Home | History | Annotate | Line # | Download | only in kern
sysv_sem.c revision 1.74
      1 /*	$NetBSD: sysv_sem.c,v 1.74 2007/11/04 11:20:34 rmind Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Implementation of SVID semaphores
     42  *
     43  * Author: Daniel Boulet
     44  *
     45  * This software is provided ``AS IS'' without any warranties of any kind.
     46  */
     47 
     48 #include <sys/cdefs.h>
     49 __KERNEL_RCSID(0, "$NetBSD: sysv_sem.c,v 1.74 2007/11/04 11:20:34 rmind Exp $");
     50 
     51 #define SYSVSEM
     52 
     53 #include <sys/param.h>
     54 #include <sys/kernel.h>
     55 #include <sys/sem.h>
     56 #include <sys/sysctl.h>
     57 #include <sys/kmem.h>
     58 #include <sys/mount.h>		/* XXX for <sys/syscallargs.h> */
     59 #include <sys/syscallargs.h>
     60 #include <sys/kauth.h>
     61 
     62 /*
     63  * Memory areas:
     64  *  1st: Pool of semaphore identifiers
     65  *  2nd: Semaphores
     66  *  3rd: Conditional variables
     67  *  4th: Undo structures
     68  */
     69 struct semid_ds		*sema;
     70 static struct __sem	*sem;
     71 static kcondvar_t	*semcv;
     72 static int		*semu;
     73 
     74 static kmutex_t	semlock;
     75 static struct	sem_undo *semu_list;	/* list of active undo structures */
     76 static u_int	semtot = 0;		/* total number of semaphores */
     77 
     78 static u_int	sem_waiters = 0;	/* total number of semop waiters */
     79 static bool	sem_realloc_state;
     80 static kcondvar_t sem_realloc_cv;
     81 
     82 /* Macro to find a particular sem_undo vector */
     83 #define SEMU(s, ix)	((struct sem_undo *)(((long)s) + ix * seminfo.semusz))
     84 
     85 #ifdef SEM_DEBUG
     86 #define SEM_PRINTF(a) printf a
     87 #else
     88 #define SEM_PRINTF(a)
     89 #endif
     90 
     91 struct sem_undo *semu_alloc(struct proc *);
     92 int semundo_adjust(struct proc *, struct sem_undo **, int, int, int);
     93 void semundo_clear(int, int);
     94 
     95 void
     96 seminit(void)
     97 {
     98 	int i, sz;
     99 	vaddr_t v;
    100 
    101 	mutex_init(&semlock, MUTEX_DEFAULT, IPL_NONE);
    102 	cv_init(&sem_realloc_cv, "semrealc");
    103 	sem_realloc_state = false;
    104 
    105 	/* Allocate the wired memory for our structures */
    106 	sz = ALIGN(seminfo.semmni * sizeof(struct semid_ds)) +
    107 	    ALIGN(seminfo.semmns * sizeof(struct __sem)) +
    108 	    ALIGN(seminfo.semmni * sizeof(kcondvar_t)) +
    109 	    ALIGN(seminfo.semmnu * seminfo.semusz);
    110 	v = uvm_km_alloc(kernel_map, round_page(sz), 0,
    111 	    UVM_KMF_WIRED|UVM_KMF_ZERO);
    112 	if (v == 0)
    113 		panic("sysv_sem: cannot allocate memory");
    114 	sema = (void *)v;
    115 	sem = (void *)(ALIGN(sema) +
    116 	    seminfo.semmni * sizeof(struct semid_ds));
    117 	semcv = (void *)(ALIGN(sem) +
    118 	    seminfo.semmns * sizeof(struct __sem));
    119 	semu = (void *)(ALIGN(semcv) +
    120 	    seminfo.semmni * sizeof(kcondvar_t));
    121 
    122 	for (i = 0; i < seminfo.semmni; i++) {
    123 		sema[i]._sem_base = 0;
    124 		sema[i].sem_perm.mode = 0;
    125 		cv_init(&semcv[i], "semwait");
    126 	}
    127 	for (i = 0; i < seminfo.semmnu; i++) {
    128 		struct sem_undo *suptr = SEMU(semu, i);
    129 		suptr->un_proc = NULL;
    130 	}
    131 	semu_list = NULL;
    132 	exithook_establish(semexit, NULL);
    133 }
    134 
    135 static int
    136 semrealloc(int newsemmni, int newsemmns, int newsemmnu)
    137 {
    138 	struct semid_ds *new_sema, *old_sema;
    139 	struct __sem *new_sem;
    140 	struct sem_undo *new_semu_list, *suptr, *nsuptr;
    141 	int *new_semu;
    142 	kcondvar_t *new_semcv;
    143 	vaddr_t v;
    144 	int i, j, lsemid, nmnus, sz;
    145 
    146 	if (newsemmni < 1 || newsemmns < 1 || newsemmnu < 1)
    147 		return EINVAL;
    148 
    149 	/* Allocate the wired memory for our structures */
    150 	sz = ALIGN(newsemmni * sizeof(struct semid_ds)) +
    151 	    ALIGN(newsemmns * sizeof(struct __sem)) +
    152 	    ALIGN(newsemmni * sizeof(kcondvar_t)) +
    153 	    ALIGN(newsemmnu * seminfo.semusz);
    154 	v = uvm_km_alloc(kernel_map, round_page(sz), 0,
    155 	    UVM_KMF_WIRED|UVM_KMF_ZERO);
    156 	if (v == 0)
    157 		return ENOMEM;
    158 
    159 	mutex_enter(&semlock);
    160 	if (sem_realloc_state) {
    161 		mutex_exit(&semlock);
    162 		uvm_km_free(kernel_map, v, sz, UVM_KMF_WIRED);
    163 		return EBUSY;
    164 	}
    165 	sem_realloc_state = true;
    166 	if (sem_waiters) {
    167 		/*
    168 		 * Mark reallocation state, wake-up all waiters,
    169 		 * and wait while they will all exit.
