sysv_sem.c revision 1.33 1 /* $NetBSD: sysv_sem.c,v 1.33 1999/08/25 05:05:49 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Implementation of SVID semaphores
42 *
43 * Author: Daniel Boulet
44 *
45 * This software is provided ``AS IS'' without any warranties of any kind.
46 */
47
48 #define SYSVSEM
49
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/kernel.h>
53 #include <sys/proc.h>
54 #include <sys/sem.h>
55 #include <sys/malloc.h>
56
57 #include <sys/mount.h>
58 #include <sys/syscallargs.h>
59
60 int semtot = 0;
61 struct proc *semlock_holder = NULL;
62
63 #ifdef SEM_DEBUG
64 #define SEM_PRINTF(a) printf a
65 #else
66 #define SEM_PRINTF(a)
67 #endif
68
69 void semlock __P((struct proc *));
70 struct sem_undo *semu_alloc __P((struct proc *));
71 int semundo_adjust __P((struct proc *, struct sem_undo **, int, int, int));
72 void semundo_clear __P((int, int));
73
74 void
75 seminit()
76 {
77 register int i;
78
79 if (sema == NULL)
80 panic("sema is NULL");
81 if (semu == NULL)
82 panic("semu is NULL");
83
84 for (i = 0; i < seminfo.semmni; i++) {
85 sema[i]._sem_base = 0;
86 sema[i].sem_perm.mode = 0;
87 }
88 for (i = 0; i < seminfo.semmnu; i++) {
89 register struct sem_undo *suptr = SEMU(i);
90 suptr->un_proc = NULL;
91 }
92 semu_list = NULL;
93 }
94
95 void
96 semlock(p)
97 struct proc *p;
98 {
99
100 while (semlock_holder != NULL && semlock_holder != p)
101 sleep((caddr_t)&semlock_holder, (PZERO - 4));
102 }
103
104 /*
105 * Lock or unlock the entire semaphore facility.
106 *
107 * This will probably eventually evolve into a general purpose semaphore
108 * facility status enquiry mechanism (I don't like the "read /dev/kmem"
109 * approach currently taken by ipcs and the amount of info that we want
110 * to be able to extract for ipcs is probably beyond the capability of
111 * the getkerninfo facility.
112 *
113 * At the time that the current version of semconfig was written, ipcs is
114 * the only user of the semconfig facility. It uses it to ensure that the
115 * semaphore facility data structures remain static while it fishes around
116 * in /dev/kmem.
117 */
118
119 int
120 sys_semconfig(p, v, retval)
121 struct proc *p;
122 void *v;
123 register_t *retval;
124 {
125 struct sys_semconfig_args /* {
126 syscallarg(int) flag;
127 } */ *uap = v;
128 int eval = 0;
129
130 semlock(p);
131
132 switch (SCARG(uap, flag)) {
133 case SEM_CONFIG_FREEZE:
134 semlock_holder = p;
135 break;
136
137 case SEM_CONFIG_THAW:
138 semlock_holder = NULL;
139 wakeup((caddr_t)&semlock_holder);
140 break;
141
142 default:
143 printf(
144 "semconfig: unknown flag parameter value (%d) - ignored\n",
145 SCARG(uap, flag));
146 eval = EINVAL;
147 break;
148 }
149
150 *retval = 0;
151 return(eval);
152 }
153
154 /*
155 * Allocate a new sem_undo structure for a process
156 * (returns ptr to structure or NULL if no more room)
157 */
158
159 struct sem_undo *
160 semu_alloc(p)
161 struct proc *p;
162 {
163 register int i;
164 register struct sem_undo *suptr;
165 register struct sem_undo **supptr;
166 int attempt;
167
168 /*
169 * Try twice to allocate something.
170 * (we'll purge any empty structures after the first pass so
171 * two passes are always enough)
172 */
173
174 for (attempt = 0; attempt < 2; attempt++) {
175 /*
176 * Look for a free structure.
177 * Fill it in and return it if we find one.
