Home | History | Annotate | Line # | Download | only in kern
sysv_sem.c revision 1.81
      1 /*	$NetBSD: sysv_sem.c,v 1.81 2008/04/25 11:21:18 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Implementation of SVID semaphores
     42  *
     43  * Author: Daniel Boulet
     44  *
     45  * This software is provided ``AS IS'' without any warranties of any kind.
     46  */
     47 
     48 #include <sys/cdefs.h>
     49 __KERNEL_RCSID(0, "$NetBSD: sysv_sem.c,v 1.81 2008/04/25 11:21:18 ad Exp $");
     50 
     51 #define SYSVSEM
     52 
     53 #include <sys/param.h>
     54 #include <sys/kernel.h>
     55 #include <sys/sem.h>
     56 #include <sys/sysctl.h>
     57 #include <sys/kmem.h>
     58 #include <sys/mount.h>		/* XXX for <sys/syscallargs.h> */
     59 #include <sys/syscallargs.h>
     60 #include <sys/kauth.h>
     61 
     62 /*
     63  * Memory areas:
     64  *  1st: Pool of semaphore identifiers
     65  *  2nd: Semaphores
     66  *  3rd: Conditional variables
     67  *  4th: Undo structures
     68  */
     69 struct semid_ds		*sema;
     70 static struct __sem	*sem;
     71 static kcondvar_t	*semcv;
     72 static int		*semu;
     73 
     74 static kmutex_t	semlock;
     75 static struct	sem_undo *semu_list;	/* list of active undo structures */
     76 static u_int	semtot = 0;		/* total number of semaphores */
     77 
     78 static u_int	sem_waiters = 0;	/* total number of semop waiters */
     79 static bool	sem_realloc_state;
     80 static kcondvar_t sem_realloc_cv;
     81 
     82 /* Macro to find a particular sem_undo vector */
     83 #define SEMU(s, ix)	((struct sem_undo *)(((long)s) + ix * seminfo.semusz))
     84 
     85 #ifdef SEM_DEBUG
     86 #define SEM_PRINTF(a) printf a
     87 #else
     88 #define SEM_PRINTF(a)
     89 #endif
     90 
     91 struct sem_undo *semu_alloc(struct proc *);
     92 int semundo_adjust(struct proc *, struct sem_undo **, int, int, int);
     93 void semundo_clear(int, int);
     94 
     95 void
     96 seminit(void)
     97 {
     98 	int i, sz;
     99 	vaddr_t v;
    100 
    101 	mutex_init(&semlock, MUTEX_DEFAULT, IPL_NONE);
    102 	cv_init(&sem_realloc_cv, "semrealc");
    103 	sem_realloc_state = false;
    104 
    105 	/* Allocate the wired memory for our structures */
    106 	sz = ALIGN(seminfo.semmni * sizeof(struct semid_ds)) +
    107 	    ALIGN(seminfo.semmns * sizeof(struct __sem)) +
    108 	    ALIGN(seminfo.semmni * sizeof(kcondvar_t)) +
    109 	    ALIGN(seminfo.semmnu * seminfo.semusz);
    110 	v = uvm_km_alloc(kernel_map, round_page(sz), 0,
    111 	    UVM_KMF_WIRED|UVM_KMF_ZERO);
    112 	if (v == 0)
    113 		panic("sysv_sem: cannot allocate memory");
    114 	sema = (void *)v;
    115 	sem = (void *)(ALIGN(sema) +
    116 	    seminfo.semmni * sizeof(struct semid_ds));
    117 	semcv = (void *)(ALIGN(sem) +
    118 	    seminfo.semmns * sizeof(struct __sem));
    119 	semu = (void *)(ALIGN(semcv) +
    120 	    seminfo.semmni * sizeof(kcondvar_t));
    121 
    122 	for (i = 0; i < seminfo.semmni; i++) {
    123 		sema[i]._sem_base = 0;
    124 		sema[i].sem_perm.mode = 0;
    125 		cv_init(&semcv[i], "semwait");
    126 	}
    127 	for (i = 0; i < seminfo.semmnu; i++) {
    128 		struct sem_undo *suptr = SEMU(semu, i);
    129 		suptr->un_proc = NULL;
    130 	}
    131 	semu_list = NULL;
    132 	exithook_establish(semexit, NULL);
    133 }
    134 
    135 static int
    136 semrealloc(int newsemmni, int newsemmns, int newsemmnu)
    137 {
    138 	struct semid_ds *new_sema, *old_sema;
    139 	struct __sem *new_sem;
    140 	struct sem_undo *new_semu_list, *suptr, *nsuptr;
    141 	int *new_semu;
    142 	kcondvar_t *new_semcv;
    143 	vaddr_t v;
    144 	int i, j, lsemid, nmnus, sz;
    145 
    146 	if (newsemmni < 1 || newsemmns < 1 || newsemmnu < 1)
    147 		return EINVAL;
    148 
    149 	/* Allocate the wired memory for our structures */
    150 	sz = ALIGN(newsemmni * sizeof(struct semid_ds)) +
    151 	    ALIGN(newsemmns * sizeof(struct __sem)) +
    152 	    ALIGN(newsemmni * sizeof(kcondvar_t)) +
    153 	    ALIGN(newsemmnu * seminfo.semusz);
    154 	v = uvm_km_alloc(kernel_map, round_page(sz), 0,
    155 	    UVM_KMF_WIRED|UVM_KMF_ZERO);
    156 	if (v == 0)
    157 		return ENOMEM;
    158 
    159 	mutex_enter(&semlock);
    160 	if (sem_realloc_state) {
    161 		mutex_exit(&semlock);
    162 		uvm_km_free(kernel_map, v, sz, UVM_KMF_WIRED);
    163 		return EBUSY;
    164 	}
    165 	sem_realloc_state = true;
    166 	if (sem_waiters) {
    167 		/*
    168 		 * Mark reallocation state, wake-up all waiters,
    169 		 * and wait while they will all exit.