    170 		 */
    171 		for (i = 0; i < seminfo.semmni; i++)
    172 			cv_broadcast(&semcv[i]);
    173 		while (sem_waiters)
    174 			cv_wait(&sem_realloc_cv, &semlock);
    175 	}
    176 	old_sema = sema;
    177 
    178 	/* Get the number of last slot */
    179 	lsemid = 0;
    180 	for (i = 0; i < seminfo.semmni; i++)
    181 		if (sema[i].sem_perm.mode & SEM_ALLOC)
    182 			lsemid = i;
    183 
    184 	/* Get the number of currently used undo structures */
    185 	nmnus = 0;
    186 	for (i = 0; i < seminfo.semmnu; i++) {
    187 		suptr = SEMU(semu, i);
    188 		if (suptr->un_proc == NULL)
    189 			continue;
    190 		nmnus++;
    191 	}
    192 
    193 	/* We cannot reallocate less memory than we use */
    194 	if (lsemid >= newsemmni || semtot > newsemmns || nmnus > newsemmnu) {
    195 		mutex_exit(&semlock);
    196 		uvm_km_free(kernel_map, v, sz, UVM_KMF_WIRED);
    197 		return EBUSY;
    198 	}
    199 
    200 	new_sema = (void *)v;
    201 	new_sem = (void *)(ALIGN(new_sema) +
    202 	    newsemmni * sizeof(struct semid_ds));
    203 	new_semcv = (void *)(ALIGN(new_sem) +
    204 	    newsemmns * sizeof(struct __sem));
    205 	new_semu = (void *)(ALIGN(new_semcv) +
    206 	    newsemmni * sizeof(kcondvar_t));
    207 
    208 	/* Initialize all semaphore identifiers and condvars */
    209 	for (i = 0; i < newsemmni; i++) {
    210 		new_sema[i]._sem_base = 0;
    211 		new_sema[i].sem_perm.mode = 0;
    212 		cv_init(&new_semcv[i], "semwait");
    213 	}
    214 	for (i = 0; i < newsemmnu; i++) {
    215 		nsuptr = SEMU(new_semu, i);
    216 		nsuptr->un_proc = NULL;
    217 	}
    218 
    219 	/*
    220 	 * Copy all identifiers, semaphores and list of the
    221 	 * undo structures to the new memory allocation.
    222 	 */
    223 	j = 0;
    224 	for (i = 0; i <= lsemid; i++) {
    225 		if ((sema[i].sem_perm.mode & SEM_ALLOC) == 0)
    226 			continue;
    227 		memcpy(&new_sema[i], &sema[i], sizeof(struct semid_ds));
    228 		new_sema[i]._sem_base = &new_sem[j];
    229 		memcpy(new_sema[i]._sem_base, sema[i]._sem_base,
    230 		    (sizeof(struct __sem) * sema[i].sem_nsems));
    231 		j += sema[i].sem_nsems;
    232 	}
    233 	KASSERT(j == semtot);
    234 
    235 	j = 0;
    236 	new_semu_list = NULL;
    237 	for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next) {
    238 		KASSERT(j < newsemmnu);
    239 		nsuptr = SEMU(new_semu, j);
    240 		memcpy(nsuptr, suptr, SEMUSZ);
    241 		nsuptr->un_next = new_semu_list;
    242 		new_semu_list = nsuptr;
    243 		j++;
    244 	}
    245 
    246 	for (i = 0; i < seminfo.semmni; i++) {
    247 		KASSERT(cv_has_waiters(&semcv[i]) == false);
    248 		cv_destroy(&semcv[i]);
    249 	}
    250 
    251 	sz = ALIGN(seminfo.semmni * sizeof(struct semid_ds)) +
    252 	    ALIGN(seminfo.semmns * sizeof(struct __sem)) +
    253 	    ALIGN(seminfo.semmni * sizeof(kcondvar_t)) +
    254 	    ALIGN(seminfo.semmnu * seminfo.semusz);
    255 
    256 	/* Set the pointers and update the new values */
    257 	sema = new_sema;
    258 	sem = new_sem;
    259 	semcv = new_semcv;
    260 	semu = new_semu;
    261 	semu_list = new_semu_list;
    262 
    263 	seminfo.semmni = newsemmni;
    264 	seminfo.semmns = newsemmns;
    265 	seminfo.semmnu = newsemmnu;
    266 
    267 	/* Reallocation completed - notify all waiters, if any */
    268 	sem_realloc_state = false;
    269 	cv_broadcast(&sem_realloc_cv);
    270 	mutex_exit(&semlock);
    271 
    272 	uvm_km_free(kernel_map, (vaddr_t)old_sema, sz, UVM_KMF_WIRED);
    273 	return 0;
    274 }
    275 
    276 /*
    277  * Placebo.
    278  */
    279 
    280 int
    281 sys_semconfig(struct lwp *l, void *v, register_t *retval)
    282 {
    283 
    284 	*retval = 0;
    285 	return 0;
    286 }
    287 
    288 /*
    289  * Allocate a new sem_undo structure for a process
    290  * (returns ptr to structure or NULL if no more room)
    291  */
    292 
    293 struct sem_undo *
    294 semu_alloc(struct proc *p)
    295 {
    296 	int i;
    297 	struct sem_undo *suptr;
    298 	struct sem_undo **supptr;
    299 	int attempt;
    300 
    301 	KASSERT(mutex_owned(&semlock));
    302 
    303 	/*
    304 	 * Try twice to allocate something.