178 */
179
180 for (i = 0; i < seminfo.semmnu; i++) {
181 suptr = SEMU(i);
182 if (suptr->un_proc == NULL) {
183 suptr->un_next = semu_list;
184 semu_list = suptr;
185 suptr->un_cnt = 0;
186 suptr->un_proc = p;
187 return(suptr);
188 }
189 }
190
191 /*
192 * We didn't find a free one, if this is the first attempt
193 * then try to free some structures.
194 */
195
196 if (attempt == 0) {
197 /* All the structures are in use - try to free some */
198 int did_something = 0;
199
200 supptr = &semu_list;
201 while ((suptr = *supptr) != NULL) {
202 if (suptr->un_cnt == 0) {
203 suptr->un_proc = NULL;
204 *supptr = suptr->un_next;
205 did_something = 1;
206 } else
207 supptr = &(suptr->un_next);
208 }
209
210 /* If we didn't free anything then just give-up */
211 if (!did_something)
212 return(NULL);
213 } else {
214 /*
215 * The second pass failed even though we freed
216 * something after the first pass!
217 * This is IMPOSSIBLE!
218 */
219 panic("semu_alloc - second attempt failed");
220 }
221 }
222 return NULL;
223 }
224
225 /*
226 * Adjust a particular entry for a particular proc
227 */
228
229 int
230 semundo_adjust(p, supptr, semid, semnum, adjval)
231 register struct proc *p;
232 struct sem_undo **supptr;
233 int semid, semnum;
234 int adjval;
235 {
236 register struct sem_undo *suptr;
237 register struct undo *sunptr;
238 int i;
239
240 /* Look for and remember the sem_undo if the caller doesn't provide
241 it */
242
243 suptr = *supptr;
244 if (suptr == NULL) {
245 for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next) {
246 if (suptr->un_proc == p) {
247 *supptr = suptr;
248 break;
249 }
250 }
251 if (suptr == NULL) {
252 if (adjval == 0)
253 return(0);
254 suptr = semu_alloc(p);
255 if (suptr == NULL)
256 return(ENOSPC);
257 *supptr = suptr;
258 }
259 }
260
261 /*
262 * Look for the requested entry and adjust it (delete if adjval becomes
263 * 0).
264 */
265 sunptr = &suptr->un_ent[0];
266 for (i = 0; i < suptr->un_cnt; i++, sunptr++) {
267 if (sunptr->un_id != semid || sunptr->un_num != semnum)
268 continue;
269 if (adjval == 0)
270 sunptr->un_adjval = 0;
271 else
272 sunptr->un_adjval += adjval;
273 if (sunptr->un_adjval == 0) {
274 suptr->un_cnt--;
275 if (i < suptr->un_cnt)
276 suptr->un_ent[i] =
277 suptr->un_ent[suptr->un_cnt];
278 }
279 return(0);
280 }
281
282 /* Didn't find the right entry - create it */
283 if (adjval == 0)
284 return(0);
285 if (suptr->un_cnt == SEMUME)
286 return(EINVAL);
287
288 sunptr = &suptr->un_ent[suptr->un_cnt];
289 suptr->un_cnt++;
290 sunptr->un_adjval = adjval;
291 sunptr->un_id = semid;
292 sunptr->un_num = semnum;
293 return(0);
294 }
295
296 void
297 semundo_clear(semid, semnum)
298 int semid, semnum;
299 {
300 register struct sem_undo *suptr;
301
302 for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next) {
303 register struct undo *sunptr;
304 register int i;
305
306 sunptr = &suptr->un_ent[0];
307 for (i = 0; i < suptr->un_cnt; i++, sunptr++) {
308 if (sunptr->un_id == semid) {
309 if (semnum == -1 || sunptr->un_num == semnum) {
310 suptr->un_cnt--;
311 if (i < suptr->un_cnt) {
312 suptr->un_ent[i] =
313 suptr->un_ent[suptr->un_cnt];
