem_op;
756
757 SEM_PRINTF(("eval = %d from semundo_adjust\n", eval));
758 return(eval);
759 } /* loop through the sops */
760 } /* if (do_undos) */
761
762 /* We're definitely done - set the sempid's */
763 for (i = 0; i < nsops; i++) {
764 sopptr = &sops[i];
765 semptr = &semaptr->sem_base[sopptr->sem_num];
766 semptr->sempid = p->p_pid;
767 }
768
769 /* Do a wakeup if any semaphore was up'd. */
770 if (do_wakeup) {
771 SEM_PRINTF(("semop: doing wakeup\n"));
772 #ifdef SEM_WAKEUP
773 sem_wakeup((caddr_t)semaptr);
774 #else
775 wakeup((caddr_t)semaptr);
776 #endif
777 SEM_PRINTF(("semop: back from wakeup\n"));
778 }
779 SEM_PRINTF(("semop: done\n"));
780 *retval = 0;
781 return(0);
782 }
783
784 /*
785 * Go through the undo structures for this process and apply the adjustments to
786 * semaphores.
787 */
788 void
789 semexit(p)
790 struct proc *p;
791 {
792 register struct sem_undo *suptr;
793 register struct sem_undo **supptr;
794
795 /*
796 * Go through the chain of undo vectors looking for one associated with
797 * this process.
798 */
799
800 for (supptr = &semu_list; (suptr = *supptr) != NULL;
801 supptr = &suptr->un_next) {
802 if (suptr->un_proc == p)
803 break;
804 }
805
806 /*
807 * There are a few possibilities to consider here ...
808 *
809 * 1) The semaphore facility isn't currently locked. In this case,
810 * this call should proceed normally.
811 * 2) The semaphore facility is locked by this process (i.e. the one
812 * that is exiting). In this case, this call should proceed as
813 * usual and the facility should be unlocked at the end of this
814 * routine (since the locker is exiting).
815 * 3) The semaphore facility is locked by some other process and this
816 * process doesn't have an undo structure allocated for it. In this
817 * case, this call should proceed normally (i.e. not accomplish
818 * anything and, most importantly, not block since that is
819 * unnecessary and could result in a LOT of processes blocking in
820 * here if the facility is locked for a long time).
821 * 4) The semaphore facility is locked by some other process and this
822 * process has an undo structure allocated for it. In this case,
823 * this call should block until the facility has been unlocked since
824 * the holder of the lock may be examining this process's proc entry
825 * (the ipcs utility does this when printing out the information
826 * from the allocated sem undo elements).
827 *
828 * This leads to the conclusion that we should not block unless we
829 * discover that the someone else has the semaphore facility locked and
830 * this process has an undo structure. Let's do that...
831 *
832 * Note that we do this in a separate pass from the one that processes
833 * any existing undo structure since we don't want to risk blocking at
834 * that time (it would make the actual unlinking of the element from
835 * the chain of allocated undo structures rather messy).
836 */
837
838 /*
839 * Does someone else hold the semaphore facility's lock?
840 */
841
842 if (semlock_holder != NULL && semlock_holder != p) {
843 /*
844 * Yes (i.e. we are in case 3 or 4).
845 *
846 * If we didn't find an undo vector associated with this
847 * process than we can just return (i.e. we are in case 3).
848 *
849 * Note that we know that someone else is holding the lock so
850 * we don't even have to see if we're holding it...
851 */
852
853 if (suptr == NULL)
854 return;
855
856 /*
857 * We are in case 4.
858 *
859 * Go to sleep as long as someone else is locking the semaphore
860 * facility (note that we won't get here if we are holding the
861 * lock so we don't need to check for that possibility).
862 */
863
864 while (semlock_holder != NULL)
865 sleep((caddr_t)&semlock_holder, (PZERO - 4));
866
867 /*
868 * Nobody is holding the facility (i.e. we are now in case 1).
869 * We can proceed safely according to the argument outlined
870 * above.
871 *
872 * We look up the undo vector again, in case the list changed
873 * while we were asleep, and the parent is now different.
874 */
875
876 for (supptr = &semu_list; (suptr = *supptr) != NULL;
877 supptr = &suptr->un_next) {
878 if (suptr->un_proc == p)
879 break;
880 }
881
882 if (suptr == NULL)
883 panic("semexit: undo vector disappeared");
884 } else {
885 /*
886 * No (i.e. we are in case 1 or 2).
887 *
888 * If there is no undo vector, skip to the end and unlock the
889 * semaphore facility if necessary.
890 */
891
892 if (suptr == NULL)
893 goto unlock;
894 }
895
896 /*
897 * We are now in case 1 or 2, and we have an undo vector for this
898 * process.
899 */
900
901 SEM_PRINTF(("proc @%p has undo structure with %d entries\n", p,
902 suptr->un_cnt));
903
904 /*
905 * If there are any active undo elements then process them.
906 */
907 if (suptr->un_cnt > 0) {
908 int ix;
909
910 for (ix = 0; ix < suptr->un_cnt; ix++) {
911 int semid = suptr->un_ent[ix].un_id;
912 int semnum = suptr->un_ent[ix].un_num;
913 int adjval = suptr->un_ent[ix].un_adjval;
914 struct semid_ds *semaptr;
915
916 semaptr = &sema[semid];
917 if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0)
918 panic("semexit - semid not allocated");
919 if (semnum >= semaptr->sem_nsems)
920 panic("semexit - semnum out of range");
921
922 SEM_PRINTF(("semexit: %p id=%d num=%d(adj=%d) ; sem=%d\n",
923 suptr->un_proc, suptr->un_ent[ix].un_id,
924 suptr->un_ent[ix].un_num,
925 suptr->un_ent[ix].un_adjval,
926 semaptr->sem_base[semnum].semval));
927
928 if (adjval < 0 &&
929 semaptr->sem_base[semnum].semval < -adjval)
930 semaptr->sem_base[semnum].semval = 0;
931 else
932 semaptr->sem_base[semnum].semval += adjval;
933
934 #ifdef SEM_WAKEUP
935 sem_wakeup((caddr_t)semaptr);
936 #else
937 wakeup((caddr_t)semaptr);
938 #endif
939 SEM_PRINTF(("semexit: back from wakeup\n"));
940 }
941 }
942
943 /*
944 * Deallocate the undo vector.
945 */
946 SEM_PRINTF(("removing vector\n"));
947 suptr->un_proc = NULL;
948 *supptr = suptr->un_next;
949
950 unlock:
951 /*
952 * If the exiting process is holding the global semaphore facility
953 * lock (i.e. we are in case 2) then release it.
954 */
955 if (semlock_holder == p) {
956 semlock_holder = NULL;
957 wakeup((caddr_t)&semlock_holder);
958 }
959 }
960