    170 		 */
    171 		for (i = 0; i < seminfo.semmni; i++)
    172 			cv_broadcast(&semcv[i]);
    173 		while (sem_waiters)
    174 			cv_wait(&sem_realloc_cv, &semlock);
    175 	}
    176 	old_sema = sema;
    177 
    178 	/* Get the number of last slot */
    179 	lsemid = 0;
    180 	for (i = 0; i < seminfo.semmni; i++)
    181 		if (sema[i].sem_perm.mode & SEM_ALLOC)
    182 			lsemid = i;
    183 
    184 	/* Get the number of currently used undo structures */
    185 	nmnus = 0;
    186 	for (i = 0; i < seminfo.semmnu; i++) {
    187 		suptr = SEMU(semu, i);
    188 		if (suptr->un_proc == NULL)
    189 			continue;
    190 		nmnus++;
    191 	}
    192 
    193 	/* We cannot reallocate less memory than we use */
    194 	if (lsemid >= newsemmni || semtot > newsemmns || nmnus > newsemmnu) {
    195 		mutex_exit(&semlock);
    196 		uvm_km_free(kernel_map, v, sz, UVM_KMF_WIRED);
    197 		return EBUSY;
    198 	}
    199 
    200 	new_sema = (void *)v;
    201 	new_sem = (void *)(ALIGN(new_sema) +
    202 	    newsemmni * sizeof(struct semid_ds));
    203 	new_semcv = (void *)(ALIGN(new_sem) +
    204 	    newsemmns * sizeof(struct __sem));
    205 	new_semu = (void *)(ALIGN(new_semcv) +
    206 	    newsemmni * sizeof(kcondvar_t));
    207 
    208 	/* Initialize all semaphore identifiers and condvars */
    209 	for (i = 0; i < newsemmni; i++) {
    210 		new_sema[i]._sem_base = 0;
    211 		new_sema[i].sem_perm.mode = 0;
    212 		cv_init(&new_semcv[i], "semwait");
    213 	}
    214 	for (i = 0; i < newsemmnu; i++) {
    215 		nsuptr = SEMU(new_semu, i);
    216 		nsuptr->un_proc = NULL;
    217 	}
    218 
    219 	/*
    220 	 * Copy all identifiers, semaphores and list of the
    221 	 * undo structures to the new memory allocation.
    222 	 */
    223 	j = 0;
    224 	for (i = 0; i <= lsemid; i++) {
    225 		if ((sema[i].sem_perm.mode & SEM_ALLOC) == 0)
    226 			continue;
    227 		memcpy(&new_sema[i], &sema[i], sizeof(struct semid_ds));
    228 		new_sema[i]._sem_base = &new_sem[j];
    229 		memcpy(new_sema[i]._sem_base, sema[i]._sem_base,
    230 		    (sizeof(struct __sem) * sema[i].sem_nsems));
    231 		j += sema[i].sem_nsems;
    232 	}
    233 	KASSERT(j == semtot);
    234 
    235 	j = 0;
    236 	new_semu_list = NULL;
    237 	for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next) {
    238 		KASSERT(j < newsemmnu);
    239 		nsuptr = SEMU(new_semu, j);
    240 		memcpy(nsuptr, suptr, SEMUSZ);
    241 		nsuptr->un_next = new_semu_list;
    242 		new_semu_list = nsuptr;
    243 		j++;
    244 	}
    245 
    246 	for (i = 0; i < seminfo.semmni; i++) {
    247 		KASSERT(cv_has_waiters(&semcv[i]) == false);
    248 		cv_destroy(&semcv[i]);
    249 	}
    250 
    251 	sz = ALIGN(seminfo.semmni * sizeof(struct semid_ds)) +
    252 	    ALIGN(seminfo.semmns * sizeof(struct __sem)) +
    253 	    ALIGN(seminfo.semmni * sizeof(kcondvar_t)) +
    254 	    ALIGN(seminfo.semmnu * seminfo.semusz);
    255 
    256 	/* Set the pointers and update the new values */
    257 	sema = new_sema;
    258 	sem = new_sem;
    259 	semcv = new_semcv;
    260 	semu = new_semu;
    261 	semu_list = new_semu_list;
    262 
    263 	seminfo.semmni = newsemmni;
    264 	seminfo.semmns = newsemmns;
    265 	seminfo.semmnu = newsemmnu;
    266 
    267 	/* Reallocation completed - notify all waiters, if any */
    268 	sem_realloc_state = false;
    269 	cv_broadcast(&sem_realloc_cv);
    270 	mutex_exit(&semlock);
    271 
    272 	uvm_km_free(kernel_map, (vaddr_t)old_sema, sz, UVM_KMF_WIRED);
    273 	return 0;
    274 }
    275 
    276 /*
    277  * Placebo.
    278  */
    279 
    280 int
    281 sys_semconfig(struct lwp *l, const struct sys_semconfig_args *uap, register_t *retval)
    282 {
    283 
    284 	*retval = 0;
    285 	return 0;
    286 }
    287 
    288 /*
    289  * Allocate a new sem_undo structure for a process
    290  * (returns ptr to structure or NULL if no more room)
    291  */
    292 
    293 struct sem_undo *
    294 semu_alloc(struct proc *p)
    295 {
    296 	int i;
    297 	struct sem_undo *suptr;
    298 	struct sem_undo **supptr;
    299 	int attempt;
    300 
    301 	KASSERT(mutex_owned(&semlock));
    302 
    303 	/*
    304 	 * Try twice to allocate something.