314 i--, sunptr--;
315 }
316 }
317 if (semnum != -1)
318 break;
319 }
320 }
321 }
322 }
323
324 int
325 sys___semctl13(p, v, retval)
326 struct proc *p;
327 void *v;
328 register_t *retval;
329 {
330 struct sys___semctl13_args /* {
331 syscallarg(int) semid;
332 syscallarg(int) semnum;
333 syscallarg(int) cmd;
334 syscallarg(union __semun) arg;
335 } */ *uap = v;
336 struct semid_ds sembuf;
337 int cmd, error;
338 void *pass_arg = NULL;
339
340 cmd = SCARG(uap, cmd);
341
342 switch (cmd) {
343 case IPC_SET:
344 case IPC_STAT:
345 pass_arg = &sembuf;
346 break;
347
348 case GETALL:
349 case SETVAL:
350 case SETALL:
351 pass_arg = &SCARG(uap, arg);
352 break;
353 }
354
355 if (cmd == IPC_SET) {
356 error = copyin(SCARG(uap, arg).buf, &sembuf, sizeof(sembuf));
357 if (error)
358 return (error);
359 }
360
361 error = semctl1(p, SCARG(uap, semid), SCARG(uap, semnum), cmd,
362 pass_arg, retval);
363
364 if (error == 0 && cmd == IPC_STAT)
365 error = copyout(&sembuf, SCARG(uap, arg).buf, sizeof(sembuf));
366
367 return (error);
368 }
369
370 int
371 semctl1(p, semid, semnum, cmd, v, retval)
372 struct proc *p;
373 int semid, semnum, cmd;
374 void *v;
375 register_t *retval;
376 {
377 struct ucred *cred = p->p_ucred;
378 union __semun *arg = v;
379 struct semid_ds *sembuf = v, *semaptr;
380 int i, error, ix;
381
382 SEM_PRINTF(("call to semctl(%d, %d, %d, %p)\n",
383 semid, semnum, cmd, v));
384
385 semlock(p);
386
387 ix = IPCID_TO_IX(semid);
388 if (ix < 0 || ix >= seminfo.semmsl)
389 return (EINVAL);
390
391 semaptr = &sema[ix];
392 if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
393 semaptr->sem_perm._seq != IPCID_TO_SEQ(semid))
394 return (EINVAL);
395
396 switch (cmd) {
397 case IPC_RMID:
398 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_M)) != 0)
399 return (error);
400 semaptr->sem_perm.cuid = cred->cr_uid;
401 semaptr->sem_perm.uid = cred->cr_uid;
402 semtot -= semaptr->sem_nsems;
403 for (i = semaptr->_sem_base - sem; i < semtot; i++)
404 sem[i] = sem[i + semaptr->sem_nsems];
405 for (i = 0; i < seminfo.semmni; i++) {
406 if ((sema[i].sem_perm.mode & SEM_ALLOC) &&
407 sema[i]._sem_base > semaptr->_sem_base)
408 sema[i]._sem_base -= semaptr->sem_nsems;
409 }
410 semaptr->sem_perm.mode = 0;
411 semundo_clear(ix, -1);
412 wakeup(semaptr);
413 break;
414
415 case IPC_SET:
416 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_M)))
417 return (error);
418 semaptr->sem_perm.uid = sembuf->sem_perm.uid;
419 semaptr->sem_perm.gid = sembuf->sem_perm.gid;
420 semaptr->sem_perm.mode = (semaptr->sem_perm.mode & ~0777) |
421 (sembuf->sem_perm.mode & 0777);
422 semaptr->sem_ctime = time.tv_sec;
423 break;
424
425 case IPC_STAT:
426 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
427 return (error);
428 memcpy(sembuf, semaptr, sizeof(struct semid_ds));
429 break;
430
431 case GETNCNT:
432 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
433 return (error);
434 if (semnum < 0 || semnum >= semaptr->sem_nsems)
435 return (EINVAL);
436 *retval = semaptr->_sem_base[semnum].semncnt;
437 break;
438
439 case GETPID:
440 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