    305 	 * (we'll purge any empty structures after the first pass so
    306 	 * two passes are always enough)
    307 	 */
    308 
    309 	for (attempt = 0; attempt < 2; attempt++) {
    310 		/*
    311 		 * Look for a free structure.
    312 		 * Fill it in and return it if we find one.
    313 		 */
    314 
    315 		for (i = 0; i < seminfo.semmnu; i++) {
    316 			suptr = SEMU(semu, i);
    317 			if (suptr->un_proc == NULL) {
    318 				suptr->un_next = semu_list;
    319 				semu_list = suptr;
    320 				suptr->un_cnt = 0;
    321 				suptr->un_proc = p;
    322 				return (suptr);
    323 			}
    324 		}
    325 
    326 		/*
    327 		 * We didn't find a free one, if this is the first attempt
    328 		 * then try to free some structures.
    329 		 */
    330 
    331 		if (attempt == 0) {
    332 			/* All the structures are in use - try to free some */
    333 			int did_something = 0;
    334 
    335 			supptr = &semu_list;
    336 			while ((suptr = *supptr) != NULL) {
    337 				if (suptr->un_cnt == 0)  {
    338 					suptr->un_proc = NULL;
    339 					*supptr = suptr->un_next;
    340 					did_something = 1;
    341 				} else
    342 					supptr = &suptr->un_next;
    343 			}
    344 
    345 			/* If we didn't free anything then just give-up */
    346 			if (!did_something)
    347 				return (NULL);
    348 		} else {
    349 			/*
    350 			 * The second pass failed even though we freed
    351 			 * something after the first pass!
    352 			 * This is IMPOSSIBLE!
    353 			 */
    354 			panic("semu_alloc - second attempt failed");
    355 		}
    356 	}
    357 	return NULL;
    358 }
    359 
    360 /*
    361  * Adjust a particular entry for a particular proc
    362  */
    363 
    364 int
    365 semundo_adjust(struct proc *p, struct sem_undo **supptr, int semid, int semnum,
    366     int adjval)
    367 {
    368 	struct sem_undo *suptr;
    369 	struct undo *sunptr;
    370 	int i;
    371 
    372 	KASSERT(mutex_owned(&semlock));
    373 
    374 	/*
    375 	 * Look for and remember the sem_undo if the caller doesn't
    376 	 * provide it
    377 	 */
    378 
    379 	suptr = *supptr;
    380 	if (suptr == NULL) {
    381 		for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next)
    382 			if (suptr->un_proc == p)
    383 				break;
    384 
    385 		if (suptr == NULL) {
    386 			suptr = semu_alloc(p);
    387 			if (suptr == NULL)
    388 				return (ENOSPC);
    389 		}
    390 		*supptr = suptr;
    391 	}
    392 
    393 	/*
    394 	 * Look for the requested entry and adjust it (delete if
    395 	 * adjval becomes 0).
    396 	 */
    397 	sunptr = &suptr->un_ent[0];
    398 	for (i = 0; i < suptr->un_cnt; i++, sunptr++) {
    399 		if (sunptr->un_id != semid || sunptr->un_num != semnum)
    400 			continue;
    401 		sunptr->un_adjval += adjval;
    402 		if (sunptr->un_adjval == 0) {
    403 			suptr->un_cnt--;
    404 			if (i < suptr->un_cnt)
    405 				suptr->un_ent[i] =
    406 				    suptr->un_ent[suptr->un_cnt];
    407 		}
    408 		return (0);
    409 	}
    410 
    411 	/* Didn't find the right entry - create it */
    412 	if (suptr->un_cnt == SEMUME)
    413 		return (EINVAL);
    414 
    415 	sunptr = &suptr->un_ent[suptr->un_cnt];
    416 	suptr->un_cnt++;
    417 	sunptr->un_adjval = adjval;
    418 	sunptr->un_id = semid;
    419 	sunptr->un_num = semnum;
    420 	return (0);
    421 }
    422 
    423 void
    424 semundo_clear(int semid, int semnum)
    425 {
    426 	struct sem_undo *suptr;
    427 	struct undo *sunptr, *sunend;
    428 
    429 	KASSERT(mutex_owned(&semlock));
    430 
    431 	for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next)
    432 		for (sunptr = &suptr->un_ent[0],
    433 		    sunend = sunptr + suptr->un_cnt; sunptr < sunend;) {
    434 			if (sunptr->un_id == semid) {
    435 				if (semnum == -1 || sunptr->un_num == semnum) {
    436 					suptr->un_cnt--;
    437 					sunend--;
    438 					if (sunptr != sunend)
    439 						*sunptr = *sunend;
    440 					if (semnum != -1)
    441 						break;
    442 					else
    443 						continue;
    444 				}
    445 			}
    446 			sunptr++;
    447 		}
    448 }
    449 
    450 int
    451 sys_____semctl13(struct lwp *l, void *v, register_t *retval)
    452 {
    453 	struct sys_____semctl13_args /* {
    454 		syscallarg(int) semid;
    455 		syscallarg(int) semnum;
    456 		syscallarg(int) cmd;
    457 		syscallarg(union __semun *) arg;
    458 	} */ *uap = v;
    459 	struct semid_ds sembuf;
    460 	int cmd, error;
    461 	void *pass_arg;
    462 	union __semun karg;
    463 
    464 	cmd = SCARG(uap, cmd);
    465 