    305 	 * (we'll purge any empty structures after the first pass so
    306 	 * two passes are always enough)
    307 	 */
    308 
    309 	for (attempt = 0; attempt < 2; attempt++) {
    310 		/*
    311 		 * Look for a free structure.
    312 		 * Fill it in and return it if we find one.
    313 		 */
    314 
    315 		for (i = 0; i < seminfo.semmnu; i++) {
    316 			suptr = SEMU(semu, i);
    317 			if (suptr->un_proc == NULL) {
    318 				suptr->un_next = semu_list;
    319 				semu_list = suptr;
    320 				suptr->un_cnt = 0;
    321 				suptr->un_proc = p;
    322 				return (suptr);
    323 			}
    324 		}
    325 
    326 		/*
    327 		 * We didn't find a free one, if this is the first attempt
    328 		 * then try to free some structures.
    329 		 */
    330 
    331 		if (attempt == 0) {
    332 			/* All the structures are in use - try to free some */
    333 			int did_something = 0;
    334 
    335 			supptr = &semu_list;
    336 			while ((suptr = *supptr) != NULL) {
    337 				if (suptr->un_cnt == 0)  {
    338 					suptr->un_proc = NULL;
    339 					*supptr = suptr->un_next;
    340 					did_something = 1;
    341 				} else
    342 					supptr = &suptr->un_next;
    343 			}
    344 
    345 			/* If we didn't free anything then just give-up */
    346 			if (!did_something)
    347 				return (NULL);
    348 		} else {
    349 			/*
    350 			 * The second pass failed even though we freed
    351 			 * something after the first pass!
    352 			 * This is IMPOSSIBLE!
    353 			 */
    354 			panic("semu_alloc - second attempt failed");
    355 		}
    356 	}
    357 	return NULL;
    358 }
    359 
    360 /*
    361  * Adjust a particular entry for a particular proc
    362  */
    363 
    364 int
    365 semundo_adjust(struct proc *p, struct sem_undo **supptr, int semid, int semnum,
    366     int adjval)
    367 {
    368 	struct sem_undo *suptr;
    369 	struct undo *sunptr;
    370 	int i;
    371 
    372 	KASSERT(mutex_owned(&semlock));
    373 
    374 	/*
    375 	 * Look for and remember the sem_undo if the caller doesn't
    376 	 * provide it
    377 	 */
    378 
    379 	suptr = *supptr;
    380 	if (suptr == NULL) {
    381 		for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next)
    382 			if (suptr->un_proc == p)
    383 				break;
    384 
    385 		if (suptr == NULL) {
    386 			suptr = semu_alloc(p);
    387 			if (suptr == NULL)
    388 				return (ENOSPC);
    389 		}
    390 		*supptr = suptr;
    391 	}
    392 
    393 	/*
    394 	 * Look for the requested entry and adjust it (delete if
    395 	 * adjval becomes 0).
    396 	 */
    397 	sunptr = &suptr->un_ent[0];
    398 	for (i = 0; i < suptr->un_cnt; i++, sunptr++) {
    399 		if (sunptr->un_id != semid || sunptr->un_num != semnum)
    400 			continue;
    401 		sunptr->un_adjval += adjval;
    402 		if (sunptr->un_adjval == 0) {
    403 			suptr->un_cnt--;
    404 			if (i < suptr->un_cnt)
    405 				suptr->un_ent[i] =
    406 				    suptr->un_ent[suptr->un_cnt];
    407 		}
    408 		return (0);
    409 	}
    410 
    411 	/* Didn't find the right entry - create it */
    412 	if (suptr->un_cnt == SEMUME)
    413 		return (EINVAL);
    414 
    415 	sunptr = &suptr->un_ent[suptr->un_cnt];
    416 	suptr->un_cnt++;
    417 	sunptr->un_adjval = adjval;
    418 	sunptr->un_id = semid;
    419 	sunptr->un_num = semnum;
    420 	return (0);
    421 }
    422 
    423 void
    424 semundo_clear(int semid, int semnum)
    425 {
    426 	struct sem_undo *suptr;
    427 	struct undo *sunptr, *sunend;
    428 
    429 	KASSERT(mutex_owned(&semlock));
    430 
    431 	for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next)
    432 		for (sunptr = &suptr->un_ent[0],
    433 		    sunend = sunptr + suptr->un_cnt; sunptr < sunend;) {
    434 			if (sunptr->un_id == semid) {
    435 				if (semnum == -1 || sunptr->un_num == semnum) {
    436 					suptr->un_cnt--;
    437 					sunend--;
    438 					if (sunptr != sunend)
    439 						*sunptr = *sunend;
    440 					if (semnum != -1)
    441 						break;
    442 					else
    443 						continue;
    444 				}
    445 			}
    446 			sunptr++;
    447 		}
    448 }
    449 
    450 int
    451 sys_____semctl13(struct lwp *l, const struct sys_____semctl13_args *uap, register_t *retval)
    452 {
    453 	/* {
    454 		syscallarg(int) semid;
    455 		syscallarg(int) semnum;
    456 		syscallarg(int) cmd;
    457 		syscallarg(union __semun *) arg;
    458 	} */
    459 	struct semid_ds sembuf;
    460 	int cmd, error;
    461 	void *pass_arg;
    462 	union __semun karg;
    463 
    464 	cmd = SCARG(uap, cmd);
    465 
    466 	pass_arg = get_semctl_arg(cmd, &sembuf, &karg);
