sysv_sem.c revision 1.74 1 /* $NetBSD: sysv_sem.c,v 1.74 2007/11/04 11:20:34 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Implementation of SVID semaphores
42 *
43 * Author: Daniel Boulet
44 *
45 * This software is provided ``AS IS'' without any warranties of any kind.
46 */
47
48 #include <sys/cdefs.h>
49 __KERNEL_RCSID(0, "$NetBSD: sysv_sem.c,v 1.74 2007/11/04 11:20:34 rmind Exp $");
50
51 #define SYSVSEM
52
53 #include <sys/param.h>
54 #include <sys/kernel.h>
55 #include <sys/sem.h>
56 #include <sys/sysctl.h>
57 #include <sys/kmem.h>
58 #include <sys/mount.h> /* XXX for <sys/syscallargs.h> */
59 #include <sys/syscallargs.h>
60 #include <sys/kauth.h>
61
62 /*
63 * Memory areas:
64 * 1st: Pool of semaphore identifiers
65 * 2nd: Semaphores
66 * 3rd: Conditional variables
67 * 4th: Undo structures
68 */
69 struct semid_ds *sema;
70 static struct __sem *sem;
71 static kcondvar_t *semcv;
72 static int *semu;
73
74 static kmutex_t semlock;
75 static struct sem_undo *semu_list; /* list of active undo structures */
76 static u_int semtot = 0; /* total number of semaphores */
77
78 static u_int sem_waiters = 0; /* total number of semop waiters */
79 static bool sem_realloc_state;
80 static kcondvar_t sem_realloc_cv;
81
82 /* Macro to find a particular sem_undo vector */
83 #define SEMU(s, ix) ((struct sem_undo *)(((long)s) + ix * seminfo.semusz))
84
85 #ifdef SEM_DEBUG
86 #define SEM_PRINTF(a) printf a
87 #else
88 #define SEM_PRINTF(a)
89 #endif
90
91 struct sem_undo *semu_alloc(struct proc *);
92 int semundo_adjust(struct proc *, struct sem_undo **, int, int, int);
93 void semundo_clear(int, int);
94
95 void
96 seminit(void)
97 {
98 int i, sz;
99 vaddr_t v;
100
101 mutex_init(&semlock, MUTEX_DEFAULT, IPL_NONE);
102 cv_init(&sem_realloc_cv, "semrealc");
103 sem_realloc_state = false;
104
105 /* Allocate the wired memory for our structures */
106 sz = ALIGN(seminfo.semmni * sizeof(struct semid_ds)) +
107 ALIGN(seminfo.semmns * sizeof(struct __sem)) +
108 ALIGN(seminfo.semmni * sizeof(kcondvar_t)) +
109 ALIGN(seminfo.semmnu * seminfo.semusz);
110 v = uvm_km_alloc(kernel_map, round_page(sz), 0,
111 UVM_KMF_WIRED|UVM_KMF_ZERO);
112 if (v == 0)
113 panic("sysv_sem: cannot allocate memory");
114 sema = (void *)v;
115 sem = (void *)(ALIGN(sema) +
116 seminfo.semmni * sizeof(struct semid_ds));
117 semcv = (void *)(ALIGN(sem) +
118 seminfo.semmns * sizeof(struct __sem));
119 semu = (void *)(ALIGN(semcv) +
120 seminfo.semmni * sizeof(kcondvar_t));
121
122 for (i = 0; i < seminfo.semmni; i++) {
123 sema[i]._sem_base = 0;
124 sema[i].sem_perm.mode = 0;
125 cv_init(&semcv[i], "semwait");
126 }
127 for (i = 0; i < seminfo.semmnu; i++) {
128 struct sem_undo *suptr = SEMU(semu, i);
129 suptr->un_proc = NULL;
130 }
131 semu_list = NULL;
132 exithook_establish(semexit, NULL);
133 }
134
135 static int
136 semrealloc(int newsemmni, int newsemmns, int newsemmnu)
137 {
138 struct semid_ds *new_sema, *old_sema;
139 struct __sem *new_sem;
140 struct sem_undo *new_semu_list, *suptr, *nsuptr;
141 int *new_semu;
142 kcondvar_t *new_semcv;
143 vaddr_t v;
144 int i, j, lsemid, nmnus, sz;
145
146 if (newsemmni < 1 || newsemmns < 1 || newsemmnu < 1)
147 return EINVAL;
148
149 /* Allocate the wired memory for our structures */
150 sz = ALIGN(newsemmni * sizeof(struct semid_ds)) +
151 ALIGN(newsemmns * sizeof(struct __sem)) +
152 ALIGN(newsemmni * sizeof(kcondvar_t)) +
153 ALIGN(newsemmnu * seminfo.semusz);
154 v = uvm_km_alloc(kernel_map, round_page(sz), 0,
155 UVM_KMF_WIRED|UVM_KMF_ZERO);
156 if (v == 0)
157 return ENOMEM;
158
159 mutex_enter(&semlock);
160 if (sem_realloc_state) {
161 mutex_exit(&semlock);
162 uvm_km_free(kernel_map, v, sz, UVM_KMF_WIRED);
163 return EBUSY;
164 }
165 sem_realloc_state = true;
166 if (sem_waiters) {
167 /*
168 * Mark reallocation state, wake-up all waiters,
169 * and wait while they will all exit.