441 return (error);
442 if (semnum < 0 || semnum >= semaptr->sem_nsems)
443 return (EINVAL);
444 *retval = semaptr->_sem_base[semnum].sempid;
445 break;
446
447 case GETVAL:
448 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
449 return (error);
450 if (semnum < 0 || semnum >= semaptr->sem_nsems)
451 return (EINVAL);
452 *retval = semaptr->_sem_base[semnum].semval;
453 break;
454
455 case GETALL:
456 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
457 return (error);
458 for (i = 0; i < semaptr->sem_nsems; i++) {
459 error = copyout(&semaptr->_sem_base[i].semval,
460 &arg->array[i], sizeof(arg->array[i]));
461 if (error != 0)
462 break;
463 }
464 break;
465
466 case GETZCNT:
467 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
468 return (error);
469 if (semnum < 0 || semnum >= semaptr->sem_nsems)
470 return (EINVAL);
471 *retval = semaptr->_sem_base[semnum].semzcnt;
472 break;
473
474 case SETVAL:
475 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_W)))
476 return (error);
477 if (semnum < 0 || semnum >= semaptr->sem_nsems)
478 return (EINVAL);
479 semaptr->_sem_base[semnum].semval = arg->val;
480 semundo_clear(ix, semnum);
481 wakeup(semaptr);
482 break;
483
484 case SETALL:
485 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_W)))
486 return (error);
487 for (i = 0; i < semaptr->sem_nsems; i++) {
488 error = copyin(&arg->array[i],
489 &semaptr->_sem_base[i].semval,
490 sizeof(arg->array[i]));
491 if (error != 0)
492 break;
493 }
494 semundo_clear(ix, -1);
495 wakeup(semaptr);
496 break;
497
498 default:
499 return (EINVAL);
500 }
501
502 return (error);
503 }
504
505 int
506 sys_semget(p, v, retval)
507 struct proc *p;
508 void *v;
509 register_t *retval;
510 {
511 register struct sys_semget_args /* {
512 syscallarg(key_t) key;
513 syscallarg(int) nsems;
514 syscallarg(int) semflg;
515 } */ *uap = v;
516 int semid, eval;
517 int key = SCARG(uap, key);
518 int nsems = SCARG(uap, nsems);
519 int semflg = SCARG(uap, semflg);
520 struct ucred *cred = p->p_ucred;
521
522 SEM_PRINTF(("semget(0x%x, %d, 0%o)\n", key, nsems, semflg));
523
524 semlock(p);
525
526 if (key != IPC_PRIVATE) {
527 for (semid = 0; semid < seminfo.semmni; semid++) {
528 if ((sema[semid].sem_perm.mode & SEM_ALLOC) &&
529 sema[semid].sem_perm._key == key)
530 break;
531 }
532 if (semid < seminfo.semmni) {
533 SEM_PRINTF(("found public key\n"));
534 if ((eval = ipcperm(cred, &sema[semid].sem_perm,
535 semflg & 0700)))
536 return(eval);
537 if (nsems > 0 && sema[semid].sem_nsems < nsems) {
538 SEM_PRINTF(("too small\n"));
539 return(EINVAL);
540 }
541 if ((semflg & IPC_CREAT) && (semflg & IPC_EXCL)) {
542 SEM_PRINTF(("not exclusive\n"));
543 return(EEXIST);
544 }
545 goto found;
546 }
547 }
548
549 SEM_PRINTF(("need to allocate the semid_ds\n"));
550 if (key == IPC_PRIVATE || (semflg & IPC_CREAT)) {
551 if (nsems <= 0 || nsems > seminfo.semmsl) {
552 SEM_PRINTF(("nsems out of range (0<%d<=%d)\n", nsems,
553 seminfo.semmsl));
554 return(EINVAL);
555 }
556 if (nsems > seminfo.semmns - semtot) {
557 SEM_PRINTF(("not enough semaphores left (need %d, got %d)\n",
558 nsems, seminfo.semmns - semtot));