    466 	pass_arg = get_semctl_arg(cmd, &sembuf, &karg);
    467 
    468 	if (pass_arg) {
    469 		error = copyin(SCARG(uap, arg), &karg, sizeof(karg));
    470 		if (error)
    471 			return error;
    472 		if (cmd == IPC_SET) {
    473 			error = copyin(karg.buf, &sembuf, sizeof(sembuf));
    474 			if (error)
    475 				return (error);
    476 		}
    477 	}
    478 
    479 	error = semctl1(l, SCARG(uap, semid), SCARG(uap, semnum), cmd,
    480 	    pass_arg, retval);
    481 
    482 	if (error == 0 && cmd == IPC_STAT)
    483 		error = copyout(&sembuf, karg.buf, sizeof(sembuf));
    484 
    485 	return (error);
    486 }
    487 
    488 int
    489 semctl1(struct lwp *l, int semid, int semnum, int cmd, void *v,
    490     register_t *retval)
    491 {
    492 	kauth_cred_t cred = l->l_cred;
    493 	union __semun *arg = v;
    494 	struct semid_ds *sembuf = v, *semaptr;
    495 	int i, error, ix;
    496 
    497 	SEM_PRINTF(("call to semctl(%d, %d, %d, %p)\n",
    498 	    semid, semnum, cmd, v));
    499 
    500 	mutex_enter(&semlock);
    501 
    502 	ix = IPCID_TO_IX(semid);
    503 	if (ix < 0 || ix >= seminfo.semmni) {
    504 		mutex_exit(&semlock);
    505 		return (EINVAL);
    506 	}
    507 
    508 	semaptr = &sema[ix];
    509 	if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
    510 	    semaptr->sem_perm._seq != IPCID_TO_SEQ(semid)) {
    511 		mutex_exit(&semlock);
    512 		return (EINVAL);
    513 	}
    514 
    515 	switch (cmd) {
    516 	case IPC_RMID:
    517 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_M)) != 0)
    518 			break;
    519 		semaptr->sem_perm.cuid = kauth_cred_geteuid(cred);
    520 		semaptr->sem_perm.uid = kauth_cred_geteuid(cred);
    521 		semtot -= semaptr->sem_nsems;
    522 		for (i = semaptr->_sem_base - sem; i < semtot; i++)
    523 			sem[i] = sem[i + semaptr->sem_nsems];
    524 		for (i = 0; i < seminfo.semmni; i++) {
    525 			if ((sema[i].sem_perm.mode & SEM_ALLOC) &&
    526 			    sema[i]._sem_base > semaptr->_sem_base)
    527 				sema[i]._sem_base -= semaptr->sem_nsems;
    528 		}
    529 		semaptr->sem_perm.mode = 0;
    530 		semundo_clear(ix, -1);
    531 		cv_broadcast(&semcv[ix]);
    532 		break;
    533 
    534 	case IPC_SET:
    535 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_M)))
    536 			break;
    537 		KASSERT(sembuf != NULL);
    538 		semaptr->sem_perm.uid = sembuf->sem_perm.uid;
    539 		semaptr->sem_perm.gid = sembuf->sem_perm.gid;
    540 		semaptr->sem_perm.mode = (semaptr->sem_perm.mode & ~0777) |
    541 		    (sembuf->sem_perm.mode & 0777);
    542 		semaptr->sem_ctime = time_second;
    543 		break;
    544 
    545 	case IPC_STAT:
    546 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
    547 			break;
    548 		KASSERT(sembuf != NULL);
    549 		memcpy(sembuf, semaptr, sizeof(struct semid_ds));
    550 		break;
    551 
    552 	case GETNCNT:
    553 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
    554 			break;
    555 		if (semnum < 0 || semnum >= semaptr->sem_nsems) {
    556 			error = EINVAL;
    557 			break;
    558 		}
    559 		*retval = semaptr->_sem_base[semnum].semncnt;
    560 		break;
    561 
    562 	case GETPID:
    563 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
    564 			break;
    565 		if (semnum < 0 || semnum >= semaptr->sem_nsems) {
    566 			error = EINVAL;
    567 			break;
    568 		}
    569 		*retval = semaptr->_sem_base[semnum].sempid;
    570 		break;
    571 
    572 	case GETVAL:
    573 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
    574 			break;
    575 		if (semnum < 0 || semnum >= semaptr->sem_nsems) {
    576 			error = EINVAL;
    577 			break;
    578 		}
    579 		*retval = semaptr->_sem_base[semnum].semval;
    580 		break;
    581 
    582 	case GETALL:
    583 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
    584 			break;
    585 		KASSERT(arg != NULL);
    586 		for (i = 0; i < semaptr->sem_nsems; i++) {
    587 			error = copyout(&semaptr->_sem_base[i].semval,
    588 			    &arg->array[i], sizeof(arg->array[i]));
    589 			if (error != 0)
    590 				break;
    591 		}
    592 		break;
    593 
    594 	case GETZCNT:
    595 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
    596 			break;
    597 		if (semnum < 0 || semnum >= semaptr->sem_nsems) {
    598 			error = EINVAL;
    599 			break;
    600 		}
    601 		*retval = semaptr->_sem_base[semnum].semzcnt;
    602 		break;
    603 
    604 	case SETVAL:
    605 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_W)))
    606 			break;
    607 		if (semnum < 0 || semnum >= semaptr->sem_nsems) {
    608 			error = EINVAL;