170 */
171 for (i = 0; i < seminfo.semmni; i++)
172 cv_broadcast(&semcv[i]);
173 while (sem_waiters)
174 cv_wait(&sem_realloc_cv, &semlock);
175 }
176 old_sema = sema;
177
178 /* Get the number of last slot */
179 lsemid = 0;
180 for (i = 0; i < seminfo.semmni; i++)
181 if (sema[i].sem_perm.mode & SEM_ALLOC)
182 lsemid = i;
183
184 /* Get the number of currently used undo structures */
185 nmnus = 0;
186 for (i = 0; i < seminfo.semmnu; i++) {
187 suptr = SEMU(semu, i);
188 if (suptr->un_proc == NULL)
189 continue;
190 nmnus++;
191 }
192
193 /* We cannot reallocate less memory than we use */
194 if (lsemid >= newsemmni || semtot > newsemmns || nmnus > newsemmnu) {
195 mutex_exit(&semlock);
196 uvm_km_free(kernel_map, v, sz, UVM_KMF_WIRED);
197 return EBUSY;
198 }
199
200 new_sema = (void *)v;
201 new_sem = (void *)(ALIGN(new_sema) +
202 newsemmni * sizeof(struct semid_ds));
203 new_semcv = (void *)(ALIGN(new_sem) +
204 newsemmns * sizeof(struct __sem));
205 new_semu = (void *)(ALIGN(new_semcv) +
206 newsemmni * sizeof(kcondvar_t));
207
208 /* Initialize all semaphore identifiers and condvars */
209 for (i = 0; i < newsemmni; i++) {
210 new_sema[i]._sem_base = 0;
211 new_sema[i].sem_perm.mode = 0;
212 cv_init(&new_semcv[i], "semwait");
213 }
214 for (i = 0; i < newsemmnu; i++) {
215 nsuptr = SEMU(new_semu, i);
216 nsuptr->un_proc = NULL;
217 }
218
219 /*
220 * Copy all identifiers, semaphores and list of the
221 * undo structures to the new memory allocation.
222 */
223 j = 0;
224 for (i = 0; i <= lsemid; i++) {
225 if ((sema[i].sem_perm.mode & SEM_ALLOC) == 0)
226 continue;
227 memcpy(&new_sema[i], &sema[i], sizeof(struct semid_ds));
228 new_sema[i]._sem_base = &new_sem[j];
229 memcpy(new_sema[i]._sem_base, sema[i]._sem_base,
230 (sizeof(struct __sem) * sema[i].sem_nsems));
231 j += sema[i].sem_nsems;
232 }
233 KASSERT(j == semtot);
234
235 j = 0;
236 new_semu_list = NULL;
237 for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next) {
238 KASSERT(j < newsemmnu);
239 nsuptr = SEMU(new_semu, j);
240 memcpy(nsuptr, suptr, SEMUSZ);
241 nsuptr->un_next = new_semu_list;
242 new_semu_list = nsuptr;
243 j++;
244 }
245
246 for (i = 0; i < seminfo.semmni; i++) {
247 KASSERT(cv_has_waiters(&semcv[i]) == false);
248 cv_destroy(&semcv[i]);
249 }
250
251 sz = ALIGN(seminfo.semmni * sizeof(struct semid_ds)) +
252 ALIGN(seminfo.semmns * sizeof(struct __sem)) +
253 ALIGN(seminfo.semmni * sizeof(kcondvar_t)) +
254 ALIGN(seminfo.semmnu * seminfo.semusz);
255
256 /* Set the pointers and update the new values */
257 sema = new_sema;
258 sem = new_sem;
259 semcv = new_semcv;
260 semu = new_semu;
261 semu_list = new_semu_list;
262
263 seminfo.semmni = newsemmni;
264 seminfo.semmns = newsemmns;
265 seminfo.semmnu = newsemmnu;
266
267 /* Reallocation completed - notify all waiters, if any */
268 sem_realloc_state = false;
269 cv_broadcast(&sem_realloc_cv);
270 mutex_exit(&semlock);
271
272 uvm_km_free(kernel_map, (vaddr_t)old_sema, sz, UVM_KMF_WIRED);
273 return 0;
274 }
275
276 /*
277 * Placebo.
278 */
279
280 int
281 sys_semconfig(struct lwp *l, void *v, register_t *retval)
282 {
283
284 *retval = 0;
285 return 0;
286 }
287
288 /*
289 * Allocate a new sem_undo structure for a process
290 * (returns ptr to structure or NULL if no more room)
291 */
292
293 struct sem_undo *
294 semu_alloc(struct proc *p)
295 {
296 int i;
297 struct sem_undo *suptr;
298 struct sem_undo **supptr;
299 int attempt;
300
301 KASSERT(mutex_owned(&semlock));
302
303 /*
304 * Try twice to allocate something.