559 return(ENOSPC);
560 }
561 for (semid = 0; semid < seminfo.semmni; semid++) {
562 if ((sema[semid].sem_perm.mode & SEM_ALLOC) == 0)
563 break;
564 }
565 if (semid == seminfo.semmni) {
566 SEM_PRINTF(("no more semid_ds's available\n"));
567 return(ENOSPC);
568 }
569 SEM_PRINTF(("semid %d is available\n", semid));
570 sema[semid].sem_perm._key = key;
571 sema[semid].sem_perm.cuid = cred->cr_uid;
572 sema[semid].sem_perm.uid = cred->cr_uid;
573 sema[semid].sem_perm.cgid = cred->cr_gid;
574 sema[semid].sem_perm.gid = cred->cr_gid;
575 sema[semid].sem_perm.mode = (semflg & 0777) | SEM_ALLOC;
576 sema[semid].sem_perm._seq =
577 (sema[semid].sem_perm._seq + 1) & 0x7fff;
578 sema[semid].sem_nsems = nsems;
579 sema[semid].sem_otime = 0;
580 sema[semid].sem_ctime = time.tv_sec;
581 sema[semid]._sem_base = &sem[semtot];
582 semtot += nsems;
583 memset(sema[semid]._sem_base, 0,
584 sizeof(sema[semid]._sem_base[0])*nsems);
585 SEM_PRINTF(("sembase = %p, next = %p\n", sema[semid]._sem_base,
586 &sem[semtot]));
587 } else {
588 SEM_PRINTF(("didn't find it and wasn't asked to create it\n"));
589 return(ENOENT);
590 }
591
592 found:
593 *retval = IXSEQ_TO_IPCID(semid, sema[semid].sem_perm);
594 return(0);
595 }
596
597 int
598 sys_semop(p, v, retval)
599 struct proc *p;
600 void *v;
601 register_t *retval;
602 {
603 register struct sys_semop_args /* {
604 syscallarg(int) semid;
605 syscallarg(struct sembuf *) sops;
606 syscallarg(size_t) nsops;
607 } */ *uap = v;
608 int semid = SCARG(uap, semid);
609 int nsops = SCARG(uap, nsops);
610 struct sembuf sops[MAX_SOPS];
611 register struct semid_ds *semaptr;
612 register struct sembuf *sopptr = NULL;
613 register struct __sem *semptr = NULL;
614 struct sem_undo *suptr = NULL;
615 struct ucred *cred = p->p_ucred;
616 int i, j, eval;
617 int do_wakeup, do_undos;
618
619 SEM_PRINTF(("call to semop(%d, %p, %d)\n", semid, sops, nsops));
620
621 semlock(p);
622
623 semid = IPCID_TO_IX(semid); /* Convert back to zero origin */
624
625 if (semid < 0 || semid >= seminfo.semmsl)
626 return(EINVAL);
627
628 semaptr = &sema[semid];
629 if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
630 semaptr->sem_perm._seq != IPCID_TO_SEQ(SCARG(uap, semid)))
631 return(EINVAL);
632
633 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_W))) {
634 SEM_PRINTF(("eval = %d from ipaccess\n", eval));
635 return(eval);
636 }
637
638 if (nsops > MAX_SOPS) {
639 SEM_PRINTF(("too many sops (max=%d, nsops=%d)\n", MAX_SOPS, nsops));
640 return(E2BIG);
641 }
642
643 if ((eval = copyin(SCARG(uap, sops), sops, nsops * sizeof(sops[0])))
644 != 0) {
645 SEM_PRINTF(("eval = %d from copyin(%p, %p, %d)\n", eval,
646 SCARG(uap, sops), &sops, nsops * sizeof(sops[0])));
647 return(eval);
648 }
649
650 /*
651 * Loop trying to satisfy the vector of requests.
652 * If we reach a point where we must wait, any requests already
653 * performed are rolled back and we go to sleep until some other
654 * process wakes us up. At this point, we start all over again.
655 *
656 * This ensures that from the perspective of other tasks, a set
657 * of requests is atomic (never partially satisfied).