    609 			break;
    610 		}
    611 		KASSERT(arg != NULL);
    612 		semaptr->_sem_base[semnum].semval = arg->val;
    613 		semundo_clear(ix, semnum);
    614 		cv_broadcast(&semcv[ix]);
    615 		break;
    616 
    617 	case SETALL:
    618 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_W)))
    619 			break;
    620 		KASSERT(arg != NULL);
    621 		for (i = 0; i < semaptr->sem_nsems; i++) {
    622 			error = copyin(&arg->array[i],
    623 			    &semaptr->_sem_base[i].semval,
    624 			    sizeof(arg->array[i]));
    625 			if (error != 0)
    626 				break;
    627 		}
    628 		semundo_clear(ix, -1);
    629 		cv_broadcast(&semcv[ix]);
    630 		break;
    631 
    632 	default:
    633 		error = EINVAL;
    634 		break;
    635 	}
    636 
    637 	mutex_exit(&semlock);
    638 	return (error);
    639 }
    640 
    641 int
    642 sys_semget(struct lwp *l, void *v, register_t *retval)
    643 {
    644 	struct sys_semget_args /* {
    645 		syscallarg(key_t) key;
    646 		syscallarg(int) nsems;
    647 		syscallarg(int) semflg;
    648 	} */ *uap = v;
    649 	int semid, error = 0;
    650 	int key = SCARG(uap, key);
    651 	int nsems = SCARG(uap, nsems);
    652 	int semflg = SCARG(uap, semflg);
    653 	kauth_cred_t cred = l->l_cred;
    654 
    655 	SEM_PRINTF(("semget(0x%x, %d, 0%o)\n", key, nsems, semflg));
    656 
    657 	mutex_enter(&semlock);
    658 
    659 	if (key != IPC_PRIVATE) {
    660 		for (semid = 0; semid < seminfo.semmni; semid++) {
    661 			if ((sema[semid].sem_perm.mode & SEM_ALLOC) &&
    662 			    sema[semid].sem_perm._key == key)
    663 				break;
    664 		}
    665 		if (semid < seminfo.semmni) {
    666 			SEM_PRINTF(("found public key\n"));
    667 			if ((error = ipcperm(cred, &sema[semid].sem_perm,
    668 			    semflg & 0700)))
    669 			    	goto out;
    670 			if (nsems > 0 && sema[semid].sem_nsems < nsems) {
    671 				SEM_PRINTF(("too small\n"));
    672 				error = EINVAL;
    673 				goto out;
    674 			}
    675 			if ((semflg & IPC_CREAT) && (semflg & IPC_EXCL)) {
    676 				SEM_PRINTF(("not exclusive\n"));
    677 				error = EEXIST;
    678 				goto out;
    679 			}
    680 			goto found;
    681 		}
    682 	}
    683 
    684 	SEM_PRINTF(("need to allocate the semid_ds\n"));
    685 	if (key == IPC_PRIVATE || (semflg & IPC_CREAT)) {
    686 		if (nsems <= 0 || nsems > seminfo.semmsl) {
    687 			SEM_PRINTF(("nsems out of range (0<%d<=%d)\n", nsems,
    688 			    seminfo.semmsl));
    689 			error = EINVAL;
    690 			goto out;
    691 		}
    692 		if (nsems > seminfo.semmns - semtot) {
    693 			SEM_PRINTF(("not enough semaphores left "
    694 			    "(need %d, got %d)\n",
    695 			    nsems, seminfo.semmns - semtot));
    696 			error = ENOSPC;
    697 			goto out;
    698 		}
    699 		for (semid = 0; semid < seminfo.semmni; semid++) {
    700 			if ((sema[semid].sem_perm.mode & SEM_ALLOC) == 0)
    701 				break;
    702 		}
    703 		if (semid == seminfo.semmni) {
    704 			SEM_PRINTF(("no more semid_ds's available\n"));
    705 			error = ENOSPC;
    706 			goto out;
    707 		}
    708 		SEM_PRINTF(("semid %d is available\n", semid));
    709 		sema[semid].sem_perm._key = key;
    710 		sema[semid].sem_perm.cuid = kauth_cred_geteuid(cred);
    711 		sema[semid].sem_perm.uid = kauth_cred_geteuid(cred);
    712 		sema[semid].sem_perm.cgid = kauth_cred_getegid(cred);
    713 		sema[semid].sem_perm.gid = kauth_cred_getegid(cred);
    714 		sema[semid].sem_perm.mode = (semflg & 0777) | SEM_ALLOC;
    715 		sema[semid].sem_perm._seq =
    716 		    (sema[semid].sem_perm._seq + 1) & 0x7fff;
    717 		sema[semid].sem_nsems = nsems;
    718 		sema[semid].sem_otime = 0;
    719 		sema[semid].sem_ctime = time_second;
    720 		sema[semid]._sem_base = &sem[semtot];
    721 		semtot += nsems;
    722 		memset(sema[semid]._sem_base, 0,
    723 		    sizeof(sema[semid]._sem_base[0]) * nsems);
    724 		SEM_PRINTF(("sembase = %p, next = %p\n", sema[semid]._sem_base,
    725 		    &sem[semtot]));
    726 	} else {
    727 		SEM_PRINTF(("didn't find it and wasn't asked to create it\n"));
    728 		error = ENOENT;
    729 		goto out;
    730 	}
    731 
    732  found:
    733 	*retval = IXSEQ_TO_IPCID(semid, sema[semid].sem_perm);
    734  out:
    735 	mutex_exit(&semlock);
    736 	return (error);
    737 }
    738 
    739 #define SMALL_SOPS 8
    740 
    741 int
    742 sys_semop(struct lwp *l, void *v, register_t *retval)
    743 {
    744 	struct sys_semop_args /* {
    745 		syscallarg(int) semid;
    746 		syscallarg(struct sembuf *) sops;
    747 		syscallarg(size_t) nsops;
    748 	} */ *uap = v;