    467 
    468 	if (pass_arg) {
    469 		error = copyin(SCARG(uap, arg), &karg, sizeof(karg));
    470 		if (error)
    471 			return error;
    472 		if (cmd == IPC_SET) {
    473 			error = copyin(karg.buf, &sembuf, sizeof(sembuf));
    474 			if (error)
    475 				return (error);
    476 		}
    477 	}
    478 
    479 	error = semctl1(l, SCARG(uap, semid), SCARG(uap, semnum), cmd,
    480 	    pass_arg, retval);
    481 
    482 	if (error == 0 && cmd == IPC_STAT)
    483 		error = copyout(&sembuf, karg.buf, sizeof(sembuf));
    484 
    485 	return (error);
    486 }
    487 
    488 int
    489 semctl1(struct lwp *l, int semid, int semnum, int cmd, void *v,
    490     register_t *retval)
    491 {
    492 	kauth_cred_t cred = l->l_cred;
    493 	union __semun *arg = v;
    494 	struct semid_ds *sembuf = v, *semaptr;
    495 	int i, error, ix;
    496 
    497 	SEM_PRINTF(("call to semctl(%d, %d, %d, %p)\n",
    498 	    semid, semnum, cmd, v));
    499 
    500 	mutex_enter(&semlock);
    501 
    502 	ix = IPCID_TO_IX(semid);
    503 	if (ix < 0 || ix >= seminfo.semmni) {
    504 		mutex_exit(&semlock);
    505 		return (EINVAL);
    506 	}
    507 
    508 	semaptr = &sema[ix];
    509 	if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
    510 	    semaptr->sem_perm._seq != IPCID_TO_SEQ(semid)) {
    511 		mutex_exit(&semlock);
    512 		return (EINVAL);
    513 	}
    514 
    515 	switch (cmd) {
    516 	case IPC_RMID:
    517 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_M)) != 0)
    518 			break;
    519 		semaptr->sem_perm.cuid = kauth_cred_geteuid(cred);
    520 		semaptr->sem_perm.uid = kauth_cred_geteuid(cred);
    521 		semtot -= semaptr->sem_nsems;
    522 		for (i = semaptr->_sem_base - sem; i < semtot; i++)
    523 			sem[i] = sem[i + semaptr->sem_nsems];
    524 		for (i = 0; i < seminfo.semmni; i++) {
    525 			if ((sema[i].sem_perm.mode & SEM_ALLOC) &&
    526 			    sema[i]._sem_base > semaptr->_sem_base)
    527 				sema[i]._sem_base -= semaptr->sem_nsems;
    528 		}
    529 		semaptr->sem_perm.mode = 0;
    530 		semundo_clear(ix, -1);
    531 		cv_broadcast(&semcv[ix]);
    532 		break;
    533 
    534 	case IPC_SET:
    535 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_M)))
    536 			break;
    537 		KASSERT(sembuf != NULL);
    538 		semaptr->sem_perm.uid = sembuf->sem_perm.uid;
    539 		semaptr->sem_perm.gid = sembuf->sem_perm.gid;
    540 		semaptr->sem_perm.mode = (semaptr->sem_perm.mode & ~0777) |
    541 		    (sembuf->sem_perm.mode & 0777);
    542 		semaptr->sem_ctime = time_second;
    543 		break;
    544 
    545 	case IPC_STAT:
    546 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
    547 			break;
    548 		KASSERT(sembuf != NULL);
    549 		memcpy(sembuf, semaptr, sizeof(struct semid_ds));
    550 		sembuf->sem_perm.mode &= 0777;
    551 		break;
    552 
    553 	case GETNCNT:
    554 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
    555 			break;
    556 		if (semnum < 0 || semnum >= semaptr->sem_nsems) {
    557 			error = EINVAL;
    558 			break;
    559 		}
    560 		*retval = semaptr->_sem_base[semnum].semncnt;
    561 		break;
    562 
    563 	case GETPID:
    564 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
    565 			break;
    566 		if (semnum < 0 || semnum >= semaptr->sem_nsems) {
    567 			error = EINVAL;
    568 			break;
    569 		}
    570 		*retval = semaptr->_sem_base[semnum].sempid;
    571 		break;
    572 
    573 	case GETVAL:
    574 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
    575 			break;
    576 		if (semnum < 0 || semnum >= semaptr->sem_nsems) {
    577 			error = EINVAL;
    578 			break;
    579 		}
    580 		*retval = semaptr->_sem_base[semnum].semval;
    581 		break;
    582 
    583 	case GETALL:
    584 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
    585 			break;
    586 		KASSERT(arg != NULL);
    587 		for (i = 0; i < semaptr->sem_nsems; i++) {
    588 			error = copyout(&semaptr->_sem_base[i].semval,
    589 			    &arg->array[i], sizeof(arg->array[i]));
    590 			if (error != 0)
    591 				break;
    592 		}
    593 		break;
    594 
    595 	case GETZCNT:
    596 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
    597 			break;
    598 		if (semnum < 0 || semnum >= semaptr->sem_nsems) {
    599 			error = EINVAL;
    600 			break;
    601 		}
    602 		*retval = semaptr->_sem_base[semnum].semzcnt;
    603 		break;
    604 
    605 	case SETVAL:
    606 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_W)))
    607 			break;
    608 		if (semnum < 0 || semnum >= semaptr->sem_nsems) {
    609 			error = EINVAL;
    610 			break;
    611 		}
    612 		KASSERT(arg != NULL);