305 * (we'll purge any empty structures after the first pass so
306 * two passes are always enough)
307 */
308
309 for (attempt = 0; attempt < 2; attempt++) {
310 /*
311 * Look for a free structure.
312 * Fill it in and return it if we find one.
313 */
314
315 for (i = 0; i < seminfo.semmnu; i++) {
316 suptr = SEMU(semu, i);
317 if (suptr->un_proc == NULL) {
318 suptr->un_next = semu_list;
319 semu_list = suptr;
320 suptr->un_cnt = 0;
321 suptr->un_proc = p;
322 return (suptr);
323 }
324 }
325
326 /*
327 * We didn't find a free one, if this is the first attempt
328 * then try to free some structures.
329 */
330
331 if (attempt == 0) {
332 /* All the structures are in use - try to free some */
333 int did_something = 0;
334
335 supptr = &semu_list;
336 while ((suptr = *supptr) != NULL) {
337 if (suptr->un_cnt == 0) {
338 suptr->un_proc = NULL;
339 *supptr = suptr->un_next;
340 did_something = 1;
341 } else
342 supptr = &suptr->un_next;
343 }
344
345 /* If we didn't free anything then just give-up */
346 if (!did_something)
347 return (NULL);
348 } else {
349 /*
350 * The second pass failed even though we freed
351 * something after the first pass!
352 * This is IMPOSSIBLE!
353 */
354 panic("semu_alloc - second attempt failed");
355 }
356 }
357 return NULL;
358 }
359
360 /*
361 * Adjust a particular entry for a particular proc
362 */
363
364 int
365 semundo_adjust(struct proc *p, struct sem_undo **supptr, int semid, int semnum,
366 int adjval)
367 {
368 struct sem_undo *suptr;
369 struct undo *sunptr;
370 int i;
371
372 KASSERT(mutex_owned(&semlock));
373
374 /*
375 * Look for and remember the sem_undo if the caller doesn't
376 * provide it
377 */
378
379 suptr = *supptr;
380 if (suptr == NULL) {
381 for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next)
382 if (suptr->un_proc == p)
383 break;
384
385 if (suptr == NULL) {
386 suptr = semu_alloc(p);
387 if (suptr == NULL)
388 return (ENOSPC);
389 }
390 *supptr = suptr;
391 }
392
393 /*
394 * Look for the requested entry and adjust it (delete if
395 * adjval becomes 0).
396 */
397 sunptr = &suptr->un_ent[0];
398 for (i = 0; i < suptr->un_cnt; i++, sunptr++) {
399 if (sunptr->un_id != semid || sunptr->un_num != semnum)
400 continue;
401 sunptr->un_adjval += adjval;
402 if (sunptr->un_adjval == 0) {
403 suptr->un_cnt--;
404 if (i < suptr->un_cnt)
405 suptr->un_ent[i] =
406 suptr->un_ent[suptr->un_cnt];
407 }
408 return (0);
409 }
410
411 /* Didn't find the right entry - create it */
412 if (suptr->un_cnt == SEMUME)
413 return (EINVAL);
414
415 sunptr = &suptr->un_ent[suptr->un_cnt];
416 suptr->un_cnt++;
417 sunptr->un_adjval = adjval;
418 sunptr->un_id = semid;
419 sunptr->un_num = semnum;
420 return (0);
421 }
422
423 void
424 semundo_clear(int semid, int semnum)
425 {
426 struct sem_undo *suptr;
427 struct undo *sunptr, *sunend;
428
429 KASSERT(mutex_owned(&semlock));
430
431 for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next)
432 for (sunptr = &suptr->un_ent[0],
433 sunend = sunptr + suptr->un_cnt; sunptr < sunend;) {
434 if (sunptr->un_id == semid) {
435 if (semnum == -1 || sunptr->un_num == semnum) {
436 suptr->un_cnt--;
437 sunend--;
438 if (sunptr != sunend)
439 *sunptr = *sunend;
440 if (semnum != -1)
441 break;
442 else
443 continue;
444 }
445 }
446 sunptr++;
447 }
448 }
449
450 int
451 sys_____semctl13(struct lwp *l, void *v, register_t *retval)
452 {
453 struct sys_____semctl13_args /* {
454 syscallarg(int) semid;
455 syscallarg(int) semnum;
456 syscallarg(int) cmd;
457 syscallarg(union __semun *) arg;
458 } */ *uap = v;
459 struct semid_ds sembuf;
460 int cmd, error;
461 void *pass_arg;
462 union __semun karg;
463
464 cmd = SCARG(uap, cmd);
465
466 pass_arg = get_semctl_arg(cmd, &sembuf, &karg);
467
468 if (pass_arg) {