    749 	struct proc *p = l->l_proc;
    750 	int semid = SCARG(uap, semid), seq;
    751 	size_t nsops = SCARG(uap, nsops);
    752 	struct sembuf small_sops[SMALL_SOPS];
    753 	struct sembuf *sops;
    754 	struct semid_ds *semaptr;
    755 	struct sembuf *sopptr = NULL;
    756 	struct __sem *semptr = NULL;
    757 	struct sem_undo *suptr = NULL;
    758 	kauth_cred_t cred = l->l_cred;
    759 	int i, error;
    760 	int do_wakeup, do_undos;
    761 
    762 	SEM_PRINTF(("call to semop(%d, %p, %zd)\n", semid, SCARG(uap,sops), nsops));
    763 
    764 	if (nsops <= SMALL_SOPS) {
    765 		sops = small_sops;
    766 	} else if (nsops <= seminfo.semopm) {
    767 		KERNEL_LOCK(1, l);		/* XXXSMP */
    768 		sops = kmem_alloc(nsops * sizeof(*sops), KM_SLEEP);
    769 		KERNEL_UNLOCK_ONE(l);		/* XXXSMP */
    770 	} else {
    771 		SEM_PRINTF(("too many sops (max=%d, nsops=%zd)\n",
    772 		    seminfo.semopm, nsops));
    773 		return (E2BIG);
    774 	}
    775 
    776 	mutex_enter(&semlock);
    777 	if (sem_realloc_state) {
    778 		/* In case of reallocation, we will wait for completion */
    779 		while (sem_realloc_state)
    780 			cv_wait(&sem_realloc_cv, &semlock);
    781 	}
    782 
    783 	semid = IPCID_TO_IX(semid);	/* Convert back to zero origin */
    784 	if (semid < 0 || semid >= seminfo.semmni) {
    785 		error = EINVAL;
    786 		goto out;
    787 	}
    788 
    789 	semaptr = &sema[semid];
    790 	seq = IPCID_TO_SEQ(SCARG(uap, semid));
    791 	if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
    792 	    semaptr->sem_perm._seq != seq) {
    793 		error = EINVAL;
    794 		goto out;
    795 	}
    796 
    797 	if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_W))) {
    798 		SEM_PRINTF(("error = %d from ipaccess\n", error));
    799 		goto out;
    800 	}
    801 
    802 	if ((error = copyin(SCARG(uap, sops),
    803 	    sops, nsops * sizeof(sops[0]))) != 0) {
    804 		SEM_PRINTF(("error = %d from copyin(%p, %p, %zd)\n", error,
    805 		    SCARG(uap, sops), &sops, nsops * sizeof(sops[0])));
    806 		goto out;
    807 	}
    808 
    809 	for (i = 0; i < nsops; i++)
    810 		if (sops[i].sem_num >= semaptr->sem_nsems) {
    811 			error = EFBIG;
    812 			goto out;
    813 		}
    814 
    815 	/*
    816 	 * Loop trying to satisfy the vector of requests.
    817 	 * If we reach a point where we must wait, any requests already
    818 	 * performed are rolled back and we go to sleep until some other
    819 	 * process wakes us up.  At this point, we start all over again.
    820 	 *
    821 	 * This ensures that from the perspective of other tasks, a set
    822 	 * of requests is atomic (never partially satisfied).
    823 	 */
    824 	do_undos = 0;
    825 
    826 	for (;;) {
    827 		do_wakeup = 0;
    828 
    829 		for (i = 0; i < nsops; i++) {
    830 			sopptr = &sops[i];
    831 			semptr = &semaptr->_sem_base[sopptr->sem_num];
    832 
    833 			SEM_PRINTF(("semop:  semaptr=%p, sem_base=%p, "
    834 			    "semptr=%p, sem[%d]=%d : op=%d, flag=%s\n",
    835 			    semaptr, semaptr->_sem_base, semptr,
    836 			    sopptr->sem_num, semptr->semval, sopptr->sem_op,
    837 			    (sopptr->sem_flg & IPC_NOWAIT) ?
    838 			    "nowait" : "wait"));
    839 
    840 			if (sopptr->sem_op < 0) {
    841 				if ((int)(semptr->semval +
    842 				    sopptr->sem_op) < 0) {
    843 					SEM_PRINTF(("semop:  "
    844 					    "can't do it now\n"));
    845 					break;
    846 				} else {
    847 					semptr->semval += sopptr->sem_op;
    848 					if (semptr->semval == 0 &&
    849 					    semptr->semzcnt > 0)
    850 						do_wakeup = 1;
    851 				}
    852 				if (sopptr->sem_flg & SEM_UNDO)
    853 					do_undos = 1;
    854 			} else if (sopptr->sem_op == 0) {
    855 				if (semptr->semval > 0) {
    856 					SEM_PRINTF(("semop:  not zero now\n"));
    857 					break;
    858 				}
    859 			} else {
    860 				if (semptr->semncnt > 0)
    861 					do_wakeup = 1;
    862 				semptr->semval += sopptr->sem_op;
    863 				if (sopptr->sem_flg & SEM_UNDO)
    864 					do_undos = 1;
    865 			}
    866 		}
    867 
    868 		/*
    869 		 * Did we get through the entire vector?
    870 		 */
    871 		if (i >= nsops)
    872 			goto done;
    873 
    874 		/*
    875 		 * No ... rollback anything that we've already done
    876 		 */
    877 		SEM_PRINTF(("semop:  rollback 0 through %d\n", i - 1));
    878 		while (i-- > 0)
    879 			semaptr->_sem_base[sops[i].sem_num].semval -=
    880 			    sops[i].sem_op;
    881 
    882 		/*
    883 		 * If the request that we couldn't satisfy has the
    884 		 * NOWAIT flag set then return with EAGAIN.