    613 		semaptr->_sem_base[semnum].semval = arg->val;
    614 		semundo_clear(ix, semnum);
    615 		cv_broadcast(&semcv[ix]);
    616 		break;
    617 
    618 	case SETALL:
    619 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_W)))
    620 			break;
    621 		KASSERT(arg != NULL);
    622 		for (i = 0; i < semaptr->sem_nsems; i++) {
    623 			error = copyin(&arg->array[i],
    624 			    &semaptr->_sem_base[i].semval,
    625 			    sizeof(arg->array[i]));
    626 			if (error != 0)
    627 				break;
    628 		}
    629 		semundo_clear(ix, -1);
    630 		cv_broadcast(&semcv[ix]);
    631 		break;
    632 
    633 	default:
    634 		error = EINVAL;
    635 		break;
    636 	}
    637 
    638 	mutex_exit(&semlock);
    639 	return (error);
    640 }
    641 
    642 int
    643 sys_semget(struct lwp *l, const struct sys_semget_args *uap, register_t *retval)
    644 {
    645 	/* {
    646 		syscallarg(key_t) key;
    647 		syscallarg(int) nsems;
    648 		syscallarg(int) semflg;
    649 	} */
    650 	int semid, error = 0;
    651 	int key = SCARG(uap, key);
    652 	int nsems = SCARG(uap, nsems);
    653 	int semflg = SCARG(uap, semflg);
    654 	kauth_cred_t cred = l->l_cred;
    655 
    656 	SEM_PRINTF(("semget(0x%x, %d, 0%o)\n", key, nsems, semflg));
    657 
    658 	mutex_enter(&semlock);
    659 
    660 	if (key != IPC_PRIVATE) {
    661 		for (semid = 0; semid < seminfo.semmni; semid++) {
    662 			if ((sema[semid].sem_perm.mode & SEM_ALLOC) &&
    663 			    sema[semid].sem_perm._key == key)
    664 				break;
    665 		}
    666 		if (semid < seminfo.semmni) {
    667 			SEM_PRINTF(("found public key\n"));
    668 			if ((error = ipcperm(cred, &sema[semid].sem_perm,
    669 			    semflg & 0700)))
    670 			    	goto out;
    671 			if (nsems > 0 && sema[semid].sem_nsems < nsems) {
    672 				SEM_PRINTF(("too small\n"));
    673 				error = EINVAL;
    674 				goto out;
    675 			}
    676 			if ((semflg & IPC_CREAT) && (semflg & IPC_EXCL)) {
    677 				SEM_PRINTF(("not exclusive\n"));
    678 				error = EEXIST;
    679 				goto out;
    680 			}
    681 			goto found;
    682 		}
    683 	}
    684 
    685 	SEM_PRINTF(("need to allocate the semid_ds\n"));
    686 	if (key == IPC_PRIVATE || (semflg & IPC_CREAT)) {
    687 		if (nsems <= 0 || nsems > seminfo.semmsl) {
    688 			SEM_PRINTF(("nsems out of range (0<%d<=%d)\n", nsems,
    689 			    seminfo.semmsl));
    690 			error = EINVAL;
    691 			goto out;
    692 		}
    693 		if (nsems > seminfo.semmns - semtot) {
    694 			SEM_PRINTF(("not enough semaphores left "
    695 			    "(need %d, got %d)\n",
    696 			    nsems, seminfo.semmns - semtot));
    697 			error = ENOSPC;
    698 			goto out;
    699 		}
    700 		for (semid = 0; semid < seminfo.semmni; semid++) {
    701 			if ((sema[semid].sem_perm.mode & SEM_ALLOC) == 0)
    702 				break;
    703 		}
    704 		if (semid == seminfo.semmni) {
    705 			SEM_PRINTF(("no more semid_ds's available\n"));
    706 			error = ENOSPC;
    707 			goto out;
    708 		}
    709 		SEM_PRINTF(("semid %d is available\n", semid));
    710 		sema[semid].sem_perm._key = key;
    711 		sema[semid].sem_perm.cuid = kauth_cred_geteuid(cred);
    712 		sema[semid].sem_perm.uid = kauth_cred_geteuid(cred);
    713 		sema[semid].sem_perm.cgid = kauth_cred_getegid(cred);
    714 		sema[semid].sem_perm.gid = kauth_cred_getegid(cred);
    715 		sema[semid].sem_perm.mode = (semflg & 0777) | SEM_ALLOC;
    716 		sema[semid].sem_perm._seq =
    717 		    (sema[semid].sem_perm._seq + 1) & 0x7fff;
    718 		sema[semid].sem_nsems = nsems;
    719 		sema[semid].sem_otime = 0;
    720 		sema[semid].sem_ctime = time_second;
    721 		sema[semid]._sem_base = &sem[semtot];
    722 		semtot += nsems;
    723 		memset(sema[semid]._sem_base, 0,
    724 		    sizeof(sema[semid]._sem_base[0]) * nsems);
    725 		SEM_PRINTF(("sembase = %p, next = %p\n", sema[semid]._sem_base,
    726 		    &sem[semtot]));
    727 	} else {
    728 		SEM_PRINTF(("didn't find it and wasn't asked to create it\n"));
    729 		error = ENOENT;
    730 		goto out;
    731 	}
    732 
    733  found:
    734 	*retval = IXSEQ_TO_IPCID(semid, sema[semid].sem_perm);
    735  out:
    736 	mutex_exit(&semlock);
    737 	return (error);
    738 }
    739 
    740 #define SMALL_SOPS 8
    741 
    742 int
    743 sys_semop(struct lwp *l, const struct sys_semop_args *uap, register_t *retval)
    744 {
    745 	/* {
    746 		syscallarg(int) semid;
    747 		syscallarg(struct sembuf *) sops;
    748 		syscallarg(size_t) nsops;
    749 	} */
    750 	struct proc *p = l->l_proc;
    751 	int semid = SCARG(uap, semid), seq;
    752 	size_t nsops = SCARG(uap, nsops);