469 error = copyin(SCARG(uap, arg), &karg, sizeof(karg));
470 if (error)
471 return error;
472 if (cmd == IPC_SET) {
473 error = copyin(karg.buf, &sembuf, sizeof(sembuf));
474 if (error)
475 return (error);
476 }
477 }
478
479 error = semctl1(l, SCARG(uap, semid), SCARG(uap, semnum), cmd,
480 pass_arg, retval);
481
482 if (error == 0 && cmd == IPC_STAT)
483 error = copyout(&sembuf, karg.buf, sizeof(sembuf));
484
485 return (error);
486 }
487
488 int
489 semctl1(struct lwp *l, int semid, int semnum, int cmd, void *v,
490 register_t *retval)
491 {
492 kauth_cred_t cred = l->l_cred;
493 union __semun *arg = v;
494 struct semid_ds *sembuf = v, *semaptr;
495 int i, error, ix;
496
497 SEM_PRINTF(("call to semctl(%d, %d, %d, %p)\n",
498 semid, semnum, cmd, v));
499
500 mutex_enter(&semlock);
501
502 ix = IPCID_TO_IX(semid);
503 if (ix < 0 || ix >= seminfo.semmni) {
504 mutex_exit(&semlock);
505 return (EINVAL);
506 }
507
508 semaptr = &sema[ix];
509 if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
510 semaptr->sem_perm._seq != IPCID_TO_SEQ(semid)) {
511 mutex_exit(&semlock);
512 return (EINVAL);
513 }
514
515 switch (cmd) {
516 case IPC_RMID:
517 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_M)) != 0)
518 break;
519 semaptr->sem_perm.cuid = kauth_cred_geteuid(cred);
520 semaptr->sem_perm.uid = kauth_cred_geteuid(cred);
521 semtot -= semaptr->sem_nsems;
522 for (i = semaptr->_sem_base - sem; i < semtot; i++)
523 sem[i] = sem[i + semaptr->sem_nsems];
524 for (i = 0; i < seminfo.semmni; i++) {
525 if ((sema[i].sem_perm.mode & SEM_ALLOC) &&
526 sema[i]._sem_base > semaptr->_sem_base)
527 sema[i]._sem_base -= semaptr->sem_nsems;
528 }
529 semaptr->sem_perm.mode = 0;
530 semundo_clear(ix, -1);
531 cv_broadcast(&semcv[ix]);
532 break;
533
534 case IPC_SET:
535 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_M)))
536 break;
537 KASSERT(sembuf != NULL);
538 semaptr->sem_perm.uid = sembuf->sem_perm.uid;
539 semaptr->sem_perm.gid = sembuf->sem_perm.gid;
540 semaptr->sem_perm.mode = (semaptr->sem_perm.mode & ~0777) |
541 (sembuf->sem_perm.mode & 0777);
542 semaptr->sem_ctime = time_second;
543 break;
544
545 case IPC_STAT:
546 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
547 break;
548 KASSERT(sembuf != NULL);
549 memcpy(sembuf, semaptr, sizeof(struct semid_ds));
550 break;
551
552 case GETNCNT:
553 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
554 break;
555 if (semnum < 0 || semnum >= semaptr->sem_nsems) {
556 error = EINVAL;
557 break;
558 }
559 *retval = semaptr->_sem_base[semnum].semncnt;
560 break;
561
562 case GETPID:
563 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
564 break;
565 if (semnum < 0 || semnum >= semaptr->sem_nsems) {
566 error = EINVAL;
567 break;
568 }
569 *retval = semaptr->_sem_base[semnum].sempid;
570 break;
571
572 case GETVAL:
573 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
574 break;
575 if (semnum < 0 || semnum >= semaptr->sem_nsems) {
576 error = EINVAL;
577 break;
578 }
579 *retval = semaptr->_sem_base[semnum].semval;
580 break;
581
582 case GETALL:
583 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
584 break;
585 KASSERT(arg != NULL);
586 for (i = 0; i < semaptr->sem_nsems; i++) {
587 error = copyout(&semaptr->_sem_base[i].semval,
588 &arg->array[i], sizeof(arg->array[i]));
589 if (error != 0)
590 break;
591 }
592 break;
593
594 case GETZCNT:
595 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
596 break;
597 if (semnum < 0 || semnum >= semaptr->sem_nsems) {
598 error = EINVAL;
599 break;
600 }
601 *retval = semaptr->_sem_base[semnum].semzcnt;
602 break;
603
604 case SETVAL:
605 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_W)))
606 break;
607 if (semnum < 0 || semnum >= semaptr->sem_nsems) {
608 error = EINVAL;
609 break;
610 }