    885 		 */
    886 		if (sopptr->sem_flg & IPC_NOWAIT) {
    887 			error = EAGAIN;
    888 			goto out;
    889 		}
    890 
    891 		if (sopptr->sem_op == 0)
    892 			semptr->semzcnt++;
    893 		else
    894 			semptr->semncnt++;
    895 
    896 		sem_waiters++;
    897 		SEM_PRINTF(("semop:  good night!\n"));
    898 		error = cv_wait_sig(&semcv[semid], &semlock);
    899 		SEM_PRINTF(("semop:  good morning (error=%d)!\n", error));
    900 		sem_waiters--;
    901 
    902 		/* Notify reallocator, in case of such state */
    903 		if (sem_realloc_state)
    904 			cv_signal(&sem_realloc_cv);
    905 
    906 		/*
    907 		 * Make sure that the semaphore still exists
    908 		 */
    909 		if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
    910 		    semaptr->sem_perm._seq != seq) {
    911 			error = EIDRM;
    912 			goto out;
    913 		}
    914 
    915 		/*
    916 		 * The semaphore is still alive.  Readjust the count of
    917 		 * waiting processes.
    918 		 */
    919 		semptr = &semaptr->_sem_base[sopptr->sem_num];
    920 		if (sopptr->sem_op == 0)
    921 			semptr->semzcnt--;
    922 		else
    923 			semptr->semncnt--;
    924 
    925 		/* Is it really morning, or was our sleep interrupted? */
    926 		if (error || sem_realloc_state) {
    927 			error = EINTR;
    928 			goto out;
    929 		}
    930 		SEM_PRINTF(("semop:  good morning!\n"));
    931 	}
    932 
    933 done:
    934 	/*
    935 	 * Process any SEM_UNDO requests.
    936 	 */
    937 	if (do_undos) {
    938 		for (i = 0; i < nsops; i++) {
    939 			/*
    940 			 * We only need to deal with SEM_UNDO's for non-zero
    941 			 * op's.
    942 			 */
    943 			int adjval;
    944 
    945 			if ((sops[i].sem_flg & SEM_UNDO) == 0)
    946 				continue;
    947 			adjval = sops[i].sem_op;
    948 			if (adjval == 0)
    949 				continue;
    950 			error = semundo_adjust(p, &suptr, semid,
    951 			    sops[i].sem_num, -adjval);
    952 			if (error == 0)
    953 				continue;
    954 
    955 			/*
    956 			 * Oh-Oh!  We ran out of either sem_undo's or undo's.
    957 			 * Rollback the adjustments to this point and then
    958 			 * rollback the semaphore ups and down so we can return
    959 			 * with an error with all structures restored.  We
    960 			 * rollback the undo's in the exact reverse order that
    961 			 * we applied them.  This guarantees that we won't run
    962 			 * out of space as we roll things back out.
    963 			 */
    964 			while (i-- > 0) {
    965 				if ((sops[i].sem_flg & SEM_UNDO) == 0)
    966 					continue;
    967 				adjval = sops[i].sem_op;
    968 				if (adjval == 0)
    969 					continue;
    970 				if (semundo_adjust(p, &suptr, semid,
    971 				    sops[i].sem_num, adjval) != 0)
    972 					panic("semop - can't undo undos");
    973 			}
    974 
    975 			for (i = 0; i < nsops; i++)
    976 				semaptr->_sem_base[sops[i].sem_num].semval -=
    977 				    sops[i].sem_op;
    978 
    979 			SEM_PRINTF(("error = %d from semundo_adjust\n", error));
    980 			goto out;
    981 		} /* loop through the sops */
    982 	} /* if (do_undos) */
    983 
    984 	/* We're definitely done - set the sempid's */
    985 	for (i = 0; i < nsops; i++) {
    986 		sopptr = &sops[i];
    987 		semptr = &semaptr->_sem_base[sopptr->sem_num];
    988 		semptr->sempid = p->p_pid;
    989 	}
    990 
    991 	/* Update sem_otime */
    992 	semaptr->sem_otime = time_second;
    993 
    994 	/* Do a wakeup if any semaphore was up'd. */
    995 	if (do_wakeup) {
    996 		SEM_PRINTF(("semop:  doing wakeup\n"));
    997 		cv_broadcast(&semcv[semid]);
    998 		SEM_PRINTF(("semop:  back from wakeup\n"));
    999 	}
   1000 	SEM_PRINTF(("semop:  done\n"));
   1001 	*retval = 0;
   1002 
   1003  out:
   1004 	mutex_exit(&semlock);
   1005 	if (sops != small_sops) {
   1006 		KERNEL_LOCK(1, l);		/* XXXSMP */
   1007 		kmem_free(sops, nsops * sizeof(*sops));
   1008 		KERNEL_UNLOCK_ONE(l);		/* XXXSMP */
   1009 	}
   1010 	return error;
   1011 }
   1012 
   1013 /*
   1014  * Go through the undo structures for this process and apply the
   1015  * adjustments to semaphores.
   1016  */
   1017 /*ARGSUSED*/
   1018 void
   1019 semexit(struct proc *p, void *v)
   1020 {
   1021 	struct sem_undo *suptr;
   1022 	struct sem_undo **supptr;
   1023 
   1024 	mutex_enter(&semlock);
   1025 
   1026 	/*
   1027 	 * Go through the chain of undo vectors looking for one
   1028 	 * associated with this process.
   1029 	 */
   1030 
   1031 	for (supptr = &semu_list; (suptr = *supptr) != NULL;
   1032 	    supptr = &suptr->un_next) {
   1033 		if (suptr->un_proc == p)
   1034 			break;
   1035 	}
   1036 
   1037 	/*
   1038 	 * If there is no undo vector, skip to the end.
   1039 	 */
   1040 
   1041 	if (suptr == NULL) {
   1042 		mutex_exit(&semlock);
   1043 		return;
   1044 	}
   1045 
   1046 	/*
   1047 	 * We now have an undo vector for this process.
   1048 	 */
   1049 
   1050 	SEM_PRINTF(("proc @%p has undo structure with %d entries\n", p,
   1051 	    suptr->un_cnt));
   1052 
   1053 	/*
   1054 	 * If there are any active undo elements then process them.