    753 	struct sembuf small_sops[SMALL_SOPS];
    754 	struct sembuf *sops;
    755 	struct semid_ds *semaptr;
    756 	struct sembuf *sopptr = NULL;
    757 	struct __sem *semptr = NULL;
    758 	struct sem_undo *suptr = NULL;
    759 	kauth_cred_t cred = l->l_cred;
    760 	int i, error;
    761 	int do_wakeup, do_undos;
    762 
    763 	SEM_PRINTF(("call to semop(%d, %p, %zd)\n", semid, SCARG(uap,sops), nsops));
    764 
    765 	if (__predict_false((p->p_flag & PK_SYSVSEM) == 0)) {
    766 		mutex_enter(p->p_lock);
    767 		p->p_flag |= PK_SYSVSEM;
    768 		mutex_exit(p->p_lock);
    769 	}
    770 
    771 restart:
    772 	if (nsops <= SMALL_SOPS) {
    773 		sops = small_sops;
    774 	} else if (nsops <= seminfo.semopm) {
    775 		sops = kmem_alloc(nsops * sizeof(*sops), KM_SLEEP);
    776 	} else {
    777 		SEM_PRINTF(("too many sops (max=%d, nsops=%zd)\n",
    778 		    seminfo.semopm, nsops));
    779 		return (E2BIG);
    780 	}
    781 
    782 	error = copyin(SCARG(uap, sops), sops, nsops * sizeof(sops[0]));
    783 	if (error) {
    784 		SEM_PRINTF(("error = %d from copyin(%p, %p, %zd)\n", error,
    785 		    SCARG(uap, sops), &sops, nsops * sizeof(sops[0])));
    786 		if (sops != small_sops)
    787 			kmem_free(sops, nsops * sizeof(*sops));
    788 		return error;
    789 	}
    790 
    791 	mutex_enter(&semlock);
    792 	/* In case of reallocation, we will wait for completion */
    793 	while (__predict_false(sem_realloc_state))
    794 		cv_wait(&sem_realloc_cv, &semlock);
    795 
    796 	semid = IPCID_TO_IX(semid);	/* Convert back to zero origin */
    797 	if (semid < 0 || semid >= seminfo.semmni) {
    798 		error = EINVAL;
    799 		goto out;
    800 	}
    801 
    802 	semaptr = &sema[semid];
    803 	seq = IPCID_TO_SEQ(SCARG(uap, semid));
    804 	if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
    805 	    semaptr->sem_perm._seq != seq) {
    806 		error = EINVAL;
    807 		goto out;
    808 	}
    809 
    810 	if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_W))) {
    811 		SEM_PRINTF(("error = %d from ipaccess\n", error));
    812 		goto out;
    813 	}
    814 
    815 	for (i = 0; i < nsops; i++)
    816 		if (sops[i].sem_num >= semaptr->sem_nsems) {
    817 			error = EFBIG;
    818 			goto out;
    819 		}
    820 
    821 	/*
    822 	 * Loop trying to satisfy the vector of requests.
    823 	 * If we reach a point where we must wait, any requests already
    824 	 * performed are rolled back and we go to sleep until some other
    825 	 * process wakes us up.  At this point, we start all over again.
    826 	 *
    827 	 * This ensures that from the perspective of other tasks, a set
    828 	 * of requests is atomic (never partially satisfied).
    829 	 */
    830 	do_undos = 0;
    831 
    832 	for (;;) {
    833 		do_wakeup = 0;
    834 
    835 		for (i = 0; i < nsops; i++) {
    836 			sopptr = &sops[i];
    837 			semptr = &semaptr->_sem_base[sopptr->sem_num];
    838 
    839 			SEM_PRINTF(("semop:  semaptr=%p, sem_base=%p, "
    840 			    "semptr=%p, sem[%d]=%d : op=%d, flag=%s\n",
    841 			    semaptr, semaptr->_sem_base, semptr,
    842 			    sopptr->sem_num, semptr->semval, sopptr->sem_op,
    843 			    (sopptr->sem_flg & IPC_NOWAIT) ?
    844 			    "nowait" : "wait"));
    845 
    846 			if (sopptr->sem_op < 0) {
    847 				if ((int)(semptr->semval +
    848 				    sopptr->sem_op) < 0) {
    849 					SEM_PRINTF(("semop:  "
    850 					    "can't do it now\n"));
    851 					break;
    852 				} else {
    853 					semptr->semval += sopptr->sem_op;
    854 					if (semptr->semval == 0 &&
    855 					    semptr->semzcnt > 0)
    856 						do_wakeup = 1;
    857 				}
    858 				if (sopptr->sem_flg & SEM_UNDO)
    859 					do_undos = 1;
    860 			} else if (sopptr->sem_op == 0) {
    861 				if (semptr->semval > 0) {
    862 					SEM_PRINTF(("semop:  not zero now\n"));
    863 					break;
    864 				}
    865 			} else {
    866 				if (semptr->semncnt > 0)
    867 					do_wakeup = 1;
    868 				semptr->semval += sopptr->sem_op;
    869 				if (sopptr->sem_flg & SEM_UNDO)
    870 					do_undos = 1;
    871 			}
    872 		}
    873 
    874 		/*
    875 		 * Did we get through the entire vector?
    876 		 */
    877 		if (i >= nsops)
    878 			goto done;
    879 
    880 		/*
    881 		 * No ... rollback anything that we've already done
    882 		 */
    883 		SEM_PRINTF(("semop:  rollback 0 through %d\n", i - 1));
    884 		while (i-- > 0)
    885 			semaptr->_sem_base[sops[i].sem_num].semval -=
    886 			    sops[i].sem_op;
    887 
    888 		/*
    889 		 * If the request that we couldn't satisfy has the
    890 		 * NOWAIT flag set then return with EAGAIN.