658 */
659 do_undos = 0;
660
661 for (;;) {
662 do_wakeup = 0;
663
664 for (i = 0; i < nsops; i++) {
665 sopptr = &sops[i];
666
667 if (sopptr->sem_num >= semaptr->sem_nsems)
668 return(EFBIG);
669
670 semptr = &semaptr->_sem_base[sopptr->sem_num];
671
672 SEM_PRINTF(("semop: semaptr=%x, sem_base=%x, semptr=%x, sem[%d]=%d : op=%d, flag=%s\n",
673 semaptr, semaptr->_sem_base, semptr,
674 sopptr->sem_num, semptr->semval, sopptr->sem_op,
675 (sopptr->sem_flg & IPC_NOWAIT) ? "nowait" : "wait"));
676
677 if (sopptr->sem_op < 0) {
678 if ((int)(semptr->semval +
679 sopptr->sem_op) < 0) {
680 SEM_PRINTF(("semop: can't do it now\n"));
681 break;
682 } else {
683 semptr->semval += sopptr->sem_op;
684 if (semptr->semval == 0 &&
685 semptr->semzcnt > 0)
686 do_wakeup = 1;
687 }
688 if (sopptr->sem_flg & SEM_UNDO)
689 do_undos = 1;
690 } else if (sopptr->sem_op == 0) {
691 if (semptr->semval > 0) {
692 SEM_PRINTF(("semop: not zero now\n"));
693 break;
694 }
695 } else {
696 if (semptr->semncnt > 0)
697 do_wakeup = 1;
698 semptr->semval += sopptr->sem_op;
699 if (sopptr->sem_flg & SEM_UNDO)
700 do_undos = 1;
701 }
702 }
703
704 /*
705 * Did we get through the entire vector?
706 */
707 if (i >= nsops)
708 goto done;
709
710 /*
711 * No ... rollback anything that we've already done
712 */
713 SEM_PRINTF(("semop: rollback 0 through %d\n", i-1));
714 for (j = 0; j < i; j++)
715 semaptr->_sem_base[sops[j].sem_num].semval -=
716 sops[j].sem_op;
717
718 /*
719 * If the request that we couldn't satisfy has the
720 * NOWAIT flag set then return with EAGAIN.
721 */
722 if (sopptr->sem_flg & IPC_NOWAIT)
723 return(EAGAIN);
724
725 if (sopptr->sem_op == 0)
726 semptr->semzcnt++;
727 else
728 semptr->semncnt++;
729
730 SEM_PRINTF(("semop: good night!\n"));
731 eval = tsleep((caddr_t)semaptr, (PZERO - 4) | PCATCH,
732 "semwait", 0);
733 SEM_PRINTF(("semop: good morning (eval=%d)!\n", eval));
734
735 suptr = NULL; /* sem_undo may have been reallocated */
736
737 if (eval != 0)
738 return(EINTR);
739 SEM_PRINTF(("semop: good morning!\n"));
740
741 /*
742 * Make sure that the semaphore still exists
743 */
744 if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
745 semaptr->sem_perm._seq != IPCID_TO_SEQ(SCARG(uap, semid))) {
746 /* The man page says to return EIDRM. */
747 /* Unfortunately, BSD doesn't define that code! */
748 #ifdef EIDRM
749 return(EIDRM);
750 #else
751 return(EINVAL);
752 #endif
753 }
754
755 /*
756 * The semaphore is still alive. Readjust the count of
757 * waiting processes.
758 */
759 if (sopptr->sem_op == 0)
760 semptr->semzcnt--;
761 else
762 semptr->semncnt--;
763 }
764
765 done:
766 /*
767 * Process any SEM_UNDO requests.
768 */
769 if (do_undos) {
770 for (i = 0; i < nsops; i++) {
771 /*
772 * We only need to deal with SEM_UNDO's for non-zero
773 * op's.