   1055 	 */
   1056 	if (suptr->un_cnt > 0) {
   1057 		int ix;
   1058 
   1059 		for (ix = 0; ix < suptr->un_cnt; ix++) {
   1060 			int semid = suptr->un_ent[ix].un_id;
   1061 			int semnum = suptr->un_ent[ix].un_num;
   1062 			int adjval = suptr->un_ent[ix].un_adjval;
   1063 			struct semid_ds *semaptr;
   1064 
   1065 			semaptr = &sema[semid];
   1066 			if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0)
   1067 				panic("semexit - semid not allocated");
   1068 			if (semnum >= semaptr->sem_nsems)
   1069 				panic("semexit - semnum out of range");
   1070 
   1071 			SEM_PRINTF(("semexit:  %p id=%d num=%d(adj=%d) ; "
   1072 			    "sem=%d\n",
   1073 			    suptr->un_proc, suptr->un_ent[ix].un_id,
   1074 			    suptr->un_ent[ix].un_num,
   1075 			    suptr->un_ent[ix].un_adjval,
   1076 			    semaptr->_sem_base[semnum].semval));
   1077 
   1078 			if (adjval < 0 &&
   1079 			    semaptr->_sem_base[semnum].semval < -adjval)
   1080 				semaptr->_sem_base[semnum].semval = 0;
   1081 			else
   1082 				semaptr->_sem_base[semnum].semval += adjval;
   1083 
   1084 			cv_broadcast(&semcv[semid]);
   1085 			SEM_PRINTF(("semexit:  back from wakeup\n"));
   1086 		}
   1087 	}
   1088 
   1089 	/*
   1090 	 * Deallocate the undo vector.
   1091 	 */
   1092 	SEM_PRINTF(("removing vector\n"));
   1093 	suptr->un_proc = NULL;
   1094 	*supptr = suptr->un_next;
   1095 	mutex_exit(&semlock);
   1096 }
   1097 
   1098 /*
   1099  * Sysctl initialization and nodes.
   1100  */
   1101 
   1102 static int
   1103 sysctl_ipc_semmni(SYSCTLFN_ARGS)
   1104 {
   1105 	int newsize, error;
   1106 	struct sysctlnode node;
   1107 	node = *rnode;
   1108 	node.sysctl_data = &newsize;
   1109 
   1110 	newsize = seminfo.semmni;
   1111 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1112 	if (error || newp == NULL)
   1113 		return error;
   1114 
   1115 	return semrealloc(newsize, seminfo.semmns, seminfo.semmnu);
   1116 }
   1117 
   1118 static int
   1119 sysctl_ipc_semmns(SYSCTLFN_ARGS)
   1120 {
   1121 	int newsize, error;
   1122 	struct sysctlnode node;
   1123 	node = *rnode;
   1124 	node.sysctl_data = &newsize;
   1125 
   1126 	newsize = seminfo.semmns;
   1127 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1128 	if (error || newp == NULL)
   1129 		return error;
   1130 
   1131 	return semrealloc(seminfo.semmni, newsize, seminfo.semmnu);
   1132 }
   1133 
   1134 static int
   1135 sysctl_ipc_semmnu(SYSCTLFN_ARGS)
   1136 {
   1137 	int newsize, error;
   1138 	struct sysctlnode node;
   1139 	node = *rnode;
   1140 	node.sysctl_data = &newsize;
   1141 
   1142 	newsize = seminfo.semmnu;
   1143 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1144 	if (error || newp == NULL)
   1145 		return error;
   1146 
   1147 	return semrealloc(seminfo.semmni, seminfo.semmns, newsize);
   1148 }
   1149 
   1150 SYSCTL_SETUP(sysctl_ipc_sem_setup, "sysctl kern.ipc subtree setup")
   1151 {
   1152 	const struct sysctlnode *node = NULL;
   1153 
   1154 	sysctl_createv(clog, 0, NULL, NULL,
   1155 		CTLFLAG_PERMANENT,
   1156 		CTLTYPE_NODE, "kern", NULL,
   1157 		NULL, 0, NULL, 0,
   1158 		CTL_KERN, CTL_EOL);
   1159 	sysctl_createv(clog, 0, NULL, &node,
   1160 		CTLFLAG_PERMANENT,
   1161 		CTLTYPE_NODE, "ipc",
   1162 		SYSCTL_DESCR("SysV IPC options"),
   1163 		NULL, 0, NULL, 0,
   1164 		CTL_KERN, KERN_SYSVIPC, CTL_EOL);
   1165 
   1166 	if (node == NULL)
   1167 		return;
   1168 
   1169 	sysctl_createv(clog, 0, &node, NULL,
   1170 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   1171 		CTLTYPE_INT, "semmni",
   1172 		SYSCTL_DESCR("Max number of number of semaphore identifiers"),
   1173 		sysctl_ipc_semmni, 0, &seminfo.semmni, 0,
   1174 		CTL_CREATE, CTL_EOL);
   1175 	sysctl_createv(clog, 0, &node, NULL,
   1176 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   1177 		CTLTYPE_INT, "semmns",
   1178 		SYSCTL_DESCR("Max number of number of semaphores in system"),
   1179 		sysctl_ipc_semmns, 0, &seminfo.semmns, 0,
   1180 		CTL_CREATE, CTL_EOL);
   1181 	sysctl_createv(clog, 0, &node, NULL,
   1182 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   1183 		CTLTYPE_INT, "semmnu",
   1184 		SYSCTL_DESCR("Max number of undo structures in system"),
   1185 		sysctl_ipc_semmnu, 0, &seminfo.semmnu, 0,
   1186 		CTL_CREATE, CTL_EOL);
   1187 }
   1188