    891 		 */
    892 		if (sopptr->sem_flg & IPC_NOWAIT) {
    893 			error = EAGAIN;
    894 			goto out;
    895 		}
    896 
    897 		if (sopptr->sem_op == 0)
    898 			semptr->semzcnt++;
    899 		else
    900 			semptr->semncnt++;
    901 
    902 		sem_waiters++;
    903 		SEM_PRINTF(("semop:  good night!\n"));
    904 		error = cv_wait_sig(&semcv[semid], &semlock);
    905 		SEM_PRINTF(("semop:  good morning (error=%d)!\n", error));
    906 		sem_waiters--;
    907 
    908 		/* Notify reallocator, if it is waiting */
    909 		cv_broadcast(&sem_realloc_cv);
    910 
    911 		/*
    912 		 * Make sure that the semaphore still exists
    913 		 */
    914 		if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
    915 		    semaptr->sem_perm._seq != seq) {
    916 			error = EIDRM;
    917 			goto out;
    918 		}
    919 
    920 		/*
    921 		 * The semaphore is still alive.  Readjust the count of
    922 		 * waiting processes.
    923 		 */
    924 		semptr = &semaptr->_sem_base[sopptr->sem_num];
    925 		if (sopptr->sem_op == 0)
    926 			semptr->semzcnt--;
    927 		else
    928 			semptr->semncnt--;
    929 
    930 		/* In case of such state, restart the call */
    931 		if (sem_realloc_state) {
    932 			mutex_exit(&semlock);
    933 			goto restart;
    934 		}
    935 
    936 		/* Is it really morning, or was our sleep interrupted? */
    937 		if (error != 0) {
    938 			error = EINTR;
    939 			goto out;
    940 		}
    941 		SEM_PRINTF(("semop:  good morning!\n"));
    942 	}
    943 
    944 done:
    945 	/*
    946 	 * Process any SEM_UNDO requests.
    947 	 */
    948 	if (do_undos) {
    949 		for (i = 0; i < nsops; i++) {
    950 			/*
    951 			 * We only need to deal with SEM_UNDO's for non-zero
    952 			 * op's.
    953 			 */
    954 			int adjval;
    955 
    956 			if ((sops[i].sem_flg & SEM_UNDO) == 0)
    957 				continue;
    958 			adjval = sops[i].sem_op;
    959 			if (adjval == 0)
    960 				continue;
    961 			error = semundo_adjust(p, &suptr, semid,
    962 			    sops[i].sem_num, -adjval);
    963 			if (error == 0)
    964 				continue;
    965 
    966 			/*
    967 			 * Oh-Oh!  We ran out of either sem_undo's or undo's.
    968 			 * Rollback the adjustments to this point and then
    969 			 * rollback the semaphore ups and down so we can return
    970 			 * with an error with all structures restored.  We
    971 			 * rollback the undo's in the exact reverse order that
    972 			 * we applied them.  This guarantees that we won't run
    973 			 * out of space as we roll things back out.
    974 			 */
    975 			while (i-- > 0) {
    976 				if ((sops[i].sem_flg & SEM_UNDO) == 0)
    977 					continue;
    978 				adjval = sops[i].sem_op;
    979 				if (adjval == 0)
    980 					continue;
    981 				if (semundo_adjust(p, &suptr, semid,
    982 				    sops[i].sem_num, adjval) != 0)
    983 					panic("semop - can't undo undos");
    984 			}
    985 
    986 			for (i = 0; i < nsops; i++)
    987 				semaptr->_sem_base[sops[i].sem_num].semval -=
    988 				    sops[i].sem_op;
    989 
    990 			SEM_PRINTF(("error = %d from semundo_adjust\n", error));
    991 			goto out;
    992 		} /* loop through the sops */
    993 	} /* if (do_undos) */
    994 
    995 	/* We're definitely done - set the sempid's */
    996 	for (i = 0; i < nsops; i++) {
    997 		sopptr = &sops[i];
    998 		semptr = &semaptr->_sem_base[sopptr->sem_num];
    999 		semptr->sempid = p->p_pid;
   1000 	}
   1001 
   1002 	/* Update sem_otime */
   1003 	semaptr->sem_otime = time_second;
   1004 
   1005 	/* Do a wakeup if any semaphore was up'd. */
   1006 	if (do_wakeup) {
   1007 		SEM_PRINTF(("semop:  doing wakeup\n"));
   1008 		cv_broadcast(&semcv[semid]);
   1009 		SEM_PRINTF(("semop:  back from wakeup\n"));
   1010 	}
   1011 	SEM_PRINTF(("semop:  done\n"));
   1012 	*retval = 0;
   1013 
   1014  out:
   1015 	mutex_exit(&semlock);
   1016 	if (sops != small_sops)
   1017 		kmem_free(sops, nsops * sizeof(*sops));
   1018 	return error;
   1019 }
   1020 
   1021 /*
   1022  * Go through the undo structures for this process and apply the
   1023  * adjustments to semaphores.
   1024  */
   1025 /*ARGSUSED*/
   1026 void
   1027 semexit(struct proc *p, void *v)
   1028 {
   1029 	struct sem_undo *suptr;
   1030 	struct sem_undo **supptr;
   1031 
   1032 	if ((p->p_flag & PK_SYSVSEM) == 0)
   1033 		return;
   1034 
   1035 	mutex_enter(&semlock);
   1036 
   1037 	/*
   1038 	 * Go through the chain of undo vectors looking for one
   1039 	 * associated with this process.
   1040 	 */
   1041 
   1042 	for (supptr = &semu_list; (suptr = *supptr) != NULL;
   1043 	    supptr = &suptr->un_next) {
   1044 		if (suptr->un_proc == p)
   1045 			break;
   1046 	}
   1047 
   1048 	/*
   1049 	 * If there is no undo vector, skip to the end.
   1050 	 */
   1051 
   1052 	if (suptr == NULL) {
   1053 		mutex_exit(&semlock);
   1054 		return;
   1055 	}
   1056 
   1057 	/*
   1058 	 * We now have an undo vector for this process.
   1059 	 */
   1060 
   1061 	SEM_PRINTF(("proc @%p has undo structure with %d entries\n", p,
   1062 	    suptr->un_cnt));
   1063 
   1064 	/*
   1065 	 * If there are any active undo elements then process them.