774 */
775 int adjval;
776
777 if ((sops[i].sem_flg & SEM_UNDO) == 0)
778 continue;
779 adjval = sops[i].sem_op;
780 if (adjval == 0)
781 continue;
782 eval = semundo_adjust(p, &suptr, semid,
783 sops[i].sem_num, -adjval);
784 if (eval == 0)
785 continue;
786
787 /*
788 * Oh-Oh! We ran out of either sem_undo's or undo's.
789 * Rollback the adjustments to this point and then
790 * rollback the semaphore ups and down so we can return
791 * with an error with all structures restored. We
792 * rollback the undo's in the exact reverse order that
793 * we applied them. This guarantees that we won't run
794 * out of space as we roll things back out.
795 */
796 for (j = i - 1; j >= 0; j--) {
797 if ((sops[j].sem_flg & SEM_UNDO) == 0)
798 continue;
799 adjval = sops[j].sem_op;
800 if (adjval == 0)
801 continue;
802 if (semundo_adjust(p, &suptr, semid,
803 sops[j].sem_num, adjval) != 0)
804 panic("semop - can't undo undos");
805 }
806
807 for (j = 0; j < nsops; j++)
808 semaptr->_sem_base[sops[j].sem_num].semval -=
809 sops[j].sem_op;
810
811 SEM_PRINTF(("eval = %d from semundo_adjust\n", eval));
812 return(eval);
813 } /* loop through the sops */
814 } /* if (do_undos) */
815
816 /* We're definitely done - set the sempid's */
817 for (i = 0; i < nsops; i++) {
818 sopptr = &sops[i];
819 semptr = &semaptr->_sem_base[sopptr->sem_num];
820 semptr->sempid = p->p_pid;
821 }
822
823 /* Do a wakeup if any semaphore was up'd. */
824 if (do_wakeup) {
825 SEM_PRINTF(("semop: doing wakeup\n"));
826 #ifdef SEM_WAKEUP
827 sem_wakeup((caddr_t)semaptr);
828 #else
829 wakeup((caddr_t)semaptr);
830 #endif
831 SEM_PRINTF(("semop: back from wakeup\n"));
832 }
833 SEM_PRINTF(("semop: done\n"));
834 *retval = 0;
835 return(0);
836 }
837
838 /*
839 * Go through the undo structures for this process and apply the adjustments to
840 * semaphores.
841 */
842 void
843 semexit(p)
844 struct proc *p;
845 {
846 register struct sem_undo *suptr;
847 register struct sem_undo **supptr;
848
849 /*
850 * Go through the chain of undo vectors looking for one associated with
851 * this process.
852 */
853
854 for (supptr = &semu_list; (suptr = *supptr) != NULL;
855 supptr = &suptr->un_next) {
856 if (suptr->un_proc == p)
857 break;
858 }
859
860 /*
861 * There are a few possibilities to consider here ...
862 *
863 * 1) The semaphore facility isn't currently locked. In this case,
864 * this call should proceed normally.
865 * 2) The semaphore facility is locked by this process (i.e. the one
866 * that is exiting). In this case, this call should proceed as
867 * usual and the facility should be unlocked at the end of this
868 * routine (since the locker is exiting).
869 * 3) The semaphore facility is locked by some other process and this
870 * process doesn't have an undo structure allocated for it. In this
871 * case, this call should proceed normally (i.e. not accomplish
872 * anything and, most importantly, not block since that is
873 * unnecessary and could result in a LOT of processes blocking in
874 * here if the facility is locked for a long time).
875 * 4) The semaphore facility is locked by some other process and this
876 * process has an undo structure allocated for it. In this case,
877 * this call should block until the facility has been unlocked since
878 * the holder of the lock may be examining this process's proc entry
879 * (the ipcs utility does this when printing out the information
880 * from the allocated sem undo elements).
881 *
882 * This leads to the conclusion that we should not block unless we
883 * discover that the someone else has the semaphore facility locked and
884 * this process has an undo structure. Let's do that...
885 *
886 * Note that we do this in a separate pass from the one that processes
887 * any existing undo structure since we don't want to risk blocking at
888 * that time (it would make the actual unlinking of the element from
889 * the chain of allocated undo structures rather messy).