611 KASSERT(arg != NULL);
612 semaptr->_sem_base[semnum].semval = arg->val;
613 semundo_clear(ix, semnum);
614 cv_broadcast(&semcv[ix]);
615 break;
616
617 case SETALL:
618 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_W)))
619 break;
620 KASSERT(arg != NULL);
621 for (i = 0; i < semaptr->sem_nsems; i++) {
622 error = copyin(&arg->array[i],
623 &semaptr->_sem_base[i].semval,
624 sizeof(arg->array[i]));
625 if (error != 0)
626 break;
627 }
628 semundo_clear(ix, -1);
629 cv_broadcast(&semcv[ix]);
630 break;
631
632 default:
633 error = EINVAL;
634 break;
635 }
636
637 mutex_exit(&semlock);
638 return (error);
639 }
640
641 int
642 sys_semget(struct lwp *l, void *v, register_t *retval)
643 {
644 struct sys_semget_args /* {
645 syscallarg(key_t) key;
646 syscallarg(int) nsems;
647 syscallarg(int) semflg;
648 } */ *uap = v;
649 int semid, error = 0;
650 int key = SCARG(uap, key);
651 int nsems = SCARG(uap, nsems);
652 int semflg = SCARG(uap, semflg);
653 kauth_cred_t cred = l->l_cred;
654
655 SEM_PRINTF(("semget(0x%x, %d, 0%o)\n", key, nsems, semflg));
656
657 mutex_enter(&semlock);
658
659 if (key != IPC_PRIVATE) {
660 for (semid = 0; semid < seminfo.semmni; semid++) {
661 if ((sema[semid].sem_perm.mode & SEM_ALLOC) &&
662 sema[semid].sem_perm._key == key)
663 break;
664 }
665 if (semid < seminfo.semmni) {
666 SEM_PRINTF(("found public key\n"));
667 if ((error = ipcperm(cred, &sema[semid].sem_perm,
668 semflg & 0700)))
669 goto out;
670 if (nsems > 0 && sema[semid].sem_nsems < nsems) {
671 SEM_PRINTF(("too small\n"));
672 error = EINVAL;
673 goto out;
674 }
675 if ((semflg & IPC_CREAT) && (semflg & IPC_EXCL)) {
676 SEM_PRINTF(("not exclusive\n"));
677 error = EEXIST;
678 goto out;
679 }
680 goto found;
681 }
682 }
683
684 SEM_PRINTF(("need to allocate the semid_ds\n"));
685 if (key == IPC_PRIVATE || (semflg & IPC_CREAT)) {
686 if (nsems <= 0 || nsems > seminfo.semmsl) {
687 SEM_PRINTF(("nsems out of range (0<%d<=%d)\n", nsems,
688 seminfo.semmsl));
689 error = EINVAL;
690 goto out;
691 }
692 if (nsems > seminfo.semmns - semtot) {
693 SEM_PRINTF(("not enough semaphores left "
694 "(need %d, got %d)\n",
695 nsems, seminfo.semmns - semtot));
696 error = ENOSPC;
697 goto out;
698 }
699 for (semid = 0; semid < seminfo.semmni; semid++) {
700 if ((sema[semid].sem_perm.mode & SEM_ALLOC) == 0)
701 break;
702 }
703 if (semid == seminfo.semmni) {
704 SEM_PRINTF(("no more semid_ds's available\n"));
705 error = ENOSPC;
706 goto out;
707 }
708 SEM_PRINTF(("semid %d is available\n", semid));
709 sema[semid].sem_perm._key = key;
710 sema[semid].sem_perm.cuid = kauth_cred_geteuid(cred);
711 sema[semid].sem_perm.uid = kauth_cred_geteuid(cred);
712 sema[semid].sem_perm.cgid = kauth_cred_getegid(cred);
713 sema[semid].sem_perm.gid = kauth_cred_getegid(cred);
714 sema[semid].sem_perm.mode = (semflg & 0777) | SEM_ALLOC;
715 sema[semid].sem_perm._seq =
716 (sema[semid].sem_perm._seq + 1) & 0x7fff;
717 sema[semid].sem_nsems = nsems;
718 sema[semid].sem_otime = 0;
719 sema[semid].sem_ctime = time_second;
720 sema[semid]._sem_base = &sem[semtot];
721 semtot += nsems;
722 memset(sema[semid]._sem_base, 0,
723 sizeof(sema[semid]._sem_base[0]) * nsems);
724 SEM_PRINTF(("sembase = %p, next = %p\n", sema[semid]._sem_base,
725 &sem[semtot]));
726 } else {
727 SEM_PRINTF(("didn't find it and wasn't asked to create it\n"));
728 error = ENOENT;
729 goto out;
730 }
731
732 found:
733 *retval = IXSEQ_TO_IPCID(semid, sema[semid].sem_perm);
734 out:
735 mutex_exit(&semlock);
736 return (error);
737 }
738
739 #define SMALL_SOPS 8
740
741 int
742 sys_semop(struct lwp *l, void *v, register_t *retval)
743 {
744 struct sys_semop_args /* {
745 syscallarg(int) semid;
746 syscallarg(struct sembuf *) sops;
747 syscallarg(size_t) nsops;
748 } */ *uap = v;