   1066 	 */
   1067 	if (suptr->un_cnt > 0) {
   1068 		int ix;
   1069 
   1070 		for (ix = 0; ix < suptr->un_cnt; ix++) {
   1071 			int semid = suptr->un_ent[ix].un_id;
   1072 			int semnum = suptr->un_ent[ix].un_num;
   1073 			int adjval = suptr->un_ent[ix].un_adjval;
   1074 			struct semid_ds *semaptr;
   1075 
   1076 			semaptr = &sema[semid];
   1077 			if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0)
   1078 				panic("semexit - semid not allocated");
   1079 			if (semnum >= semaptr->sem_nsems)
   1080 				panic("semexit - semnum out of range");
   1081 
   1082 			SEM_PRINTF(("semexit:  %p id=%d num=%d(adj=%d) ; "
   1083 			    "sem=%d\n",
   1084 			    suptr->un_proc, suptr->un_ent[ix].un_id,
   1085 			    suptr->un_ent[ix].un_num,
   1086 			    suptr->un_ent[ix].un_adjval,
   1087 			    semaptr->_sem_base[semnum].semval));
   1088 
   1089 			if (adjval < 0 &&
   1090 			    semaptr->_sem_base[semnum].semval < -adjval)
   1091 				semaptr->_sem_base[semnum].semval = 0;
   1092 			else
   1093 				semaptr->_sem_base[semnum].semval += adjval;
   1094 
   1095 			cv_broadcast(&semcv[semid]);
   1096 			SEM_PRINTF(("semexit:  back from wakeup\n"));
   1097 		}
   1098 	}
   1099 
   1100 	/*
   1101 	 * Deallocate the undo vector.
   1102 	 */
   1103 	SEM_PRINTF(("removing vector\n"));
   1104 	suptr->un_proc = NULL;
   1105 	*supptr = suptr->un_next;
   1106 	mutex_exit(&semlock);
   1107 }
   1108 
   1109 /*
   1110  * Sysctl initialization and nodes.
   1111  */
   1112 
   1113 static int
   1114 sysctl_ipc_semmni(SYSCTLFN_ARGS)
   1115 {
   1116 	int newsize, error;
   1117 	struct sysctlnode node;
   1118 	node = *rnode;
   1119 	node.sysctl_data = &newsize;
   1120 
   1121 	newsize = seminfo.semmni;
   1122 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1123 	if (error || newp == NULL)
   1124 		return error;
   1125 
   1126 	return semrealloc(newsize, seminfo.semmns, seminfo.semmnu);
   1127 }
   1128 
   1129 static int
   1130 sysctl_ipc_semmns(SYSCTLFN_ARGS)
   1131 {
   1132 	int newsize, error;
   1133 	struct sysctlnode node;
   1134 	node = *rnode;
   1135 	node.sysctl_data = &newsize;
   1136 
   1137 	newsize = seminfo.semmns;
   1138 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1139 	if (error || newp == NULL)
   1140 		return error;
   1141 
   1142 	return semrealloc(seminfo.semmni, newsize, seminfo.semmnu);
   1143 }
   1144 
   1145 static int
   1146 sysctl_ipc_semmnu(SYSCTLFN_ARGS)
   1147 {
   1148 	int newsize, error;
   1149 	struct sysctlnode node;
   1150 	node = *rnode;
   1151 	node.sysctl_data = &newsize;
   1152 
   1153 	newsize = seminfo.semmnu;
   1154 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1155 	if (error || newp == NULL)
   1156 		return error;
   1157 
   1158 	return semrealloc(seminfo.semmni, seminfo.semmns, newsize);
   1159 }
   1160 
   1161 SYSCTL_SETUP(sysctl_ipc_sem_setup, "sysctl kern.ipc subtree setup")
   1162 {
   1163 	const struct sysctlnode *node = NULL;
   1164 
   1165 	sysctl_createv(clog, 0, NULL, NULL,
   1166 		CTLFLAG_PERMANENT,
   1167 		CTLTYPE_NODE, "kern", NULL,
   1168 		NULL, 0, NULL, 0,
   1169 		CTL_KERN, CTL_EOL);
   1170 	sysctl_createv(clog, 0, NULL, &node,
   1171 		CTLFLAG_PERMANENT,
   1172 		CTLTYPE_NODE, "ipc",
   1173 		SYSCTL_DESCR("SysV IPC options"),
   1174 		NULL, 0, NULL, 0,
   1175 		CTL_KERN, KERN_SYSVIPC, CTL_EOL);
   1176 
   1177 	if (node == NULL)
   1178 		return;
   1179 
   1180 	sysctl_createv(clog, 0, &node, NULL,
   1181 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   1182 		CTLTYPE_INT, "semmni",
   1183 		SYSCTL_DESCR("Max number of number of semaphore identifiers"),
   1184 		sysctl_ipc_semmni, 0, &seminfo.semmni, 0,
   1185 		CTL_CREATE, CTL_EOL);
   1186 	sysctl_createv(clog, 0, &node, NULL,
   1187 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   1188 		CTLTYPE_INT, "semmns",
   1189 		SYSCTL_DESCR("Max number of number of semaphores in system"),
   1190 		sysctl_ipc_semmns, 0, &seminfo.semmns, 0,
   1191 		CTL_CREATE, CTL_EOL);
   1192 	sysctl_createv(clog, 0, &node, NULL,
   1193 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   1194 		CTLTYPE_INT, "semmnu",
   1195 		SYSCTL_DESCR("Max number of undo structures in system"),
   1196 		sysctl_ipc_semmnu, 0, &seminfo.semmnu, 0,
   1197 		CTL_CREATE, CTL_EOL);
   1198 }
   1199