890 */
891
892 /*
893 * Does someone else hold the semaphore facility's lock?
894 */
895
896 if (semlock_holder != NULL && semlock_holder != p) {
897 /*
898 * Yes (i.e. we are in case 3 or 4).
899 *
900 * If we didn't find an undo vector associated with this
901 * process than we can just return (i.e. we are in case 3).
902 *
903 * Note that we know that someone else is holding the lock so
904 * we don't even have to see if we're holding it...
905 */
906
907 if (suptr == NULL)
908 return;
909
910 /*
911 * We are in case 4.
912 *
913 * Go to sleep as long as someone else is locking the semaphore
914 * facility (note that we won't get here if we are holding the
915 * lock so we don't need to check for that possibility).
916 */
917
918 while (semlock_holder != NULL)
919 sleep((caddr_t)&semlock_holder, (PZERO - 4));
920
921 /*
922 * Nobody is holding the facility (i.e. we are now in case 1).
923 * We can proceed safely according to the argument outlined
924 * above.
925 *
926 * We look up the undo vector again, in case the list changed
927 * while we were asleep, and the parent is now different.
928 */
929
930 for (supptr = &semu_list; (suptr = *supptr) != NULL;
931 supptr = &suptr->un_next) {
932 if (suptr->un_proc == p)
933 break;
934 }
935
936 if (suptr == NULL)
937 panic("semexit: undo vector disappeared");
938 } else {
939 /*
940 * No (i.e. we are in case 1 or 2).
941 *
942 * If there is no undo vector, skip to the end and unlock the
943 * semaphore facility if necessary.
944 */
945
946 if (suptr == NULL)
947 goto unlock;
948 }
949
950 /*
951 * We are now in case 1 or 2, and we have an undo vector for this
952 * process.
953 */
954
955 SEM_PRINTF(("proc @%p has undo structure with %d entries\n", p,
956 suptr->un_cnt));
957
958 /*
959 * If there are any active undo elements then process them.
960 */
961 if (suptr->un_cnt > 0) {
962 int ix;
963
964 for (ix = 0; ix < suptr->un_cnt; ix++) {
965 int semid = suptr->un_ent[ix].un_id;
966 int semnum = suptr->un_ent[ix].un_num;
967 int adjval = suptr->un_ent[ix].un_adjval;
968 struct semid_ds *semaptr;
969
970 semaptr = &sema[semid];
971 if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0)
972 panic("semexit - semid not allocated");
973 if (semnum >= semaptr->sem_nsems)
974 panic("semexit - semnum out of range");
975
976 SEM_PRINTF(("semexit: %p id=%d num=%d(adj=%d) ; sem=%d\n",
977 suptr->un_proc, suptr->un_ent[ix].un_id,
978 suptr->un_ent[ix].un_num,
979 suptr->un_ent[ix].un_adjval,
980 semaptr->_sem_base[semnum].semval));
981
982 if (adjval < 0 &&
983 semaptr->_sem_base[semnum].semval < -adjval)
984 semaptr->_sem_base[semnum].semval = 0;
985 else
986 semaptr->_sem_base[semnum].semval += adjval;
987
988 #ifdef SEM_WAKEUP
989 sem_wakeup((caddr_t)semaptr);
990 #else
991 wakeup((caddr_t)semaptr);
992 #endif
993 SEM_PRINTF(("semexit: back from wakeup\n"));
994 }
995 }
996
997 /*
998 * Deallocate the undo vector.
999 */
1000 SEM_PRINTF(("removing vector\n"));
1001 suptr->un_proc = NULL;
1002 *supptr = suptr->un_next;
1003
1004 unlock:
1005 /*
1006 * If the exiting process is holding the global semaphore facility
1007 * lock (i.e. we are in case 2) then release it.
1008 */
1009 if (semlock_holder == p) {
1010 semlock_holder = NULL;
1011 wakeup((caddr_t)&semlock_holder);
1012 }
1013 }
1014