749 struct proc *p = l->l_proc;
750 int semid = SCARG(uap, semid), seq;
751 size_t nsops = SCARG(uap, nsops);
752 struct sembuf small_sops[SMALL_SOPS];
753 struct sembuf *sops;
754 struct semid_ds *semaptr;
755 struct sembuf *sopptr = NULL;
756 struct __sem *semptr = NULL;
757 struct sem_undo *suptr = NULL;
758 kauth_cred_t cred = l->l_cred;
759 int i, error;
760 int do_wakeup, do_undos;
761
762 SEM_PRINTF(("call to semop(%d, %p, %zd)\n", semid, SCARG(uap,sops), nsops));
763
764 if (nsops <= SMALL_SOPS) {
765 sops = small_sops;
766 } else if (nsops <= seminfo.semopm) {
767 KERNEL_LOCK(1, l); /* XXXSMP */
768 sops = kmem_alloc(nsops * sizeof(*sops), KM_SLEEP);
769 KERNEL_UNLOCK_ONE(l); /* XXXSMP */
770 } else {
771 SEM_PRINTF(("too many sops (max=%d, nsops=%zd)\n",
772 seminfo.semopm, nsops));
773 return (E2BIG);
774 }
775
776 mutex_enter(&semlock);
777 if (sem_realloc_state) {
778 /* In case of reallocation, we will wait for completion */
779 while (sem_realloc_state)
780 cv_wait(&sem_realloc_cv, &semlock);
781 }
782
783 semid = IPCID_TO_IX(semid); /* Convert back to zero origin */
784 if (semid < 0 || semid >= seminfo.semmni) {
785 error = EINVAL;
786 goto out;
787 }
788
789 semaptr = &sema[semid];
790 seq = IPCID_TO_SEQ(SCARG(uap, semid));
791 if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
792 semaptr->sem_perm._seq != seq) {
793 error = EINVAL;
794 goto out;
795 }
796
797 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_W))) {
798 SEM_PRINTF(("error = %d from ipaccess\n", error));
799 goto out;
800 }
801
802 if ((error = copyin(SCARG(uap, sops),
803 sops, nsops * sizeof(sops[0]))) != 0) {
804 SEM_PRINTF(("error = %d from copyin(%p, %p, %zd)\n", error,
805 SCARG(uap, sops), &sops, nsops * sizeof(sops[0])));
806 goto out;
807 }
808
809 for (i = 0; i < nsops; i++)
810 if (sops[i].sem_num >= semaptr->sem_nsems) {
811 error = EFBIG;
812 goto out;
813 }
814
815 /*
816 * Loop trying to satisfy the vector of requests.
817 * If we reach a point where we must wait, any requests already
818 * performed are rolled back and we go to sleep until some other
819 * process wakes us up. At this point, we start all over again.
820 *
821 * This ensures that from the perspective of other tasks, a set
822 * of requests is atomic (never partially satisfied).
823 */
824 do_undos = 0;
825
826 for (;;) {
827 do_wakeup = 0;
828
829 for (i = 0; i < nsops; i++) {
830 sopptr = &sops[i];
831 semptr = &semaptr->_sem_base[sopptr->sem_num];
832
833 SEM_PRINTF(("semop: semaptr=%p, sem_base=%p, "
834 "semptr=%p, sem[%d]=%d : op=%d, flag=%s\n",
835 semaptr, semaptr->_sem_base, semptr,
836 sopptr->sem_num, semptr->semval, sopptr->sem_op,
837 (sopptr->sem_flg & IPC_NOWAIT) ?
838 "nowait" : "wait"));
839
840 if (sopptr->sem_op < 0) {
841 if ((int)(semptr->semval +
842 sopptr->sem_op) < 0) {
843 SEM_PRINTF(("semop: "
844 "can't do it now\n"));
845 break;
846 } else {
847 semptr->semval += sopptr->sem_op;
848 if (semptr->semval == 0 &&
849 semptr->semzcnt > 0)
850 do_wakeup = 1;
851 }
852 if (sopptr->sem_flg & SEM_UNDO)
853 do_undos = 1;
854 } else if (sopptr->sem_op == 0) {
855 if (semptr->semval > 0) {
856 SEM_PRINTF(("semop: not zero now\n"));
857 break;
858 }
859 } else {
860 if (semptr->semncnt > 0)
861 do_wakeup = 1;
862 semptr->semval += sopptr->sem_op;
863 if (sopptr->sem_flg & SEM_UNDO)
864 do_undos = 1;
865 }
866 }
867
868 /*
869 * Did we get through the entire vector?
870 */
871 if (i >= nsops)
872 goto done;
873
874 /*
875 * No ... rollback anything that we've already done
876 */
877 SEM_PRINTF(("semop: rollback 0 through %d\n", i - 1));
878 while (i-- > 0)
879 semaptr->_sem_base[sops[i].sem_num].semval -=
880 sops[i].sem_op;
881
882 /*
883 * If the request that we couldn't satisfy has the
884 * NOWAIT flag set then return with EAGAIN.
885 */
886 if (sopptr->sem_flg & IPC_NOWAIT) {
887 error = EAGAIN;
888 goto out;
889 }
890
891 if (sopptr->sem_op == 0)
892 semptr->semzcnt++;
893 else
894 semptr->semncnt++;
895
896 sem_waiters++;
897 SEM_PRINTF(("semop: good night!\n"));
898 error = cv_wait_sig(&semcv[semid], &semlock);
899 SEM_PRINTF(("semop: good morning (error=%d)!\n", error));
900 sem_waiters--;
901
902 /* Notify reallocator, in case of such state */
903 if (sem_realloc_state)
904 cv_signal(&sem_realloc_cv);
905
906 /*
907 * Make sure that the semaphore still exists
908 */
909 if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
910 semaptr->sem_perm._seq != seq) {
911 error = EIDRM;
912 goto out;
913 }
914
915 /*
916 * The semaphore is still alive. Readjust the count of
917 * waiting processes.
918 */
919 semptr = &semaptr->_sem_base[sopptr->sem_num];
920 if (sopptr->sem_op == 0)
921 semptr->semzcnt--;
922 else
923 semptr->semncnt--;
924
925 /* Is it really morning, or was our sleep interrupted? */
926 if (error || sem_realloc_state) {
927 error = EINTR;
928 goto out;
929 }
930 SEM_PRINTF(("semop: good morning!\n"));
931 }
932
933 done:
934 /*
935 * Process any SEM_UNDO requests.
936 */
937 if (do_undos) {
938 for (i = 0; i < nsops; i++) {
939 /*
940 * We only need to deal with SEM_UNDO's for non-zero
941 * op's.
942 */
943 int adjval;
944
945 if ((sops[i].sem_flg & SEM_UNDO) == 0)
946 continue;
947 adjval = sops[i].sem_op;
948 if (adjval == 0)
949 continue;
950 error = semundo_adjust(p, &suptr, semid,
951 sops[i].sem_num, -adjval);
952 if (error == 0)
953 continue;
954
955 /*
956 * Oh-Oh! We ran out of either sem_undo's or undo's.
957 * Rollback the adjustments to this point and then
958 * rollback the semaphore ups and down so we can return
959 * with an error with all structures restored. We
960 * rollback the undo's in the exact reverse order that
961 * we applied them. This guarantees that we won't run
962 * out of space as we roll things back out.
963 */
964 while (i-- > 0) {
965 if ((sops[i].sem_flg & SEM_UNDO) == 0)
966 continue;
967 adjval = sops[i].sem_op;
968 if (adjval == 0)
969 continue;
970 if (semundo_adjust(p, &suptr, semid,
971 sops[i].sem_num, adjval) != 0)
972 panic("semop - can't undo undos");
973 }
974
975 for (i = 0; i < nsops; i++)
976 semaptr->_sem_base[sops[i].sem_num].semval -=
977 sops[i].sem_op;
978
979 SEM_PRINTF(("error = %d from semundo_adjust\n", error));
980 goto out;
981 } /* loop through the sops */
982 } /* if (do_undos) */
983
984 /* We're definitely done - set the sempid's */
985 for (i = 0; i < nsops; i++) {
986 sopptr = &sops[i];
987 semptr = &semaptr->_sem_base[sopptr->sem_num];
988 semptr->sempid = p->p_pid;
989 }
990
991 /* Update sem_otime */
992 semaptr->sem_otime = time_second;
993
994 /* Do a wakeup if any semaphore was up'd. */
995 if (do_wakeup) {
996 SEM_PRINTF(("semop: doing wakeup\n"));
997 cv_broadcast(&semcv[semid]);
998 SEM_PRINTF(("semop: back from wakeup\n"));
999 }
1000 SEM_PRINTF(("semop: done\n"));
1001 *retval = 0;
1002
1003 out:
1004 mutex_exit(&semlock);
1005 if (sops != small_sops) {
1006 KERNEL_LOCK(1, l); /* XXXSMP */
1007 kmem_free(sops, nsops * sizeof(*sops));
1008 KERNEL_UNLOCK_ONE(l); /* XXXSMP */
1009 }
1010 return error;
1011 }
1012
1013 /*
1014 * Go through the undo structures for this process and apply the
1015 * adjustments to semaphores.
1016 */
1017 /*ARGSUSED*/
1018 void
1019 semexit(struct proc *p, void *v)
1020 {
1021 struct sem_undo *suptr;
1022 struct sem_undo **supptr;
1023
1024 mutex_enter(&semlock);
1025
1026 /*
1027 * Go through the chain of undo vectors looking for one
1028 * associated with this process.
1029 */
1030
1031 for (supptr = &semu_list; (suptr = *supptr) != NULL;
1032 supptr = &suptr->un_next) {
1033 if (suptr->un_proc == p)
1034 break;
1035 }
1036
1037 /*
1038 * If there is no undo vector, skip to the end.
1039 */
1040
1041 if (suptr == NULL) {
1042 mutex_exit(&semlock);
1043 return;
1044 }
1045
1046 /*
1047 * We now have an undo vector for this process.
1048 */
1049
1050 SEM_PRINTF(("proc @%p has undo structure with %d entries\n", p,
1051 suptr->un_cnt));
1052
1053 /*
1054 * If there are any active undo elements then process them.
1055 */
1056 if (suptr->un_cnt > 0) {
1057 int ix;
1058
1059 for (ix = 0; ix < suptr->un_cnt; ix++) {
1060 int semid = suptr->un_ent[ix].un_id;
1061 int semnum = suptr->un_ent[ix].un_num;
1062 int adjval = suptr->un_ent[ix].un_adjval;
1063 struct semid_ds *semaptr;
1064
1065 semaptr = &sema[semid];
1066 if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0)
1067 panic("semexit - semid not allocated");
1068 if (semnum >= semaptr->sem_nsems)
1069 panic("semexit - semnum out of range");
1070
1071 SEM_PRINTF(("semexit: %p id=%d num=%d(adj=%d) ; "
1072 "sem=%d\n",
1073 suptr->un_proc, suptr->un_ent[ix].un_id,
1074 suptr->un_ent[ix].un_num,
1075 suptr->un_ent[ix].un_adjval,
1076 semaptr->_sem_base[semnum].semval));
1077
1078 if (adjval < 0 &&
1079 semaptr->_sem_base[semnum].semval < -adjval)
1080 semaptr->_sem_base[semnum].semval = 0;
1081 else
1082 semaptr->_sem_base[semnum].semval += adjval;
1083
1084 cv_broadcast(&semcv[semid]);
1085 SEM_PRINTF(("semexit: back from wakeup\n"));
1086 }
1087 }
1088
1089 /*
1090 * Deallocate the undo vector.
1091 */
1092 SEM_PRINTF(("removing vector\n"));
1093 suptr->un_proc = NULL;
1094 *supptr = suptr->un_next;
1095 mutex_exit(&semlock);
1096 }
1097
1098 /*
1099 * Sysctl initialization and nodes.
1100 */
1101
1102 static int
1103 sysctl_ipc_semmni(SYSCTLFN_ARGS)
1104 {
1105 int newsize, error;
1106 struct sysctlnode node;
1107 node = *rnode;
1108 node.sysctl_data = &newsize;
1109
1110 newsize = seminfo.semmni;
1111 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1112 if (error || newp == NULL)
1113 return error;
1114
1115 return semrealloc(newsize, seminfo.semmns, seminfo.semmnu);
1116 }
1117
1118 static int
1119 sysctl_ipc_semmns(SYSCTLFN_ARGS)
1120 {
1121 int newsize, error;
1122 struct sysctlnode node;
1123 node = *rnode;
1124 node.sysctl_data = &newsize;
1125
1126 newsize = seminfo.semmns;
1127 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1128 if (error || newp == NULL)
1129 return error;
1130
1131 return semrealloc(seminfo.semmni, newsize, seminfo.semmnu);
1132 }
1133
1134 static int
1135 sysctl_ipc_semmnu(SYSCTLFN_ARGS)
1136 {
1137 int newsize, error;
1138 struct sysctlnode node;
1139 node = *rnode;
1140 node.sysctl_data = &newsize;
1141
1142 newsize = seminfo.semmnu;
1143 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1144 if (error || newp == NULL)
1145 return error;
1146
1147 return semrealloc(seminfo.semmni, seminfo.semmns, newsize);
1148 }
1149
1150 SYSCTL_SETUP(sysctl_ipc_sem_setup, "sysctl kern.ipc subtree setup")
1151 {
1152 const struct sysctlnode *node = NULL;
1153
1154 sysctl_createv(clog, 0, NULL, NULL,
1155 CTLFLAG_PERMANENT,
1156 CTLTYPE_NODE, "kern", NULL,
1157 NULL, 0, NULL, 0,
1158 CTL_KERN, CTL_EOL);
1159 sysctl_createv(clog, 0, NULL, &node,
1160 CTLFLAG_PERMANENT,
1161 CTLTYPE_NODE, "ipc",
1162 SYSCTL_DESCR("SysV IPC options"),
1163 NULL, 0, NULL, 0,
1164 CTL_KERN, KERN_SYSVIPC, CTL_EOL);
1165
1166 if (node == NULL)
1167 return;
1168
1169 sysctl_createv(clog, 0, &node, NULL,
1170 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1171 CTLTYPE_INT, "semmni",
1172 SYSCTL_DESCR("Max number of number of semaphore identifiers"),
1173 sysctl_ipc_semmni, 0, &seminfo.semmni, 0,
1174 CTL_CREATE, CTL_EOL);
1175 sysctl_createv(clog, 0, &node, NULL,
1176 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1177 CTLTYPE_INT, "semmns",
1178 SYSCTL_DESCR("Max number of number of semaphores in system"),
1179 sysctl_ipc_semmns, 0, &seminfo.semmns, 0,
1180 CTL_CREATE, CTL_EOL);
1181 sysctl_createv(clog, 0, &node, NULL,
1182 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1183 CTLTYPE_INT, "semmnu",
1184 SYSCTL_DESCR("Max number of undo structures in system"),
1185 sysctl_ipc_semmnu, 0, &seminfo.semmnu, 0,
1186 CTL_CREATE, CTL_EOL);
1187 }
1188